自动控制原理7.1 非线性控制系统的基本概念
自动控制原理非线性分析知识点总结
自动控制原理非线性分析知识点总结自动控制原理是工程领域中的一门重要学科,它研究的是如何通过设备和技术手段,使得系统的运行能够自动控制并满足特定的性能要求。
非线性分析则是探讨系统在非线性条件下的行为特性。
在这篇文章中,我们将对自动控制原理中的非线性分析知识点进行总结。
一、非线性系统的定义与特点非线性系统是指系统的输出与输入之间的关系不是简单的比例关系,而是呈现出非线性的特征。
与线性系统相比,非线性系统具有以下几个特点:1. 非线性叠加性:系统的输出并不是输入信号的简单叠加,而是受到系统自身状态和非线性特性的影响。
2. 非线性失稳性:非线性系统可能会出现失稳现象,即系统的输出会趋向于无穷大或无穷小。
3. 非线性动态行为:非线性系统在输入信号发生变化时,其输出信号的变化可能是不连续的,出现跳跃、震荡等现象。
二、非线性系统的分析方法1. 相平面分析法:通过绘制相平面图,可以直观地了解系统的非线性行为。
相平面图可以显示出系统的轨迹、奇点等信息,帮助我们分析系统的稳定性和动态特性。
2. 频域分析法:利用频域分析方法,我们可以对非线性系统进行频谱分析,找出系统的频率响应和频率特性。
通过分析系统的幅频特性和相频特性,我们可以判断系统的稳定性和动态性能。
3. 时域响应分析法:时域分析是对系统的输入信号与输出响应进行时间上的观察和分析。
通过观察和分析系统的阶跃响应、脉冲响应、频率响应等,可以推断出系统的稳定性和动态特性。
4. 广义函数法:广义函数是处理非线性系统时常用的一种数学方法。
通过引入广义函数,我们可以简化非线性系统的数学描述,方便进行分析与计算。
5. 数值模拟方法:对于复杂的非线性系统,我们可以利用计算机进行仿真和数值模拟,通过对系统的模拟实验,得到系统的动态行为和性能参数。
三、非线性系统的稳定性分析1. 稳定性概念:稳定性是衡量系统响应的一种重要指标。
对于非线性系统,我们通常关注的是渐近稳定性和有界稳定性。
(优选)自动控制原理第七章非线性系统
1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。
非线性控制系统
(0 m 1)
由于具有死区和滞环的继电器特性是对原点多值奇 对称,它在正弦输入作用下的输出量y(t)既不是奇函 数又不偶函数,所以A1和B1都必须计算,但A0=0
A1
1
2
0
y(t )cos td(t )
4 1 2 Mcos td(t ) Mcos td(t ) 3 1
注:非线性元件在正弦输入下,其输出也是一个同频率的正弦量, 只是振幅和相位发生了变化。这与线性元件在正弦信号作用下的 输出具有形式上的相似性,故称上述近似处理为谐波线性化。 一般高次谐波的振幅小于基波的振幅,因而为进行近似处理提 供了可靠的物理基础。
描述函数(describing function)
系统状态演变对 初值极端敏感,相图 中两个任意靠近的点 经过足够长时间,对 应截然不同的状态— —由于实际上对初值 的测量不可能绝对精 确,这种不确定性在 一定条件下被放大, 导致不可预测的结果 ——蝴蝶效应。
3.非线性系统可能存在自激振荡现象。
自激振荡:无外作用时非线性系统内部产生的稳定的 等幅振荡称为自激振荡,简称自振荡。
y(t)
x(t)
0 1 2
y1(t) Y1sin(t +1) y(t) π 2 3 4
ωt
π
X x(t)
1
2
π
π 2
3 4
x(t) Xsint
ωt
非线性的输出
