《环境仪器分析》第五章 外-可见吸收光谱法
仪器分析教案第五章原子吸收光谱法

23:52:01
3)富燃性火焰:燃气与助燃气比例大于化学计量比, 燃助比大于1:3。这种火焰燃烧高度较高,温度较 低,噪声较大。但由于燃烧不完全,火焰呈强还原 性气氛,金属氧化物易被还原产生基态原子。适用 于易形成难熔氧化物的元素,如Mo,Cr等。 空气—乙炔火焰是原子吸收分析中最常用的火焰。
☆☆火焰原子化法的优点:重现性好、火焰稳定性 高、背景噪声低、易于操作的特点。 缺点:原子化效率仅为10%左右,灵敏度较低。
23:52:01
• 原子吸收光谱和原子发射光谱的比较 • 1.原子吸收法的选择性高,干扰较少且易于克服。 • 由于原于的吸收线比发射线的数目少得多,这样 谱线重叠的几率小得多。而且空心阴极灯一般并 不发射那些邻近波长的辐射线经,因此其它辐射 线干扰较小。 • 2.原子吸收具有较高的灵敏度。 • 在原子吸收法的实验条件下,原子蒸气中基态原 于数比激发态原子数多得多,所以测定的是大部 分原子。 • 3.原子吸收法 比发射法具有更佳的信噪比。 • 这是由于激发态原子数的温度系数显著大于基态 原子。
锐线光谱,光的强度稳定且背景小。
☆空心阴极灯、蒸气放电灯、无极放电灯 ☆空心阴极灯应用最广泛
直流电压 300V~500V
23:52:01
Anode Ne+
Optically transparent window
Cathode
M
M* →M + hn M
Shield
23:52:01
空心阴极灯的发射光谱主要是阴极元素的光谱, 用不同的待测元素作阴极,就制成相应待测元素的 空心阴极灯。
物,如AsH3 、SnH4 、BiH3等。这些氢化物经载气送入石
英管后,进行原子化与测定。
23:52:01
《现代仪器分析》_第二版-刘约权-课后习题答案

现代仪器分析习题解答20xx年春第12章电位分析及离子选择性电极分析法P2161.什么是电位分析法?什么是离子选择性电极分析法?答:利用电极电位和溶液中某种离子的活度或浓度之间的关系来测定待测物质活度或浓度的电化学分析法称为电位分析法。
以离子选择性电极做指示电极的电位分析,称为离子选择性电极分析法。
2.何谓电位分析中的指示电极和参比电极?金属基电极和膜电极有何区别?答:电化学中把电位随溶液中待测离子活度或浓度变化而变化,并能反映出待测离子活度或浓度的电极称为指示电极。
电极电位恒定,不受溶液组成或电流流动方向变化影响的电极称为参比电极。
金属基电极的敏感膜是由离子交换型的刚性基质玻璃熔融烧制而成的。
膜电极的敏感膜一般是由在水中溶解度很小,且能导电的金属难溶盐经加压或拉制而成的单晶、多晶或混晶活性膜。
4. 何谓TISAB溶液?它有哪些作用?答:在测定溶液中加入大量的、对测定离子不干扰的惰性电解质及适量的pH缓冲剂和一定的掩蔽剂,构成总离子强度调节缓冲液(TISAB)。
其作用有:恒定离子强度、控制溶液pH、消除干扰离子影响、稳定液接电位。
5. 25℃时,用pH=4.00的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.814V,那么在c(HAc)=1.00×10-3 mol?L-1的醋酸溶液中,此电池的电动势为多少?(KHAc=1.8×10-5,设aH+=[H+])解:∵E1=φ(+)--φ(-)=φ(+)-(K-0.0592pH1)E2=φ(+)--φ(-)=φ(+)-(K-0.0592pH2)∴E2- E1= E2-0.814=0.0592(pH2- pH1)∴E2=0.814+0.0592(-lg√Kc-4.00)=0.806(V)6.25℃时,用pH=5.21的标准缓冲溶液测得电池:“玻璃电极|H+(a=X mol?L-1)║饱和甘汞电极”的电动势为0.209V,若用四种试液分别代替标准缓冲溶液,测得电动势分别为①0.064V;②0.329V;③0.510V;④0.677V,试求各试液的pH和H+活度解:(1)ΔE1=0.064-0.209=0.0592(pH1-pHs)∵pHs=5.21∴pH1=2.76 aH+=1.74×10-3 mol?L-1(2)ΔE2=0.329-0.209=0.0592(pH2-pHs)∵pHs=5.21∴pH2=7.24 aH+=5.75×10-8 mol?L-1(3)ΔE3=0.510-0.209=0.0592(pH3-pHs)∵pHs=5.21∴pH3=10.29 aH+=5.10×10-11 mol?L-1(4)ΔE4=0.677-0.209=0.0592(pH4-pHs)∵pHs=5.21∴pH4=13.12 aH+=7.60×10-14 mol?L-17.25℃时,电池:“镁离子电极|Mg2+(a=1.8×10-3mol?L-1)║饱和甘汞电极”的电动势为0.411V,用含Mg2+试液代替已知溶液,测得电动势为0.439V,试求试液中的pMg值。
《现代仪器分析教学课件》2.紫外-可见吸收光谱法