1 t 2 3 t 4 mh h 2 arcsin 式中: 1 arcsin , X X h mh 3 arcsin , 3 2 arcsin X X
( A a)
死区非线性的描述函数为
自动控制原理__(13)
江南大学物联网工程学院——自动控制原理
(2)会产生自激振荡 非线性系统即使无外界作用,往往也会产生具有一定振幅 和频率的稳定性振荡,称为自激(自持)振荡。在有的非线性 系统中,还可能产生不止一种振幅和频率的自激振荡。自激振 荡是非线性系统一种特有的运动形式,其振幅和频率由系统本 身特性决定。 说明:
江南大学物联网工程学院——自动控制原理
2. 典型的非线性特性
常见的非线性特性有饱和、死区、间隙(回环)、继电等。 (1)饱和特性 特点:当输入信号超过某一范围后,输出信号不再随输 入信号而变化,将保持某一常数值不变。可将饱和非线性元 件看作为一个变增益的比例环节。
x2 f ( x1 ) tan , x1 <s 如图: x2 f ( x1 ) K x1 x1 0, x1 >s
作用:饱和特性将使系 统等效增益减小,因此可用 来改善系统的稳定性,但会 降低稳态精度。在有些系统 中利用饱和特性起信号限幅 作用。
(a)理想饱和特性
(b)实际饱和特性
图7-2 理想与实际饱和特性
江南大学物联网工程学院——自动控制原理
(2)死区(不灵敏区)特性 特点:是当输入信号在零值附近的某一小范围之内变化 时,没有相应的输出信号,只有当输入信号大于此范围时, 才有信号输出。 常见于测量、放大、变换元件中,执行机构中静摩擦的 影响往往也可用死区来表示。 影响:控制系统中死区特性的存 在,将导致系统稳态误差增大,而测 量元件死区的影响尤为显著。摩擦死 区会造成系统低速运动的不均匀,导 致随动系统不能准确地跟踪目标。
3. 非线性系统的分析方法
目前,对于非线性系统的分析与设计,工程上常用的近似方法有:小 偏差线性化法、分段线性化法、反馈线性化法、描述函数法、相平面法及 计算机仿真等。本章将重点介绍应用较多的相平面法和描述函数法。 (1) 相平面法 相平面法是基于时域的图解分析方法。特点是保留非线性特性,将高 阶的线性部分近似地化为二阶,利用二阶系统的状态方程,绘制由状态变 量所构成的的相轨迹图。可用来分析系统的稳定性及运动特性。 只适用于一、二阶的简单非线性系统分析。
自动控制原理课件 第7章 非线性控制系统
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
自动控制原理—非线性控制系统概述
a 2 2 A a j 4 x2 m 4 x2 m 2 2 A a j 4 x2 m 8
可见-1/N(A)轨迹为一条与实轴平行的直线 而G0(j)为
3.用描述函数法研究非线性控制系统 解:(续)
320 G 0 ( j ) j ( j 4)( j 8) - 3840 320(32 ) j 2 2 2 2 (16 )(64 ) (16 )(64 )
二阶系统的微分方程表达
d 2x dx dx dx a1 ( x, ) a0 ( x, ) x 0 2 dt dt dt dt
a1,a0为常数时表达线性定常系统。 a1,a0不为常数时表达非线性系统。
1. 基本概念
二阶系统的状态方程表达
. 令x1=x,x2=x1, 有
1 x2 x 2 a0 ( x1 , x2 ) x1 a1 ( x1 , x2 ) x2 a0 x1 a1 x2 x
4 6
Im o
Re
Im
推论:由右向左穿越G0(j)线的点是稳定的自振荡点
3.用描述函数法研究非线性控制系统 例 9.1
设非线性元件具有滞环继电特性(a/x2m=0.5), 试分析系统稳定性, 并判断是否存在稳定的自振荡.
R(s) -
x2m -a a
320 s(s+4)(s+8)
Y(s)
3.用描述函数法研究非线性控制系统 解:
(1)饱和特性的描述函数法
x2 -a K x2 t
a
x1
-
-
x1
t
2. 典型非线性元件的描述函数
(1)饱和特性的描述函数法 当A<a , x2(t) = KA sin t, N(A)=X2(A)/X1(A)=K 当A>a, KA sin t 0 t x2(t) = Ka t - KA sin t - t ∵ A sin =a ∴ = sin-1(a/A)
自动控制原理第十章非线性控制系统
自动控制原理第十章非线性控制系统非线性控制系统是指系统动态特性不能用线性数学模型表示或者用线性控制方法解决的控制系统。
非线性控制系统是相对于线性控制系统而言的,在现实工程应用中,许多系统经常具有非线性特性,例如液压系统、电力系统、机械系统等。
非线性控制系统的研究对于实现系统的高效控制和稳定运行具有重要意义。
一、非线性控制系统的特点1.非线性特性:非线性控制系统的动态特性往往不能用线性方程或者线性微分方程描述,经常出现非线性现象,如饱和、死区、干扰等。
2.多变量关联:非线性系统动态关系中存在多个变量之间的相互影响,不同变量之间存在复杂的耦合关系,难以分离分析和解决。
3.滞后响应:非线性系统的响应时间较长,且在过渡过程中存在较大的像后现象,不易预测和控制。
4.不确定性:非线性系统通常存在参数变化、外部扰动和测量误差等不确定性因素,会导致系统性能变差,控制效果下降。
二、非线性控制系统的分类1.反馈线性化控制:将非线性系统通过适当的状态反馈、输出反馈或其它形式的反馈转化为线性系统,然后采用线性控制方法进行设计。
2.优化控制:通过建立非线性系统的数学模型,利用优化理论和方法,使系统达到其中一种性能指标最优。
3.自适应控制:根据非线性系统的参数变化和不确定性,设计自适应控制器,实时调整控制参数,以适应系统的动态变化。
4.非线性校正控制:通过建立非线性系统的映射关系,将测量信号进行修正,以减小系统的非线性误差。
5.非线性反馈控制:根据非线性系统的特性,设计合适的反馈控制策略,使得系统稳定。
三、非线性控制系统设计方法1.线性化方法:通过将非线性系统在其中一工作点上线性化,得到局部的线性模型,然后利用线性控制方法进行设计和分析。
2.动态编程方法:采用动态系统优化的方法,建立非线性系统的动态规划模型,通过求解该模型得到系统的最优控制策略。
3.反步控制方法:通过构造适当的反步函数和反步扩散方程,实现系统状态的稳定和输出的跟踪。
自动控制原理 第七章 非线性系统
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A
M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M
sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。
自动控制原理第九章非线性控制系统PPT课件
非线性系统的数学描述
01
02
04
非线性微分方程
非线性微分方程是描述非线性系统动态行为的数学模型之一。
它通常表示为自变量和因变量的函数,其中包含未知函数的导数。
非线性微分方程的解可以描述系统的输出响应与输入信号之间的关系。
解决非线性微分方程的方法通常包括数值解法和解析解法。
03
非线性传递函数是描述非线性系统的另一种数学模型。
非线性系统的特点
研究非线性系统的方法包括解析法、数值法和实验法等。
总结词
解析法是通过数学推导和求解方程来研究非线性系统的行为和特性。数值法则是通过数值计算和模拟来研究非线性系统的行为和特性。实验法则是通过实际实验来研究非线性系统的行为和特性,通常需要设计和构建实验装置和测试系统。
详细描述
非线性系统的研究方法
它类似于线性系统的传递函数,但包含非线性项和饱和项。
非线性传递函数可以表示系统的输入输出关系,并用于分析系统的性能和稳定性。
分析非线性传递函数的方法包括根轨迹法和相平面法等。
01
02
03
04
非线性传递函数
非线性状态方程是描述非线性系统动态行为的另一种数学模型。
非线性状态方程可以用于分析系统的稳定性和动态行为,并用于控制系统设计。
非线性系统仿真软件
非线性系统仿真实例是通过计算机仿真技术对实际非线性系统进行模拟和分析的实例,它可以帮助用户更好地理解非线性系统的特性和行为,并验证仿真模型的正确性和有效性。