C. π→π*:发生在近紫外线区 ~200nm
CH2=CH2:λmax=165 nm 、CH≡CH:λmax=173 nm 但是随着共扼体系的增大或杂原子的取代, λmax向长波移 动;εmax≥104,是强吸收带。
4.E带:由苯环环形共轭系统的π→ π*跃迁产生 ✓ 芳香族化合物的特征吸收带 。 • E1 180nm εmax>104 (常观察不到) • E2 200nm εmax=7000 强吸收 • 苯环有发色团取代且与苯环共轭时,E2带与K带合并
一起红移(长移)
影响吸收带位置的因素:
主要是溶剂极性对λmax的影响; n-π*跃迁:溶剂极性↑,λmax↓蓝移 π-π*跃迁:溶剂极性↑ ,λmax↑红移 对吸收光谱精细结构影响 溶剂极性↑,苯环精细结构消失
共轭体系增长,λmax↑→红移,εmax↑
C. 羰基化合物: n →π* (R 吸收带)、n→ σ*、 π→π*
醛、酮: n →π* λmax~ 270~300 nm ε max~10-20
羧酸及其衍生物: n →π* 存在助色团:-OH、-OR、-NH2、-Cl
形成 n →π共轭, π轨道能量降低,π* 轨道能量升高 n 轨道能量不受影响,因此 n→π* 蓝移 λmax~210nm
减色
λ
2.3.3 吸收带类型和影响因素
吸收带:相同跃迁类型所产生的吸收峰。
1.K带:由共轭双键的π→ π*跃迁产生 (—CH=CH—)n,—CH=C—CO—
• λmax 217~280nm,εmax>104 • 共轭体系增长,λmax↑→红移,εmax↑ • K 吸收带是共轭分子的特征吸收带,可用于判断共
仪器分析实验5-紫外可见光谱分析

实验五色氨酸、苯丙氨酸和酪氨酸的紫外吸收光谱分析一、实验目的1. 掌握紫外-可见分光光度计的工作原理和基本操作。
2. 掌握紫外-可见吸收光谱的绘制(包括导数光谱)以及定量测定方法。
3. 掌握。
4. 了解氨基酸类物质的紫外吸收光谱特点。
二、实验原理1. 紫外-可见吸收光谱法测定蛋白质含量的基本原理紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收广度法,它包括比色分析法和紫外-可见分光光度法。
紫外-可见分光光度法属于吸收光谱法,分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。
电子由于受到光、热、电等的激发,从一个能级转移到另一个能级,称为跃迁。
当这些电子吸收了外来辐射的能量,就从一个能量较低的能级跃迁到另一个能量较高的能级。
图1 电子跃迁示意图物质对不同波长的光线具有不同的吸收能力,如果改变通过某一吸收物质的入射光的波长,并纪录该物质在每一波长处的吸光度(A),然后以波长为横坐标,以吸光度为纵坐标作图,这样得到的谱图为该物质的吸收光谱或吸收曲线。
当一定波长的光通过某物质的溶液时,入射光强度I。
与透过光强度I之比的对数与该物质的浓度c及样品池厚度b成正比。
其数学表达式为:此式为Lambert-Beer定律,是分光光度法定量分析的基础,其中A为吸光度。
由于不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收,具有不同的吸收光谱,因而,我们可以利用紫外-可见吸收光谱法对物质结构进行鉴定和进行定量分析、根据被测量物质分子对紫外-可见波段范围(150~800nm)单色辐射的吸收或反射强度来进行物质的定性、定量或结构分析的一种方法。
氨基酸(amino acid):含有氨基和羧基的一类有机化合物的通称,是蛋白质的基本组成单位。
氨基酸类物质的一个重要光学性质是对光有吸收作用。
20种氨基酸在可见光区域均无光吸收,在远紫外区均有光吸收,而在近紫外区(220nm-300nm)只有三种AA有光吸收能力,这三种氨基酸分别是色氨酸(Try)、酪氨酸(Tyr)和苯丙氨酸(Phe)因为它们的结构均含有芳香共轭π键系统。
仪器分析复习题参考答案

仪器分析复习题参考答案《仪器分析》复习题第⼀章绪论⼀、仪器分析⽅法的分类(四⼤类)(⼀)光学分析法(spectroscopic analysis)以物质的光学性质(吸收,发射,散射,衍射)为基础的仪器分析⽅法。
包括原⼦吸收光谱法、原⼦发射光谱法、紫外-可见吸收光谱法、红外光谱法、核磁共振波谱法等。
(⼆)电分析(electrical analysis):电流分析,电位分析,电导分析,电重量分析,库仑法,伏安法。
(三)⾊谱分析(chromatography analysis) :⽓相⾊谱法,液相⾊谱法(四)其它仪器分析⽅法(other analysis):1. 质谱法2. 热分析法包括热重法、差热分析法、⽰差扫描量热法等。
3. 电⼦显微镜,超速离⼼机,放射性技术等。
⼆、定量分析⽅法的评价指标灵敏度:物质单位浓度或单位质量的变化引起响应信号值变化的程度,称为⽅法的灵敏度,⽤S表⽰。
精密度:是指使⽤同⼀⽅法,对同⼀试样进⾏多次测定所得测定结果的⼀致程度。
精密度⽤测定结果的标准偏差 s或相对标准偏差(s r )量度。
准确度: 试样含量的测定值与试样含量的真实值(或标准值)相符合的程度称为准确度。
检出限:某⼀分析⽅法可以检出被测物质的最⼩浓度或最⼩质量,称为该⽅法对该物质的检出限。
以浓度表⽰的称为相对检出限,以质量表⽰的称为绝对检出限。
第⼆章光谱分析导论⼀、光谱区中紫外、可见、红外对应的波长范围?紫外:200-380nm 可见:380-780nm 近红外:780-2500nm 中红外:2.5-50µm 远红外:50-300µm ⼆、原⼦光谱和分⼦光谱的⽐较。
原⼦光谱的特征:电⼦能级间的跃迁,属电⼦光谱,线状光谱。
分⼦形成带状光谱的原因能量离散,导致谱线宽度扩展测不准原理、相对论效应导致谱线宽度扩展。
再加上能级之间的能量间距⾮常⼩,导致跃迁所产⽣的谱线⾮常多,间距⾮常⼩,易于重叠。
原⼦光谱:原⼦基态与激发态能量差△E=1-20eV,与紫外-可见光的光⼦能量相适应,特征是线状光谱相邻电⼦能级间的能量差△Ee=1-20eV,与紫外-可见光的光⼦能量相适应,特征是线状光谱分⼦光谱:相邻振动能级间的能量差△Ev=0.05-1eV,与中红外区的光⼦能量相适应,特征是带状光谱相邻转动能级间的能量差△Er<0.05eV, 与远红外区的光⼦能量相适应,特征是带状光谱三、 1. 物质吸收光的过程⽆辐射退激共振发射荧光磷光2. 物质散射光的过程瑞利散射斯托克斯散射反斯托克斯散射四、荧光与磷光产⽣的量⼦解释及其区别?荧光:激发分⼦与其它分⼦相碰,⼀部分能量转化为热能后,下降到第⼀激发态的最低振动能级,然后再回到基态的其它振动能级并发射光⼦的发射光称荧光。
《环境仪器分析》第五章 紫外-可见吸收光谱法 (2)

碘钨灯:波长范围340-1200 nm。无论钨灯或碘钨灯, 在可见区发射的能量与工作电压4次方成正比,因此,预 使光源稳定,必须由一个很好的稳定电源。
紫外区:气体放电光源,如氢、氘灯。适用的波长 范围185~400 nm的连续光谱。
光栅是利用光的衍射与 干涉作用制成的,它可用 于紫外、可见及近红外光 域,而且在整个波长区具 有良好的、几乎均匀一致 的分辨能力。
优点:色散波长范围宽 、分辨本领高、成本低、 便于保存和易于制备等;
缺点:各级光谱会重叠 而产生干扰。
2019/10/31
6
3、样品室
样品室(吸收池,常用比色皿)
紫外区:必须是石英池 可见和近红外区:玻璃 池或石英池
2019/10/31
7
4、检测器(光电倍增管)
光
电子倍增极
敏
阴
极
电子倍 增极
光
R1
R2
R3
R4
负电压
阳
R
极
mA
R5
5、读数装置: 记录仪、数字显示器
2019/10/31
8
二、常用紫外-可见仪器类型
单光束紫外-可见分光光度计 双光束紫外-可见分光光度计 双波长分光光度计
例如:0.2M Na2SO4 溶解偶氮基—N=N—染料(甲基橙), 可以选择0.2 M Na2SO4作为溶剂参比。
2019/10/31
36
(2)试剂参比
如果显色剂或其他试剂在测定波长有吸收, 按显色反应条件下,只是不加入试样,同样加 入试剂和溶剂作为参比,可消除试剂中的组分 产生吸收的影响。
Fe2+ + 邻二氮菲 → 橙红色络合物
5 紫外-可见吸收光谱分析