常见的非线性系统仿真实例包括电机控制系统、飞行器控制系统、机器人控制系统等,这些实例可以帮助用户更好地了解非线性系统的控制方法和优化策略。
飞行器控制系统
化工过程控制系统
自动控制原理复习资料——卢京潮版第七章
第七章 非线性控制系统分析§7.1 非线性系统概述● 非线性系统运动的规律,其形式多样。
线性系统只是一种近似描述 ● 非线性系统特征—不满足迭加原理1) 稳定性 ⎩⎨⎧平衡点灯可能有多个入有关关,而且与初条件,输不仅与自身结构参数有2) 自由运动形式,与初条件,输入大小有关。
3) 自振,在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
自振是非线性系统特有的运动形式。
4) 正弦响应的复杂性 (1) 跳跃谐振及多值响应 (2) 倍频振荡与分频振荡 (3) 组合振荡(混沌) (4) 频率捕捉 ● 非线性系统研究方法 1) 小扰动线性化处理2) 相平面法-----用于二阶非线性系统运动分析3) 描述函数法-----用于非线性系统的稳定性研究及自振分析。
4) 仿真研究---利用模拟机,数字机进行仿真实验研究。
常见非线性因素对系统运动特性的影响:1. 死区:(如:水表,电表,肌肉电特性等等)死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2. 饱和(如运算放大器,学习效率等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 3. 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法:(1) 提高齿轮精度 ; (2) 采用双片齿轮; (3) 用校正装置补偿。
4. 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响:影响系统慢速运动的平稳性5. 继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)§7.2 相平面法基础(适用于二阶系统)1. 相平面相轨迹二阶非线性系统运动方程:()[(),()]xt f x t x t = ――定常非线性运动方程即:[,][,]dxdx f xx dx dtdx f x x dx x⋅==()()xxt x t ⎧⎪⎪⎨⎪⎪⎩以为纵标,x为横标,构成一个平面(二维空间)称之为相平面(状态平面)系统运动时,,以t为参变量在相平面上描绘出的轨迹称为相轨迹(可以描述系统运动) 相平面法是用图解法求解一般二阶非线性控制系统的精确方法。
第七章非线性控制系统
例7.1:用描述函数法分析下面非线性系统是否存在自 振?若存在,求振荡频率和振幅。
1
-
-1
10 s(s 1)(s 2)
解: -1/N(A)
G(jω)
N ( A) 4M 4 , 1 A A A N ( A) 4
A从0 , 1 变化范围为0 N ( A)
Y1 A
1
A12 B12 arctg A1 B1 j A1
A
B1 A A
1
A1
2
y(t ) costd (t )
0
B1
1
2
y(t ) sintd (t )
0
N(A)
G(jω)
应用限制条件
• 输入输出特性奇对称,即 y(x)=-y(-x), A0=0。 • 系统的线性部分具有较好的低通滤波性能。
/
1
2
]
2KA [( 2
1
1 2
sin2 1 )
2 A
(cos 1 )]
2KA [ arcsin 1 ( )2 ]
2
AA
A
N ( A) 2K [ arcsin 1 ( )2 ]
2
AA
A
1
arcsin
A
A sin 1
动画演示
7.3 描述函数
7.1 7.2 7.4
描述函数的定义
x(t) A sint,y(t) A0 ( An cos nt Bn sinnt)
y(t) y1 (t) A1 cos t B1ns0int Y1 sin(t 1 )
自动控制原理课件:非线性系统的分析
( ) 90 arctan arctan
4
求与负实轴的交点
90 arctan arctan
4
180
5
arctan arctan arctan 4 2 90
4
1
4
2
4
1 2
G ( j )
1
10
称 , 为相变量,它们构成二维平面称为相平面
相变量在相平面上运动的轨迹称为相轨迹, 即在一定
初始条件下满足上述微分方程的解.