第五章 紫外-可见吸收光谱法 Ultraviolet-Visible Absorption Spectrometry , UV-VIS
仪器分析
Zhengzhou University of Light Industry
§5-1 分子吸收光谱
跃迁实质是一个内氧化还原过程,而相应的吸收光谱称为
电荷迁移吸收光谱。例如,某些取代芳烃可产生这种分子 内电荷迁移跃迁吸收带。电荷迁移吸收带的谱带较宽,吸
收强度大,εmax 可大于104 L•mol-1 •cm-1。
仪器分析
Zhengzhou University of Light Industry
仪器分析
Zhengzhou University of Light Industry
紫外-可见吸收光谱一般包含有若干谱带系,不同谱带系 相当于不同的电子能级跃迁。一个吸收峰 (即同一电子能级跃 迁,如由能级A跃迁到能级B)含有若干谱带,不同谱带相当于 不同的振动能级跃迁。同一谱带内又包含有若干光谱线,每 一条线相当于转动能级的跃迁,它们的间隔如上所述约为 0.25nm ,如此小的间隔使它们联系在一起,呈现带状,所以
仪器分析
Zhengzhou University of Light Industry
将不同波长的光透过某一物质,测量每一波长下物质对 光的吸收程度即吸光度,然后以波长为横坐标,以吸光度为
纵坐标作图,这种图谱称为该物质吸收曲线或吸收光谱。某
物质的吸收光谱反映了它在不同的光谱区域内吸收能力的分 布情况,可以从波形、波峰的强度、位置及其数目看出来,
紫外 - 可见吸收光谱分析是研究分子吸收 200~800nm 波
仪器分析 第五章 紫外-可见分光光度法

2,不饱和烃及共轭烯烃 在不饱和烃类分子中,除含有键外,还含有键, 它们可以产生*和*两种跃迁。 *跃 迁的能量小于 *跃迁。例如,在乙烯分子中, *跃迁最大吸收波长为180nm
在不饱和烃类分子中,当有两个以上的双键 共轭时,随着共轭系统的延长, *跃迁的吸 收带 将明显向长波方向移动,吸收强度也随之增 强。在共轭体系中, *跃迁产生的吸收带又 称为K带。
在λmax处吸光度随浓度变化的幅度最大,
所以测定最灵敏。吸收曲线是定量分析中选择
入射光波长的重要依据。
3.紫外—可见分子吸收光谱与电子跃迁
物质分子内部三种运动形式: 1.电子相对于原子核的运动, 2.原子核在其平衡位置附近的相对振动 3.分子本身绕其重心的转动。
分子具有三种不同能级:电子能级、振动
⑶ π→π*跃迁
所需能量较小,吸收波长处于远紫外 区的近紫外端或近紫外区,摩尔吸光系数 εmax一般在104L·mol-1·cm-1以上,属于 强吸收。不饱和烃、共轭烯烃和芳香烃类均 可发生该类跃迁。如乙烯π→π*跃迁的 λmax为162nm,εmax为1×104L·mol-1·cm -1。
⑷ n→π*跃迁 需能量最低,吸收波长λ>200nm。 这类跃迁在跃迁选律上属于禁阻跃迁, 摩尔吸光系数一般为10~100L·mol-1 ·cm-1,吸收谱带强度较弱。分子中孤 对电子和π键同时存在时发生n→π* 跃 迁。丙酮n→π*跃迁的λmax为275nm εmax为22 L·mol-1 ·cm -1(溶剂环 己烷)。
生色团与助色团
生色团: 最有用的紫外—可见光谱是由π→π* 和n→π*跃迁产生的。这两种跃迁均要求有 机物分子中含有不饱和基团。这类含有π键 的不饱和基团称为生色团。简单的生色团由 双键或叁键体系组成,如乙烯基、羰基、亚 硝基、偶氮基—N=N—、乙炔基、腈基—C㆔ N等。
仪器分析第五章 原子吸收光谱法