相平面模型即 非线性二阶系统的状态空间模型.
x(t )
d x(t ) / dt d x(t ) f ( x(t ), x(t ))
dx(t )
x(t ) dx(t ) / dt
作用的基波分量,近似为“线性系统”。
01
描述函数是非线性特性的一种近似表示,是一种谐波线性化方法,忽略
非线性环节输出中的高次谐波,用基波分量表示其输出。
e(t ) X sin t
c1 (t )
N(X )
表示非线性环节的输出一次谐波分量对正弦输入信号的复数比。
N(X )
使用上常将描述函数表示为的函数.
的初始状态无关。
非线性系统的稳定性和零输入响应的性质不仅取决于系统的结构、参数,而且
与系统的初始状态有关。
2. 系统的自持振荡
线性系统只有两种基本运动形式:发散(不稳定)和收敛(稳定)。
非线性系统除了发散和收敛两种运动形式外,即使无外界作用,也可能会发生
自持振荡。
4
dx(t )
2
x
§7.1 非线性控制系统概述
第7章 非线性控制系统分析在构成控制系统的环节中,如果有一个或一个以上的环节具有非线性特性,则此控制系统就属于非线性控制系统。
本章涉及的非线性环节是指输入、输出间的静特性不满足线性关系的环节。
由于非线性问题概括了除线性以外的所有数学关系,包含的范围非常广泛,因此,对于非线性控制系统,目前还没有统一、通用的分析设计方法。
本章主要介绍工程上常用的相平面分析法和描述函数法。
7.1 非线性控制系统概述7.1.1 非线性现象的普遍性组成实际控制系统的元部件总存在一定程度的非线性。
例如,晶体管放大器有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;电动机输出轴上总是存在摩擦力矩和负载力矩,只有在输入超过启动电压后,电动机才会转动,存在不灵敏区,而当输入达到饱和电压时,由于电动机磁性材料的非线性,输出转矩会出现饱和,因而限制了电动机的最大转速;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙;开关或继电器会导致信号的跳变;等等。
实际控制系统中,非线性因素广泛存在,线性系统模型只是在一定条件下忽略了非线性因素影响或进行了线性化处理后的理想模型。
当系统中包含有本质非线性元件,或者输入的信号过强,使某些元件超出了其线性工作范围时,再用线性分析方法来研究这些系统的性能,得出的结果往往与实际情况相差很远,甚至得出错误的结论。
由于非线性系统不满足叠加原理,前六章介绍的线性系统分析设计方法原则上不再适用,因此必须寻求研究非线性控制系统的方法。
7.1.2 控制系统中的典型非线性特性实际控制系统中的非线性特性种类很多。
下面列举几种常见的典型非线性特性。
1.饱和非线性特性只能在一定的输入范围内保持输出和输入之间的线性关系,当输入超出该范围时,其输出限定为一个常值,这种特性称为饱和非线性特性,如图7-1所示。
图中,x ,分别为非线性元件的输入、输出信号,其数学表达式为y()()()()()sgn ()()⎧≤⎪=⎨>⎪⎩Kx t x t a y t Ka x t x t a (7-1) 式中 —线性区宽度; a K —线性区的斜率。
自动控制原理课件第七章1
A1
1
2
0
x(t) costd (t),
B1
1
2
x(t) sin td (t)
0
X1
A12 B12 ,
1
arctg
A1 B1
③将基波分量代入描述函数定义,即可求得相应的描述函数 N ( A) 。
N ( A) X1 e j1 j A1 B1
A
AA
25
1.理想继电器特性
输入信号 x(t) Asint
y M
a
k
0a
x
M
y M
a ma
0 ma a x
M 31
输入信号大小或初始状态发生改变时,其响应形式 可能会发生变化。
15
4、自激振荡 ➢线性系统:
等幅振荡其实是一种理想状态,现实中不存在, ➢非线性系统:
由于非线性元件作用,可能出现稳定的等幅振荡。
16
5、分谐波振荡 ➢线性系统: 输入正弦信号,输出为同频率正弦信号; ➢非线性系统:输入正弦信号,输出不再是简单的同频信号,
线性系统输出: c(t)=c1 c2 c3
非线性系统不满足上述关系,因此线性系统控制理论原则上不能用
12
2、稳定性
稳定性定义:系统受扰后恢复原来平衡状态的能力 线性系统:只与系统结构和参数有关,与输入、初
始状态(条件)无关! 非线性系统:除了与系统结构有关外,还与
系统输入、初始状态有关。
13
考虑非线性一阶系统
从能量的观点来分析,当主动轮越过间隙时,系统的执行元件不带动负载,因而 不消耗能量,与没有间隙特性的系统相比,相当于蓄能增多,使得主动轮通过间 隙重新带动负载时的总能量增大,因而使系统的震荡加剧。
自控非线性控制系统概述
Time t (s)
非线性系统产 生自激振荡!