第五章原子吸收光谱法Chapter FiveAtomic Absorption SpectrumFor Short:AAS第一节基本原理一、原子吸收光谱分析概述1、原子吸收光谱的起源18世纪初,人们便开始观察和研究原子吸收光谱-----太阳光谱中的暗线。
1955年,澳大利亚物理学家瓦尔西发表了著名论文“原子吸收光谱在化学分析中的应用”,奠定了原子吸收光谱分析法的理论基础。
1955年,原子吸收光谱作为一种分析方法开始应用。
并在60年代得到迅速发展和普及。
2、什么是原子吸收光谱?溶液中的金属离子化合物在高温下能够解离成原子蒸气,两种形态间存在定量关系。
当光源发射出的特征波长光辐射通过原子蒸气时,原子中的外层电子吸收能量,特征谱线的光强度减弱。
光强度的变化符合朗伯-比耳定律,进行定量分析。
它是基于物质所产生的原子蒸气对特征谱线的吸收作用来进行定量分析的一种方法。
❖原子与分子一样,吸收特定能量后,产生基态→激发态跃迁;产生原子吸收光谱,即共振吸收。
❖原子由基态→第一激发态的跃迁,最易发生。
❖每种原子的核外电子能级分布不同,当产生由基态→第一激发态的跃迁时,吸收特定频率的辐射能量。
二、共振线:共振吸收线——电子从基态跃迁至第一激发态所产生的吸收谱线称为共振吸收线(简称共振线)。
共振发射线——电子从第一激发态再跃回基态时,则发射出同样频率的辐射,对应的谱线称为共振发射线(也简称共振线)。
原子的共振线的吸收共振线称为元素的特征谱线,因为:各种元素的原子结构和外层电子排布不同。
所以不同元素的原子从基态激发成第一激发态(或由第一激发态跃回基态)时,吸收(或发射)的能量不同,因此各种元素的共振线各有其特征性。
共振线又称为元素的灵敏线,因为:这种从基态到第一激发态的跃迁最容易发生,因此对大多数元素来说,共振线是指元素所有谱线中最灵敏的谱线。
在原子吸收光度法中,就是利用处于基态的待测原子蒸气对从光源发射的共振发射线的吸收来进行分析的。
仪器分析绪论

蛋白质旳氮含量14-18% 平均为16%,折算系数 为6.25。
检测仪器: 气相色谱-质谱联用仪(GC-MS)、高效液相色谱 仪(HPLC)、液相色谱-质谱-质谱联用仪(HPLC-MS-MS) 等
分析化学及其任务
定义:研究物质化学构成、构成含量、表征物质化 学构造旳分析措施及有关理论旳科学。
清楚明了方法原理,弄懂记着基本概念。 知晓分清仪器装置,着重熟悉关键部件。 理解方法理论公式,熟练使用重点公式。
措施
发明了分配色谱法
发明了相差显微镜 首次发展了极谱法
发明了计算机控制扫描层析 诊疗法 (CT)
发展了高辨别率电子光谱法
发展了激光光谱学
对晶体显微镜旳发展
28项诺贝尔奖与分析仪器发展有关 2023年诺贝尔化学奖:
约翰·芬恩(美)与田中耕一(日): 库尔特·维特(瑞) 建立利用质谱分析生物大分子旳措施。 建立利用核磁共振测定生物大分子三维构造旳措施。
对电解理论旳贡献
对电导率旳理论研究及试验工作
制造了光学精密仪器及对天体所 做旳光谱研究
发觉结晶X射线衍射
共同采用X射线技术对晶体构造 旳分析
发觉了多种元素X射线发射旳不 同
发觉了质谱技术能够用来测定同 位素
编号 年份 获奖者 15 1939 Lawrence Ernest Orlando 16 1944 Rabi, Isidor Isaac
绪论应该讲旳内容? 为何学习仪器?
学术成就
生命质量
与仪器分析发明发展有关旳诺贝尔取得者
编号 年份 获奖者 1 1901 Rontgen Wilhelm Conrad 2 1901 Van't Hoff Jacbus Henricus
仪器分析课程教学大纲

《仪器分析》课程教学大纲课程名称:仪器分析(Instrumental Analysis)课程编号:112506课程性质:基础课学时:总学时54;理论课学时34;实验课学时20学分:3考核方式:考试适用对象:环境科学本科专业、农产品检验专业前修课程:无机化学、有机化学、分析化学建议开课学期:第4学期一、课程性质、目的与任务《仪器分析》是环境科学、农产品检验专业的主干课程之一。
是测定物质化学组成、状态、结构和进行科学研究及质量监控的重要手段。
本课程的任务是主要讲授仪器分析光学分析法、电化学分析法、色谱法等方法的基本理论、仪器原理、使用技术。
目的是使学生通过该课程的学习,能运用所学理论和技术制定实验研究方案,解决科学研究、工农业生产、社会和环境等方面的问题。
二、教学基本要求通过本课程的学习学生应掌握以下几个方面的知识、技能:1、了解仪器分析方法的分类、发展趋势;2、基本掌握主要仪器分析法的基本理论、仪器原理、实验技术;3、掌握仪器结构、原理和应用;4、基本掌握各种仪器分析法的样品处理技术;5、能把仪器分析技术运用到科学研究、工业生产和环境监测以及农产品检验中去。
三、课程内容与学时分配第一章绪论(2学时)教学要点:通过本章的教学,使学生初步了解仪器分析的内容和分类,仪器分析方法的特点和局限性及仪器分析在科学研究中的应用和仪器分析的发展局势。
考核要求:要求学生掌握仪器分析方法的分类、特点及局限性。
教学内容:第一节仪器分析的内容和分类1. 光学分析法2. 电化学分析法3. 色谱分析法4. 其它仪器分析法第二节仪器分析方法的特点和局限性1. 仪器分析方法的特点2. 仪器分析方法的局限性第三节仪器分析在科学研究中的应用第四节仪器分析的发展趋势第二章电位分析法(4学时)教学要点:通过本章的教学,使学生基本掌握电化学分析法的基本内容,了解原电池和电解池的区别。
使学生掌握电位分析法的基本原理,加深理解电极电位与浓度之间的关系。
紫外可见吸收光谱分析法

紫外可见吸收光谱分析法紫外可见吸收光谱分析法是一种广泛应用于化学、生物、环境科学等领域的检测方法,通过测定物质对紫外可见光的吸收特性来获得有关物质的结构和浓度等信息。
本文将详细介绍紫外可见光谱分析法的原理、仪器和应用等方面,以及其在药物、环境、食品等领域的具体应用。
首先,紫外可见光谱的基本原理是根据物质对不同波长的紫外或可见光的吸收特性来确定其浓度或进行定性分析。
在紫外可见光谱中,紫外光波长范围为200-400nm,可见光波长范围为400-800nm。
当物质吸收光线时,其分子内的电子从基态跃迁到激发态,吸收能量取决于分子内电子的能级跃迁,这将导致光谱吸收峰的出现。
物质的吸收光谱图形反映了不同波长的光线对物质的吸收能力,吸收峰的强度与物质的浓度成正比。
为了进行紫外可见光谱分析,需要使用紫外可见分光光度计。
该仪器由光源、样品室、单色器、检测器和计算机等组成。
光源发出广谱连续光,在单色器中,只有特定波长的光通过,其他波长的光被滤除。
样品放在样品室中,光线穿过样品后到达检测器。
检测器将光强度转换为电信号,并将信号输出到计算机进行分析。
紫外可见光谱分析法在各个领域有广泛的应用。
在药物领域,紫外可见光谱可用于药物成分的定量分析。
例如,可以通过对药物溶液的吸光度测定得到药物的浓度,从而判断药物的纯度和含量。
在环境领域,紫外可见光谱可以用于水质和大气污染物的监测。
通过检测水样中有机物和无机物的紫外可见吸收光谱,可以对水质进行评估和监测。
同时,还可以使用紫外可见光谱分析法来检测大气中的有害气体,如二氧化硫和氮氧化物等。
此外,紫外可见光谱分析法还在食品行业中得到了应用。
例如,可以利用该方法检测食品中的添加剂,如防腐剂和色素等,以确保食品的安全性和质量。
紫外可见光谱分析法还可用于检测食品中的重金属和农药残留物,以保障消费者的健康和权益。
综上所述,紫外可见吸收光谱分析法是一种快速、准确、灵敏的分析方法,可以广泛应用于化学、生物、环境科学等领域。
仪器分析各章习题与答案

第一章绪论问答题1. 简述仪器分析法的特点。
第二章色谱分析法1.塔板理论的要点与不足是什么?2.速率理论的要点是什么?3.利用保留值定性的依据是什么?4.利用相对保留值定性有什么优点?5.色谱图上的色谱流出曲线可说明什么问题?6.什么叫死时间?用什么样的样品测定? .7.在色谱流出曲线上,两峰间距离决定于相应两组分在两相间的分配系数还是扩散速率?为什么?8.某一色谱柱从理论上计算得到的理论塔板数n很大,塔板高度H很小,但实际上柱效并不高,试分析原因。
9.某人制备了一根填充柱,用组分A和B为测试样品,测得该柱理论塔板数为4500,因而推断A和B在该柱上一定能得到很好的分离,该人推断正确吗?简要说明理由。
10.色谱分析中常用的定量分析方法有哪几种?当样品中各组分不能全部出峰或在组分中只需要定量其中几个组分时可选用哪种方法?11.气相色谱仪一般由哪几部分组成?各部件的主要作用是什么?12.气相色谱仪的气路结构分为几种?双柱双气路有何作用?13.为什么载气需要净化?如何净化?14.简述热导检测器的基本原理。
15.简述氢火焰离子化检测器的基本结构和工作原理。
16.影响热导检测器灵敏度的主要因素有哪些?分别是如何影响的?17.为什么常用气固色谱分离永久性气体?18.对气相色谱的载体有哪些要求?19.试比较红色载体和白色载体的特点。
20.对气相色谱的固定液有哪些要求?21.固定液按极性大小如何分类?22.如何选择固定液?23.什么叫聚合物固定相?有何优点?24.柱温对分离有何影响?柱温的选择原则是什么?25.根据样品的沸点如何选择柱温、固定液用量和载体的种类?26.毛细管色谱柱与填充柱相比有何特点?27.为什么毛细管色谱系统要采用分流进样和尾吹装置?28.在下列情况下色谱峰形将会怎样变化?(1)进样速度慢;(2)由于汽化室温度低,样品不能瞬间汽化;(3)增加柱温;(4)增大载气流速;(5)增加柱长;(6)固定相颗粒变粗。
第五章 紫外-可见吸收光谱法(共73张PPT)