deedemo1
ydot
1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3 -2 -1 0 1 2 3
y
11
频率响应发生畸变
稳定线性系统在正弦信号作用下的稳态输出是与 输入同频率正弦信号,幅值与相位是频率的函数。 非线性系统的频率响应包含倍频、分频等谐波分 量。系统输出的幅值不完全相同,并出现跃变!
1 xt 0 sgn xt 1 xt 0
死区特性
15
死区
y K x K1 x
K1 K x x
等效增益
y
K1
K1
K
K
0
x
0
x
死区特性
等效增益曲线
饱和特性
Saturation
x t
1
01
y t
——传动机构由静止状态启动时,必须克服静摩擦 力矩F1,启动后要克服机构中的动摩擦力矩F2 。
y
F1 F2
0
F2
K
静态: ess ↑ 动态:低速 运动不平滑
K1
x
K
0
x
F1
摩擦特性
等效增益曲线
带有摩擦的 机械位移系统
20
继电特性
Relay
4
3
xt
1
yt
2
1
0
-1
-2
-3
10
例 1: 弹簧、阻尼器、质量块位移系统
例 2: Van der Pol 方程
3
2.5 2
2 y 2 1y y0 y
非线性控制系统分析(《自动控制原理》课件)
出发的相轨迹曲线互不相交. 如果在相平面上某些点的
d x/ dx 0/ 0, 即曲线在这一点上的斜率不定, 可有无穷多
条相轨迹通过这一点, 称这一点为系统的平衡点, 或叫奇
点.
在相平面的上方(如下图) ,
由于
x
0所以
x总是朝大的
x
A(x0 ,
x0 )
方向变化, 故相轨迹上的点总是按图 中箭头所指从左向右移动. 在相平面
u0
0
u(t) u(t) G(s) c(t)
u0
上图中, 大方框表示一具有理想继电特性的非线性环节, G(s) 表示非线性系统中线性部分的传递函数.
非线性的特性是各种各样的, 教材图及 表给出了一些工程上常见的典型非线性特性.
7-2非线性控制系统的特征
非线性控制系统有如下两个基本特征: (1)非线性控制系统的基本数学模型是非线性微分方程 (2)非线性控制系统的性能不仅与系统本身的结构和参
0
x
的下方,
由于
x
0
所以
x
总是朝小的
方向变化, 故相轨迹上的点总是按图中箭
箭头所指从右向左移动. 在 x 轴上, 由于
x 0, 即 x不变化, 达到最大值或最小值, 故相轨迹曲线
与 x 轴的交点处的切线总垂直于x 轴.
2. 相轨迹作图法
先以线性系统为例, 说明相轨迹曲线的画法.
(1)解析法
数有关, 还与系统的初始状态及输入信号的形式和大小 有关.
由于非线性控制系统的基本数学模型是非线性微分 方程, 而从数学上讲, 非线性微分方程没有一个统一的 解法, 再由于第二个特征, 对非线性控制系统也没有一 个统一的分析和设计的方法, 只能具体问题具体对待.
自动控制原理第七章非线性系统ppt课件
7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π
2π
ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn
自动控制原理(第三版)第7章非线性控制系统(1)
自动控制原理
4)当非线性输入的信号为正弦作用时,由 于非线性其输出将不再是正弦信号,而包 含有各种谐波分量,发生非线性畸变。
大连民族学院机电信息工程学院
自动控制原理
5)混沌
大连民族学院机电信息工程学院
自动控制原理
非线性系统运动的特殊性
• 不满足叠加原理 — 线性系统理论原则上不能运用 (区别) • 稳定性问题 — 不仅与自身结构参数,且与输入, 初条件有关,平衡点可能不惟一,可以稳定且可以 在多个平衡点稳定,可能不稳定—发散、衰减等 nonlinear • 自振运动— 非线性系统特有的运动形式,产生自 持振荡 • 发生频率激变—频率响应的复杂性 — 跳频响应, 倍/分频响应,组合振荡
大连民族学院机电信息工程学院
自动控制原理
3、滞环(非单值特性)
) x 0 , 且y 0 k ( x a sgn x y =0 y x2 m sgn x
滞环特性会 使系统的相 角裕度减小, 动态性能恶 化,甚至产生 自持振荡。
x2
x2m
x2
x2m
a
0
x1
a
x2m
7.3 描述函数法 7.4 相平面法
7.5 Matlab 在本章中的应用
大连民族学院机电信息工程学院
自动控制原理
7.1 非线性控制系统概述
如果一个控制系统包含一个或一个以上具有非 线性特性的元件或环节,则此系统即为非线性系统。
• 前面研究的线性系统满足叠加性和齐次性; • 严格地说,由于控制元件或多或少地带有非线性特 性,所以实际的自动控制系统都是非线性系统; • 一些系统作为线性系统来分析: ①系统的非线性 不明显,可近似为线性系统。②某些系统的非线性 特性虽然较明显,但在某些条件下,可进行线性化 处理; • 但当系统的非线性特征明显且不能进行线性化处理 时,就必须采用非线性系统理论来分析。这类非线 大连民族学院机电信息工程学院 性称为本质非线性。
自动控制原理第八章非线性控制系统分析
第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7-1 非线性控制系统的基本概念
若系统含有一个或一个以上的非线性部件或 环节,则此系统为非线性系统。线性系统用传递函 数、频率特性、根轨迹等概念,线性系统的运动特 性与输入幅值、系统初始状态无关,故常在典型输 入信号下和零初始条件下进行分析研究。而由于非 线性系统的数学模型是非线性微分方程,故不能采 用线性系统的分析方法。
非线性系统的特征(续)
其最终稳定状态有时是等幅的自振荡,其幅值 和频率由其本身的特性所决定,这是非线性系 统一个重要的特有的特性。
人们对自振荡非常感兴趣,正常时不需要, 设法消除,但有些情况下人为的引入自振荡, 使系统具有较好的动、静态特性。对其研究有 很大的实际意义。
〈四〉频率响应:
稳定线性系统的频率响应,即正弦信号作用 下的稳态输出是与输入同频率的正弦信号,其
因此有
x 1
1 x0 1 et
x0 x0 x0et
et
1
x0e t x0 x0et
x0
<1>当x0 1时:即(1 x0 ) 0,可知特征根 s x0 1 0,
在左半s平面上,则系统稳定。
<2>当x0 1时:即(1 x0 ) 0,可知特征根 s x0 1 0,
的,稍加扰动不是收敛就是发散,不可能再
回到这个平衡状态。
<二>运动形式:
线性系统的运动形式与 输入信号的大小及初始条件 无关,若某一系统在某一初 始条件下的暂态响应为衰减 振荡形式,则在任何的信号 及初始条件下该系统的暂态 响应均为衰减振荡形式;而 非线性系统可能会出现某一 初始条件下的响应为单调衰 减;而另一初始条件下则为衰减振荡。
〈三〉自激振荡:
在没有外界周期性输入ຫໍສະໝຸດ 号作用时,线性系统只有 =0时产生周期性运动,此时系
统为临界稳定。事实上,此种状态不会持久, 稍有干扰(即使非常细小)即刻终止,转为 发散或收敛。
而对于非线性系统,在没有外界作用时, 系统完全有可能产生频率和振幅一定的稳定的 周期运动,既可实现又可保持,称为自振荡,
x0 1
x ,此时只有 x0 1
才会有此结果 。
非线性系统的特征(续)
(∵t必须大于0,即 x0 x0 1, 只有x0 1)
.
x x(1 x), 令x 0,解得系统两个平衡状态
x 0和x 1,因此x 0 平衡状态是稳定的,
它对应于 x0 1,而 x 1平衡状态是不稳定
t
所以x x0et, 可见无论
x03
x0取 何值系统均稳定。
x04
非线性系统的特征(续)
再 如 :dx dt
x(1
x),即
dx dt
x(1
x)
0,x项的系数是
(1 x),与变量x有关,此为非线性系统。
若设t 0时,
x
x0,故
dx x( x 1)
dt。
因为有
du u(a bu)
非线性系统的基本概念(续)
例如:对于线性系统,当x a1 x1 a2 x2时,y a1 y1 a2 y2; 但对于非线性系统,例如饱和
特性:设x1 c,x2 c
单独作用时, y1 kx1,
k
y2 kx2;若x x1 x2 c,
则y B,而不等于 kx1 kx2
非线性系统的特征(续)
性系统平衡状态的稳定问题。
如:dx x (即x x)此为线性系统。若设当t0 0时,
dt
x x 0, x x0,
x x01
即 dx dt, 则有ln x t c,
x
x02
x et ec c' et
因为t = 0时, x c x0 00
第七章 非线性控制系统分析
§7-1 非线性控制系统的基本概念 §7-2 典型非线性环节及其对系统的影响 §7-3 描述函数法 §7-4 用描述函数法分析非线性系统
主要内容
1. 非线性系统的基本概念 2. 典型非线性环节及其对系统的影响 3. 描述函数的基本概念及应用前提 4. 典型非线性特性的描述函数 5. 用描述函数分析非线性系统的稳定性
( y B kc);∴非线性系统不
能用迭加原理,而且在稳定
性、运动形式等方面具有独特的特点。
一、非线性系统的特征:
<一>稳定性: 线性系统的稳定性只取决于系统本身的结构和参 数,与初始状态无关,与输入信号无关。而非线 性系统的稳定性不仅取决于结构参数,而且与输 入信号以及初始状态都有关。对于同一结构参数 的非线性系统,初始状态位于某一较小数值的区 域内时系统稳定,但是在较大初始值时系统可能 不稳定,有时也可能相反。故对于非线性系统, 不应笼统地讲系统是否稳定,需要研究的是非线
1 a
ln
a
bu u
c,
dx x( x 1)
ln
x
1 x
c
dt
t
x 1 cet, x
则x 1 cxet,
即x(1
ce t
)
1,
x
1
1 cet
非线性系统的特征(续)
因为当t
0,x0
1
1
c
,所以x0
cx0
1, 故c
x0 1, x0
上式解得 x 1,其暂态过程为一常数。
非线性系统的特征(续)
<3> 当x0 1时,即(1 x0 ) 0, 可知特征根 s x0 1 0,
在右半s平面上,则系统不
稳定。
由上式解得,当t ln x0 时,
即 x0
x0 1
e t或 x0 et时,
x0 1
和自激振荡 6、 非线性系统的简化
重点与难点
重点
1.非线性系统的性质特点 2.用描述函数分析非线性系统的稳定性 3. 基于描述函数法计算系统自振参数 4. 非线性系统的简化
难点
系统自振参数的计算与非线性系统的简化
本章引言
前述均为线性系统。严格说来,任何一 个实际 控制系统,其元部件都或多或少的带有非线性,理想 的线性系统实际上不存在。当能够采用小偏差法将非 线性系统线性化时,称为非本质性非线性,可以应用 线性理论;但还有一些元部件的特性不能采用小偏差 法进行线性化,则称为本质性非线性,如饱和特性、 继电特性等等。这时不能采用线性理论进行研究,所 以只运用线性理论在工程上是不够的,还需研究分析 非线性理论。