π→π*跃迁:
所需能量较小,λ一般>200nm,εmax > 104。
不饱和基团(乙烯基、乙炔基)
不饱和烃、共轭烯烃和芳香烃类可发生此类跃迁。
乙烯 π→π*跃迁: λmax 165nm
丁二烯 π→π*跃迁: λmax 217nm
n→π*跃迁:
所需能量最小, λ >200nm,
这些能量是量子化的,只有光辐射的能量恰好等于两能级之间的
能量差时,才能被吸收。
分子内部三种能级跃迁所需 能量大小的顺序为:
ΔE电> ΔE振> ΔE转
分子的电子跃迁所吸收的能量比后二者大的多
1. ΔE电 约为1~20eV,所吸收的电磁辐射波长约为1240~
62nm,主要在紫外和可见光区。
2. ΔE振约为~1eV,相应的分子吸收光谱为红外光谱。
光的强度I0与透射光的强度I之比的对数值。
A=lg I0/ I
T与A的关系:A=-lgT
三、朗伯-比尔定律
朗伯-比尔定律是分子吸收光谱法定量分析的基础。
要求:能够提供足够强的连续辐射、有良好的稳定性、较长的使用
三、紫外-可见吸收光谱法的应用
第六节 紫外-可见吸收光谱的应用
光源不同:前者为锐线光源,如空心阴极灯;
由于化合物分子结构中取代基的引入或溶剂的改变使得吸收带的
强度即摩尔吸收系数εmax增大或减小的现象,称为增色效应或减色效
应。
三、紫外-可见光谱中的常见吸收带
1、R带:(基团radical)
含杂原子的不饱和基团的
n →π*跃迁产生
C=O;C=N;—N=N—
特点:λmax 200~400nm,
《仪器分析》教案5-分子发光分析法

《仪器分析》教案5-分子发光分析法第一篇:《仪器分析》教案5- 分子发光分析法第8章分子发光分析法8.1教学建议一、从光谱定性分析和定量分析的依据和方法入手,在了解分子发光分析特点的基础上,介绍分子荧光与磷光光谱分析法的基本原理、仪器结构组成、常规测定方法及应用。
二、在比较分子荧光与磷光光谱分析法的基础上,介绍化学发光分析方法的基本原理及分析特点与应用。
8.2主要概念一、教学要求:(一)、掌握分子荧光与磷光光谱分析方法的基本原理;(二)、掌握荧光与磷光分析仪器的结构组成、常规测定方法及应用;(三)、掌握化学发光法的基本原理及应用;二、内容要点精讲第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。
荧光分析的特点:灵敏度高:视不同物质,检测下限在0.1~0.001mg/mL之间。
可见比UV-Vis的灵敏度高得多。
选择性好:可同时用激发光谱和荧光发射光谱定性。
结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。
应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。
二、基本原理1、分子荧光的产生处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。
这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。
单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。
在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。
处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。
辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫(VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∆Ee > ∆Ev > ∆Er
18:04:29
8
当能量为hv的入射光照射分子 时,若电磁波能量等于分子中 两个能级之间的能量差hv =hc/λ= ΔE时,分子吸收此入射 光,由较低能级跃入较高能级 ,从而产生分子吸收光谱。
转动光谱:远红外光谱
波长范围:1.5~400 µm
18:04:29
2
Introduction
• Probably the first physical method used in analytical chemistry was based on the quality of the color in colored solutions.
• The first things we observe regarding colored solutions are their hue, or color, and color’s depth, or intensity. These observations led to the technique historically called colorimetry.
Polychromatic light: consists of more than one wavelength. 互补光:物质有色是因其分子对不同波长的
光选择性ቤተ መጻሕፍቲ ባይዱ收而产生。下表列出颜 色与吸收光之间的关系。其中对应 颜色的光称互补色光。
Complementary light
18:04:29
13
不同颜色的可见光波长及其互补光
20
光吸收定律
透射比或透光率: T It
I0
百分透射比:T%;
百分吸光率:1-T%;
吸光度:
1 A lg
lg I0
T
It
18:04:29
21
紫外-可见光谱中的一些常见术语
1、吸收光谱(Absorption Spectrum)又称吸收曲线,是 以波长λ(nm)为横坐标,以吸光度(Absorbance, A) 或透射比(Transmittance, T)为纵坐标所绘制的曲线。
Unit Angstrom Nanometer Micrometer Millimeter Centimeter
Meter
Symbol Å nm µm mm cm m
Length/m 10-10 10-9 10-6 10-3 10-2 1
Types of radiation X-ray
UV, Visible IR IR
吸光度:表示物质对光的吸收程度。
1 A lg
lg I0
T
It
A值越大,对光的吸收愈大。
18:04:29
17
光吸收定律 郎伯-比尔定律 重要
1 A lg
lg I0
Kcb
T
It
其中:b-液层厚度(cm);
c-被测物质浓度(mol/L);
K-摩尔吸光系数(L/mol·cm)( ε )
UV-Vis
18:04:29
Infrared
Radio
Micro wave
wave
Radio Frequency
Wavelength (nm)
10
Table 1 The electromagnetic spectrum. The visible light region is expanded to show the colors associated with wavelength ranges
/nm 400 ~ 450 450 ~ 480 480 ~ 490 490 ~ 500 500 ~ 560 560 ~ 580 580 ~ 610 610 ~ 650 650 ~ 760
18:04:29
颜色 紫 蓝 绿蓝 蓝绿 绿 黄绿 黄 橙 红
14
互补光 黄绿 黄 橙 红 红紫 紫 蓝 绿蓝 蓝绿
18:04:29
3
Introduction of UV-Vis
又叫紫外-可见分光光度法,是利用某些 物质的分子吸收200 ~ 800 nm光谱区的辐射 来进行分析测定的方法。
Known as ultraviolet visible spectrophotometry, is a method for the analysis and determination of certain substances by absorbing radiation from 200 to 800 nm spectral region.
18:04:29
6
分子吸收光谱的形成
The energy states associated with molecules, like those of atoms, are also quantized, There are very powerful spectroscopic methods for studying transitions between permitted states in molecules using radiation from the radio-wave region to the UV region. These method provide qualitative and quantitative information about molecules, including detailed information about molecular structure
Microwave Radio
18:04:29
11
紫外-可见吸收光谱的分区
远紫外区
近紫外区
可见光区
blue yellow
Violet
red green orange
Purple
18:04:29
12
光的吸收
单色光:同一波长的光;
Monochromatic light: only a single wavelength, light of only one wavelength 复合光:由不同波长组成的光;
K: 摩尔吸光系数,表示物质的浓度为1 mol/L,液层厚度 为1 cm时溶液的吸光度,它表明物质对某一特定吸收波 长的能力。K值越大,表示该物质对某一波长光的吸收能 力愈强。K是与入射波长、物质的性质和溶液的温度等因 素有关的比例常数。
18:04:29
18
• 摩尔吸光系数的物理意义:
• 溶液浓度为1 mol/L、液层厚度为1cm时物质对光 的吸收程度
18:04:29
1
Introduction
• Ultraviolet and visible absorption measurements are widely used for the identification and determination of many different inorganic and organic species. In fact, UV-Vis absorption methods are probably the most widely used of all quantitative analysis techniques in chemical, environmental, and clinical laboratories throughout world.
18:04:29
19
光吸收定律 郎伯-比尔定律
1 A lg
lg I0
T
It
此定律使用的前提条件是:
Kcb
(1) 入射光为单色光; (2) 吸收过程中各物质无相互作用;
(3) 辐射与物质的作用仅限于吸收过程,没有荧光、散 射和光化学现象;
(4) 吸收物是一种均匀分布的连续体系。
18:04:29
18:04:29
7
Electronic excited states Vibrational states
Rotational states Electronic ground states
分子的能量和能级图
分子中的电子总是处在某一 运动状态中,每种状态都具 有一定的能量,属于一定的 能级。电子由于受到光、热 、电等的激发,从一个能级 转移到另一个能级。一个分 子吸收外来辐射之后,它的 能量变化ΔE为电子运动能量 ΔEe,振动能变化ΔEv和转动 能变化ΔEr之总和。
Ia
均匀、非 It
散射介质
I0 = Ia + It + Ir
在吸收光谱分析中,试液和参比液都是采用同样材料和厚 度的比色皿,因此,反射光的影响可以互相抵消,则:
I0 = Ia + It
18:04:29
16
光吸收定律 透光率和吸光度 重要
透光率:透过光强度It与入射光强度I0之比
T It I0
溶液的透光率愈大,说明对光的吸收愈小;反之,透 光率越小,则溶液对光的吸收愈大。
2、吸收峰(Absorption Peak)是吸收曲线上吸光度最 大的地方,它所对应的波长称为最大吸收波长(λmax) 3、谷(Valley)是峰与峰之间的最低部位,其对应的波 长称最小吸收波长(λmin)。
4、肩缝(Shoulder peak),在一个峰旁边产生的曲折。
5、末端吸收(End absorption),在谱图短波端呈现强 吸收但不成峰行的部分,称为末端吸收。
18:04:29
22
吸光度的加和性
当溶液中含有多种对光产生吸收的物质,且各组分间不存 在相互作用时,则该溶液对波长为λ的总吸光度等于溶液 中每一成分的吸光度之和,即吸光度具有加和性。用以下 公式表示: