2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题
2020年中考数学专题训练:压轴题

2020年中考数学专题训练:压轴题

一、选择题

1.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()

A.3 B.4 C.D.6

第1题第2题

2.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P 是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF的中点为G,则当点P从点C 运动到点D时,点G移动的路径长为()

A.1 B.2 C.3 D.6

3.如图,过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,在x轴有一点C(3,0),AC⊥BC,连结AC交反比例函数图象于点D,若AD=CD,则k的值为()

A.B.2 C.2D.4

4.七巧板是我国祖先的一项卓越创造,如图正方形ABCD可以制作一副七巧板,现将这副七巧板拼成如图2的“风车”造型(内部有一块空心),连结最外围的风车顶点M、N、P、Q得到一个四边形MNPQ,则正方形ABCD与四边形MNPQ的面积之比为()

A.5:8 B.3:5 C.8:13 D.25:49

5.如图,△AOB和△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,若图中S△OBP=4,则k的值为()

A.B.﹣C.﹣4 D.4

6.有一个著名的希波克拉蒂月牙问题:如图1,以直角三角形的各边为直径分别向上作半圆,则直角三角形的面积可表示成两个月牙形的面积之和,现将三个半圆纸片沿直角三角形的各边向下翻折得到图2,把较小的两张半圆纸片的重叠部分面积记为S1,大半圆纸片未被覆盖部分的面积记为S2,则直角三角形的面积可表示成()

A.S1+S2B.S2﹣S1C.S2﹣2S1D.S1?S2

二、填空题

1.如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1,S2,则S1:S2等于.

第3题第4题

2.如图,点A在反比例函数y=(x<0,k1<0)的图象上,点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴于点D,交AB于点E.若△ABC与△DBC的面积之差为3,=,则k1的值为.

3.如图,矩形ABCD中,将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.BF,EF分别交边AD于点G,H.若GH=4HD,则cos∠DBC的值为.

第3题第4题

4.如图,在矩形ABCD中,AB=3,BC=4,P是对角线BD上的动点,以BP为直径作圆,当圆与矩形ABCD的边相切时,BP的长为.

5.如图,在平面直角坐标系中,菱形OABC的边长为2,∠AOC=60°,点D为AB边上的一点,经过O,A,D三点的抛物线与x轴的正半轴交于点E,连结AE交BC于点F,当DF⊥AB时,CE的长为.

第5题第6题

6.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.

三、解答题

1.如图1,Rt△ABC中,点D,E分别为直角边AC,BC上的点,若满足AD2+BE2=DE2,则称DE为Rt△ABC的“完美分割线”.显然,当DE为△ABC的中位线时,DE是△ABC 的一条完美分割线.

(1)如图1,AB=10,cos A=,AD=3,若DE为完美分割线,则BE的长是.

(2)如图2,对AC边上的点D,在Rt△ABC中的斜边AB上取点P,使得DP=DA,过点P画PE⊥PD交BC于点E,连结DE,求证:DE是直角△ABC的完美分割线.(3)如图3,在Rt△ABC中,AC=10,BC=5,DE是其完美分割线,点P是斜边AB 的中点,连结PD、PE,求cos∠PDE的值.

2.抛物线y=ax2﹣2ax﹣3a图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,顶点M的纵坐标为4,直线MD⊥x轴于点D.

(1)求抛物线的解析式;

(2)如图1,N为线段MD上一个动点,以N为等腰三角形顶角顶点,NA为腰构造等腰△NAG,且G点落在直线CM上.若在直线CM上满足条件的G点有且只有一个时,请直接写出点N的坐标.

(3)如图,点P为第一象限内抛物线上的一点,点Q为第四象限内抛物线上一点,点Q 的横坐标比点P的横坐标大1,连接PC、AQ.当PC=AQ时,求S△PCQ的值.

3.定义:有一组对边与一条对角线均相等的四边形为对等四边形,这条对角线又称对等线.(1)如图1,在四边形ABCD中,∠C=∠BDC,E为AB的中点,DE⊥AB.求证:四边形ABCD是对等四边形.

(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的对等四边形

ABCD,使BD是对等线,C,D在格点上.

(3)如图3,在图(1)的条件下,过点E作AD的平行线交BD,BC于点F,G,连结DG,若DG⊥EG,DG=2,AB=5,求对等线BD的长.

4.如图,AB为⊙O的直径,点C为下方的一动点,连结OC,过点O作OD⊥OC交BC 于点D,过点C作AB的垂线,垂足为F,交DO的延长线于点E.

(1)求证:EC=ED.

(2)当OE=OD,AB=4时,求OE的长.

(3)设=x,tan B=y.

①求y关于x的函数表达式;

②若△COD的面积是△BOD的面积的3倍,求y的值.

5.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).

(1)求抛物线的解析式;

(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD=3,请求出点P的坐标.(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.

6.如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△P AB关于直线P A的对称△P AB′,设点P的运动时间为t(s).(1)若AB=2.

①如图2,当点B′落在AC上时,显然△P AB′是直角三角形,求此时t的值;

②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符

合题意的t的值?若不存在,请说明理由.

(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠P AM=45°成立,试探究:对于t>3的任意时刻,结论“∠P AM=45°”

是否总是成立?请说明理由.

参考答案

一、选择题

1.【分析】利用A和B两个点求出解析式,将面积转化为二次函数的形式,利用二次函数的性质求最大值;

【解答】解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,

∵A(1,8)和B(4,2)是两个函数图象的交点,

∴y=,

∴,

∴,

∴y=﹣2x+10,

∵S△ODF=S△ECO=4,

设点P的坐标(x,﹣2x+10),

∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;

故选:C.

2.【分析】设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,判断出G的运行轨迹为△CSD的中位线,从而求出点G移动的路径长.

【解答】解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF为平行四边形,

∴G为PS的中点,即在点P运动过程中,G始终为PS的中点,

∴G的运行轨迹为△CSD的中位线,

∵CD=AB﹣AC﹣BD=6﹣1﹣1=4,

∴点G移动的路径长为×4=2.

故选:B.

3.【分析】设A(t,),利用线段的中点坐标公式得到D点坐标为(,),则?=k,解得t=1,所以A(1,k),再证明OC为Rt△ACB斜边上的中线,则OA=OC=3,然后利用勾股定理得到12+k2=32,最后解方程即可.

【解答】解:设A(t,),

∵C(3,0),AD=CD,

∴D点坐标为(,),

∵点D在反比例函数y=(k>0)的图象上,

∴?=k,解得t=1,

∴A(1,k),

∵AC⊥BC,

∴∠ACB=90°,

∵过原点的直线与反比例函数y=(k>0)的图象交于点A,B两点,

∴点A与点B关于原点对称,即OA=OB,

∴OC=OA=OB=3,

∴12+k2=32,解得k=2.

故选:C.

4.【分析】设AC=4a,解直角三角形求出AB、MQ,再求出两正方形的面积,即可得出答案.

【解答】解:设AC=a+a+a+a=4a,则AB=BC=AC×sin45°=2 a,

所以正方形ABCD的面积是(2 a)2=8a2;

图2中ME=3a,EQ=2a,

由勾股定理得:MQ==a,

所以正方形MNPQ的面积为(a)2=13a2,

所以图中正方形ABCD,MNPQ的面积比为,

故选:C.

5.【分析】先根据△AOB和△ACD均为正三角形可知∠AOB=∠CAD=60°,故可得出AD ∥OB,所以S△ABP=S△AOP,故S△AOB=S△OBP=4,过点B作BE⊥OA于点E,由反比例函数系数k的几何意义即可得出结论.

【解答】解:如图:∵△AOB和△ACD均为正三角形,

∴∠AOB=∠CAD=60°,

∴AD∥OB,

∴S△ABP=S△AOP,

∴S△AOB=S△OBP=4,

过点B作BE⊥OA于点E,则S△OBE=S△ABE=S△AOB=2,

∵点B在反比例函数y=的图象上,

∴S△OBE=k,

∴k=4

故选:D.

6.【分析】设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,根据圆的面积公式得到S小半圆=π×=BC2,S

=AC2,S大半圆=AB2,根据勾股定理于是得到S△ABC=S2﹣S1.中半圆

【解答】解:设以Rt△ABC的斜边为直径的半圆为大半圆,以AC为直径的半圆为中半圆,以BC为直径的半圆为小半圆,

∵S小半圆=π×=BC2,S中半圆=AC2,S大半圆=AB2,

∴S大半圆﹣S中半圆﹣S小半圆=(AB2﹣BC2﹣AC2)=0,

∵S△ABC+S大半圆﹣S中半圆﹣S小半圆+S1=S2,

∴S△ABC+S1=S2,

∴S△ABC=S2﹣S1,

∴直角三角形的面积可表示成S2﹣S1,

故选:B.

二、填空题

1.【分析】设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,CG=

AG=m,求出两个阴影部分的面积即可解决问题.

【解答】解:设DP=DN=m,则PN=m,PC=2m,AD=CD=3m,AC=3m,

CG=AG=m,

∴S1=m2,S2=??CG2=m2,

∴==,

故答案为4:9.

2.【分析】设CE=2t,则DE=3t,利用反比例函数图象上点的坐标特征得到C(,5t),B(,3t),A(,3t),再根据三角形面积公式得到×(﹣)×2t﹣×5t (﹣)=3,然后化简后可得到的值.

【解答】解:设CE=2t,则DE=3t,

∵点B,C在反比例函数y=(x>0,k2>0)的图象上,AB∥x轴,CD⊥x轴,∴C(,5t),B(,3t),

∴A(,3t),

∵△ABC与△DBC的面积之差为3,

∴×(﹣)×2t﹣×5t(﹣)=3,

∴k1=﹣9.

故答案为﹣9.

3.【分析】由旋转的性质可得∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,再由矩形的性质得出∠EDH=∠DBC,设HD=x,GH=4x,设BE=BC=y,分别用x

和y表示出BC、BD、DE、DH,根据cos∠DBC=cos∠EDH,列出比例式,化简得=,即cos∠DBC=.

【解答】解:∵将△BCD绕点B逆时针旋转得△BEF,其中点C的对应点E恰好落在BD上.

∴∠FBE=∠DBC,BF=BD,BE=BC,∠BEF=∠C=90°,

∵矩形ABCD中,AD∥BC,

∴∠EDH=∠DBC,

∴∠FBE=∠DBC=∠EDH,

∴BG=DG,

∵GH=4HD,

∴设HD=x,GH=4x,设BE=BC=y,

则BG=DG=5x,

∵∠DHE+∠EDH=90°,∠F+∠FBE=90°,∠FBE=∠EDH,

∴∠F=∠DHE,

∵∠FHG=∠DHE,

∴∠F=∠FHG,

∴GF=GH=4x,

∴BF=BD=9x,DE=9x﹣y,

∵cos∠DBC=cos∠EDH,

∴=,

∴=,

∴xy=81x2﹣9xy,

∴10xy=81x2,

∴10y=81x,

∴=,即cos∠DBC=.

故答案为:.

4.【分析】BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,先利用勾股定理计算出BD=5,根据切线的判定方法,当OE=OB时,⊙O

与AD相切,根据平行线分线段成比例定理得=,求出r得到BP的长;当OF=

OB时利用同样方法求出BP的长.

【解答】解:BP为直径的圆的圆心为O,作OE⊥AD于E,OF⊥CD于F,如图,设⊙O的半径为r,

在矩形ABCD中,AB=3,BC=4,

∴BD==5,

当OE=OB时,⊙O与AD相切,

∵OE∥AB,

∴=,即=,解得r=,

此时BP=2r=;

当OF=OB时,⊙O与DC相切,

∵OF∥BC,

∴=,即=,解得r=,

此时BP=2r=;

综上所述,BP的长为或.

故答案为或.

5.【分析】先求出A(1,),B(3,),设BF=x,则CF=2﹣x,再由菱形的性质求出D(3﹣x,),由于抛物线经过O,A,D、E,根据抛物线的对称性可知点A与

点D的中点横坐标与点O与点E的中点横坐标相同,可求E(4﹣x,0),由平行线分线段成比例可得=,从而建立等量关系=,求出x即可求CE.

【解答】解:∵菱形OABC的边长为2,∠AOC=60°,

∴OA=2,

∴A(1,),

∵菱形OABC,

∴AB=OC=2,AB∥OC,

∴B(3,),

设BF=x,则CF=2﹣x,

在菱形OABC中,∠B=∠AOC=60°,

∵DF⊥AB,

∴D(3﹣x,),

∴点A与点D的中点为(2﹣x,),

∵抛物线经过O,A,D、E,

∴点O与点E的中点为(2﹣x,0),

∴E(4﹣x,0),

∴CE=4﹣x﹣2=2﹣x,

∵AB∥CE,

∴=,

∴=,

∴x=4+2(舍)或x=4﹣2,

∴CE=,

故答案为.

6.【分析】在CB上找一点E,连接ED,使ED=BD,然后根据两间之间线段最短原量

即可解决问题.

【解答】解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.

∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,

∴∠ACB=90°,

∵CD=4,

∴==,

∴△CED~△CDB,

∴==,

∴ED=BD,

∴AD+BD=AD+ED≥AE,

当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.

三、解答题

1.【分析】(1)由勾股定理求出BC=6,设BE=x,则CE=6﹣x,则AD2+BE2=DE2,可得出32+x2=52+(6﹣x)2,解得:x=,则答案可求出;

(2)证得AD2+BE2=DP2+EP2=DE2,则结论得证;

(3)延长DP至F,使PF=PD,连接BF,EF,证明△APD≌△BPF(SAS),得出AD =BF,∠A=∠FBP,则∠EPD=90°,过点P作PM⊥AC,PN⊥BC,则∠MPD=∠NPE =90°﹣∠MPE,证明△MPD∽△NPE,得出PE=2PD,设PD=a,则PE=2a,则DE =a,则可求出答案.

【解答】解:(1)∵AB=10,cos A=,

∴cos A=,

∴AC=8,CD=5,

∴==6,

设BE=x,则CE=6﹣x,

在Rt△CDE中,DE2=CD2+CE2=52+(6﹣x)2,

∵DE为完美分割线,

∴AD2+BE2=DE2,

∴32+x2=52+(6﹣x)2,

解得:x=.

∴BE=.

故答案为:.

(2)证明:如图2,

∵DA=DP,

∴∠DAP=∠DP A,

∵PE⊥PD,

∴∠DP A+∠EPB=90°,

又∠A=∠B,

∴∠EPB=∠B,

∴EP=EB,

∴AD2+BE2=DP2+EP2=DE2,

∴DE是直角△ABC的完美分割线.

(3)解:延长DP至F,使PF=PD,连接BF,EF,

∵AP=BP,∠APD=∠BPF,

∴△APD≌△BPF(SAS),

∴AD=BF,∠A=∠FBP,

∴∠EBF=∠CBA+∠FBP=∠CBA+∠A=90°,

∵DE是完美分割线,

∴DE2=AD2+BE2=BF2+BE2=EF2,即ED=EF.

又PD=PF,

∴∠EPD=90°,

过点P作PM⊥AC,PN⊥BC,

则∠MPD=∠NPE=90°﹣∠MPE,

∴△MPD∽△NPE,

∴,

设PD=a,则PE=2a,则DE==a,

∴cos∠PDE==.

2.【分析】(1)求出对称轴得到顶点坐标,代入解析式求出a值即可.

(2)当直线CM上满足条件的G点有且只有一个时,可分两种情况讨论:①NG⊥CM,且NG=NA,如图2,作CH⊥MD于H,如图2.设N(1,n),易得NG=MN=

(4﹣n),NA2=22+n2=4+n2,由题可得NG=NA,由此即可得到关于n的方程,解这个方程就可解决问题;②A、N、G共线,且AN=GN,如图3,过点GT⊥x轴于T,则有AD=DT=2,运用待定系数法求出直线CM的解析式,从而得出点G的坐标,然后运用三角形的中位线定理就可解决问题.

(3)根据点P在第一象限,点Q在第二象限,且横坐标相差1,进而设出点P(3﹣m,﹣m2+4m)(0<m<1);得出点Q(4﹣m,﹣m2+6m﹣5),得出CP2,AQ2,最后建立方程求解即可.

【解答】解:(1)将顶点M坐标(1,4)代入解析式,可得a=﹣1,抛物线解析式为y =﹣x2+2x+3

(2)当直线CM上满足条件的G点有且只有一个时,

①NG⊥CM,且NG=NA,如图1,

作CH⊥MD于H,

则有∠MGN=∠MHC=90°.

设N(1,n),

当x=0时,y=3,点C(0,3).

∵M(1,4),

∴CH=MH=1,

∴∠CMH=∠MCH=45°,

∴NG=MN=(4﹣n).

在Rt△NAD中,

∵AD=DB=2,DN=n,

∴NA2=22+n2=4+n2.

则(4﹣n)2=4+n2

整理得:n2+8n﹣8=0,

解得:n1=﹣4+2,n2=﹣4﹣2(舍负),

∴N(1,﹣4+2).

②A、N、G共线,且AN=GN,如图2.

过点GT⊥x轴于T,

则有DN∥GT,

根据平行线分线段成比例可得AD=DT=2,

∴OT=3.

设过点C(0,3)、M(1,4)的解析式为y=px+q,则,解得,

∴直线CM的解析式为y=x+3.

当x=3时,y=6,

∴G(3,6),GT=6.

∵AN=NG,AD=DT,

∴ND=GT=3,

∴点N的坐标为(1,3).

综上所述:点N的坐标为(1,﹣4+2 )或(1,3).(3)如图3,过点P作PD⊥x轴交CQ于D,

设P(3﹣m,﹣m2+4m)(0<m<1);∵C(0,3),

∴PC2=(3﹣m)2+(﹣m2+4m﹣3)2=(m﹣3)2[(m﹣1)2+1],

∵点Q的横坐标比点P的横坐标大1,

∴Q(4﹣m,﹣m2+6m﹣5),

∵A(﹣1,0).

∴AQ2=(4﹣m+1)2+(﹣m2+6m﹣5)2=(m﹣5)2[(m﹣1)2+1]

∵PC=AQ,

∴81PC2=25AQ2,

∴81(m﹣3)2[(m﹣1)2+1]=25(m﹣5)2[(m﹣1)2+1],

∵0<m<1,

∴[(m﹣1)2+1]≠0,

∴81(m﹣3)2=25(m﹣5)2,

∴9(m﹣3)=±5(m﹣5),

∴m=或m=(舍),

∴P(,),Q(,﹣),

∵C(0,3),

∴直线CQ的解析式为y=﹣x+3,

∵P(,),

∴D(,﹣),

∴PD=+=

∴S△PCQ=S△PCD+S△PQD=PD×x P+PD×(x Q﹣x P)=PD×x Q==.

3.【分析】(1)由∠C=∠BDC,得出BC=BD,由等腰三角形的性质得出BD=AD,即可得出结论;

(2)有两种画法:

①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD;

②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD;

(3)过点E作EH⊥AD于H,易证四边形DGEH是矩形,得出EH=DG=2,求出AE =BE=AB=,S△ADE=S△BDE,设DE=x,AD=BD=y,S△ADE=EH?AD=y,S△BDE =BE?DE=x,由勾股定理得出BD2=BE2+DE2,即y2=()2+x2,则

,解方程组即可得出结果.

【解答】(1)证明:∵∠C=∠BDC,

∴BC=BD,

∵E为AB的中点,DE⊥AB,

∴BD=AD,

∴BC=AD=BD,

∴四边形ABCD是对等四边形;

(2)解:有两种画法:

①作AB的垂直平分线与方格纸上的格点的交点即为点D,再以点B为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AD=BC=BD,如图2﹣1所示;

②以点B为圆心、以AB长为半径画圆,圆与方格纸上的格点的交点即为点D,再以点D为圆心、以BD长为半径画圆,圆与方格纸上的格点的交点即为点C,连接AD、BC、CD,则AB=CD=BD,如图2﹣2所示;

(3)解:过点E作EH⊥AD于H,如图3所示:

则∠EHD=90°,

∵EG∥AD,DG⊥EG,

∴∠EGD=∠HDG=90°,

∴四边形DGEH是矩形,

∴EH=DG=2,

∵E为AB的中点,AB=5,

∴AE=BE=AB=,S△ADE=S△BDE,

设DE=x,AD=BD=y,

则S△ADE=EH?AD=×2×y=y,S△BDE=BE?DE=××x=x,∵在Rt△BDE中,∠BED=90°,

∴BD2=BE2+DE2,即y2=()2+x2,

∴,

解得:,

∴BD=.

4.【分析】(1)欲证明EC=ED,只要证明∠ECD=∠EDC.

(2)证明△ECD是等边三角形,推出∠E=60°即可解决问题.

(3)①连接AC.首先证明x==,再证明∠ACF=∠B,推出tan∠B=tan∠ACF ==y,令OC=k,则OF=kx,CF===k?,推出AF=OA﹣OF=k﹣kx=k(1﹣x),根据y=计算即可.

②作OH⊥BC于H.设BD=m,利用相似三角形的性质求出OH,BH(用m表示)即

可解决问题.

【解答】(1)证明:∵OD⊥OC,

∴∠COD=90°,

∴∠OCD+∠ODC=90°,

∵EC⊥AB,

∴∠CEB=90°,

∴∠B+∠ECB=90°,

∵OC=OB,

∴∠B=∠OCD,

∴∠ODC=∠ECB,

∴EC=EB.

(2)解:∵OE=OD,OC⊥ED,

∴CE=CE,

∵EC=ED,

∴EC=ED=CD,

∴△ECD是等边三角形,

∵∠E=60°,

在Rt△EOC中,∵∠EOC=90°,OC=AB=2,

∴OE==.

(3)解:①连接AC.

∵EC=ED,∠EOC=90°

∴==sin∠ECO,

∵∠OFC=90°,

∴sin∠ECO=,

∴x==,

∵AB是直径,

∴∠ACB=90°,

∵CE⊥AB,

∴∠AFC=90°,

∴∠ACF+∠A=90°,∠B+∠A=90°,

2020最新中考数学专项练习:规律探索类试题

中考数学专项练习:规律探索类试题 本文档中含有大量公式,转换为网页过程中可能会出现公式位置错误的可能,但下载后均可正常显示,欢迎下载! 一、单选题 1.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120?的?AB 多次复制并首尾连接而成.现有一点P 从A (A 为坐标原点)出发,以每秒2 3 π米的速度沿曲线向右运动,则在第2019秒时点P 的纵坐标为( ) A .﹣2 B .﹣1 C .0 D .1 【答案】B 【分析】先计算点P 走一个?AB 的时间,得到点P 纵坐标的规律:以1,0,-1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P 的纵坐标为是-1. 【详解】解:点运动一个?AB 用时为 12022 21803 ππ?÷=秒. 如图,作CD AB ⊥于D ,与?AB 交于点E . 在Rt ACD ?中,∵90ADC ?∠=,1 602 ACD ACB ?∠=∠=, ∴30?∠=CAD , ∴11 2122 CD AC = =?=, ∴211DE CE CD =-=-=, ∴第1秒时点P 运动到点E ,纵坐标为1; 第2秒时点P 运动到点B ,纵坐标为0; 第3秒时点P 运动到点F ,纵坐标为﹣1; 第4秒时点P 运动到点G ,纵坐标为0; 第5秒时点P 运动到点H ,纵坐标为1; …, ∴点P 的纵坐标以1,0,﹣1,0四个数为一个周期依次循环, ∵201945043÷=?,

∴第2019秒时点P 的纵坐标为是﹣1. 故选:B . 2.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( ) A .()1010,0 B .()1010,1 C .()1009,0 D .()1009,1 【答案】C 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…, 201945043÷=???, 所以2019A 的坐标为()50421,0?+, 则2019A 的坐标是()1009,0, 故选C . 3.观察等式:232222+=-;23422222++=-;2345222222+++=-???已知按一定规律排列的一组数:502、512、522、???、992、1002.若502a =,用含a 的式子表示这组数的和是( ) A .222a a - B .2222a a -- C .22a a - D .22a a + 【答案】C 【分析】根据题意,一组数:502、512、522、???、992、1002的和为250 +251 +252 +…+ 299+2100==a +(2+22+...+250)a ,进而根据所给等式的规律,可以发现2+22+...+250=251-2,由此即可求得答案. 【详解】250+251+252+...+299+2100 =a +2a +22a + (250)

2020-2021备战中考数学压轴题专题初中数学 旋转的经典综合题附详细答案

2020-2021备战中考数学压轴题专题初中数学旋转的经典综合题附详细答案 一、旋转 1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN. (1)连接AE,求证:△AEF是等腰三角形; 猜想与发现: (2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论. 结论1:DM、MN的数量关系是; 结论2:DM、MN的位置关系是; 拓展与探究: (3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由. 【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析. 【解析】 试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出 MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直. 试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF, ∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM, AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,

2020上海中考数学压轴题专项训练

1文档来源为:从网络收集整理.word 版本可编辑. 24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得 1, 1643 c b c =-?? ++=-?, ………………………………………………………………(1分) 解,得9 ,12b c =-=- …………………………………………………………………(1分) 所以抛物线的解析式为29 12y x x =- - …………………………………………… (1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5AOH OBC ∠=∠= ……………………………(1分) ∴4sin 5AH OA AOH =∠= ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511AH ABO BH ∠==÷= ………………………………(1分) (3)直线AB 的解析式为1 12y x =--, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分) 所以符合题意的点N 有4 个35 (22),(22),(1,),(3,)22 --+--- ……………………………………………………………………………………(1分) 25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5

中考数学专题找规律

中考数学专题找规律 1、如图,一串有趣的图案按一定规律排列,请仔细观察,按此规律第2015个图案是() A B C D 2、如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△ 3、△4…,则△2015的直角顶点的坐标为 3、(2014 广东省梅州市) 如图3,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC的边时反弹,反弹时反射角等于入射角。当小球第1次碰到矩形的边时的点为P1,第2次碰到矩形的边时的点为P2,……第n次碰到矩形的边时的点为P n。则点P2的坐标是,点P2014的坐标是 . 4、已知, , =8, =16,2=32,……, 观察上面规律,试猜想的末位数是 . 5、观察下列算式: ……

用你所发现的规律写出的末位数字是__________. 6、(2015?四川巴中)a是不为1的数,我们把 称为a的差倒数,如:2的差倒数为=﹣1;﹣1的差倒数是 = ;已知a1=3,a2是a1的差倒数,a3是a2的差倒数.a4是a3差倒数,…依此类推,则a2015= . 心得体会: (二)函数表达式型 1、用同样大小的黑色棋子按图6所示的方式摆图形,按照这样的规律摆下去,则第n个图形需棋子 枚(用含n的代数式表示). 2、(2014 湖南省娄底市) 如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第n(n为正整数)个图案由个▲组成. 3、观察下列等式: ,……则第n个等式可以表示为。 4、“”代表甲种植物,“”代表乙种植物,为美化环境,采用如图所示方案种植。按此规律,第六个图案中应种植乙种植物株。

中考数学压轴题专题

中考数学压轴题专题 一、函数与几何综合的压轴题 1.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴ ,EO DO EO BO AB DB CD DB '''' == 又∵DO ′+BO ′=DB ∴ 1EO EO AB DC '' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ② 联立①②得02x y =??=-? ∴E 点坐标(0,-2),即E 点在y 轴上 (2)设抛物线的方程y =ax 2 +bx +c (a ≠0)过A (-2,-6),C (1,-3) 图① 图②

E (0,-2)三点,得方程组42632a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2 -2 (3)(本小题给出三种方法,供参考) 由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同(1)可得: 1E F E F AB DC ''+= 得:E ′F =2 方法一:又∵E ′F ∥AB E F DF AB DB '?= ,∴1 3DF DB = S △AE ′C = S △ADC - S △E ′DC =1112 2223 DC DB DC DF DC DB ?-?=? =1 3 DC DB ?=DB=3+k S=3+k 为所求函数解析式 方法二:∵ BA ∥DC ,∴S △BCA =S △BDA ∴S △AE ′C = S △BDE ′()11 32322 BD E F k k '= ?=+?=+ ∴S =3+k 为所求函数解析式. 证法三:S △DE ′C ∶S △AE ′C =DE ′∶AE ′=DC ∶AB =1∶2 同理:S △DE ′C ∶S △DE ′B =1∶2,又∵S △DE ′C ∶S △ABE ′=DC 2∶AB 2 =1∶4 ∴()221 3992 AE C ABCD S S AB CD BD k '?= =?+?=+梯形 ∴S =3+k 为所求函数解析式. 2.已知:如图,在直线坐标系中,以点M (1,0)为圆心、直径AC 为22的圆与y 轴交于A 、D 两点. (1)求点A 的坐标; (2)设过点A 的直线y =x +b 与x 轴交于点B.探究:直线AB 是否⊙M 的切线?并对你的结论加以证明; (3)连接BC ,记△ABC 的外接圆面积为S 1、⊙M 面积为S 2,若 4 21h S S =,抛物线 y =ax 2 +bx +c 经过B 、M 两点,且它的顶点到x 轴的距离为h .求这条抛物线的解析式. [解](1)解:由已知AM =2,OM =1, 在Rt△AOM 中,AO = 122=-OM AM , ∴点A 的坐标为A (0,1) (2)证:∵直线y =x +b 过点A (0,1)∴1=0+b 即b =1 ∴y=x +1 令y =0则x =-1 ∴B(—1,0),

2020年中考数学压轴题专项训练 圆的综合

2020年数学中考压轴题专项训练:圆的综合 1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC. (1)求证:BC是⊙O的切线; (2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π) (1)证明:连接OD, ∵AD平分∠BAC, ∴∠BAD=∠DAC, ∵AO=DO, ∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∴AC∥OD, ∵∠ACD=90°, ∴OD⊥BC, ∴BC与⊙O相切; (2)解:连接OE,ED,

∵∠BAC=60°,OE=OA, ∴△OAE为等边三角形, ∴∠AOE=60°, ∴∠ADE=30°, 又∵∠OAD=∠BAC=30°, ∴∠ADE=∠OAD, ∴ED∥AO, ∴四边形OAED是菱形, ∴OE⊥AD,且AM=DM,EM=OM, ∴S△AED=S△AOD, ∴阴影部分的面积=S扇形ODE==π. 2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D. (1)若∠BCE=∠BAC,求证:CE是⊙O的切线; (2)若AD=4,BC=3,求弦AC的长. (1)证明:连接OC, ∵AB是⊙O的直径, ∴∠ACB=90°,

∴∠ACO+∠BCO=90°, ∵OA=OC, ∴∠OAC=∠OCA, ∵∠BAC=∠BCE, ∴∠ACO=∠BCE, ∴∠BCE+∠BCO=90°, ∴∠OCE=90°, ∴CE是⊙O的切线; (2)解:连接BD, ∵∠ACB的平分线交⊙O于点D, ∴∠ACD=∠BCD, ∴=, ∴AD=BD, ∵AB是⊙O的直径, ∴∠ADB=90°, ∴△ADB是等腰直角三角形, ∴AB=AD=4, ∵BC=3, ∴AC===. 3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线; (2)∠C=45°,⊙O的半径为2,求阴影部分面积.

中考数学压轴题 易错题难题专项训练检测试题

一、中考数学压轴题 1.如图,一张半径为3cm 的圆形纸片,点O 为圆心,将该圆形纸片沿直线l 折叠,直线l 交O 于A B 、两点. (1)若折叠后的圆弧恰好经过点O ,利用直尺和圆规在图中作出满足条件的一条直线l (不写作法,保留作图痕迹),并求此时线段AB 的长度. (2)已知M 是 O 一点,1cm OM =. ①若折叠后的圆弧经过点M ,则线段AB 长度的取值范围是________. ②若折叠后的圆弧与直线OM 相切于点M ,则线段AB 的长度为_________cm . 2.如图1,在 O 中,弦AB ⊥弦CD ,垂足为点E ,连接AD 、BC 、AO , AD AB =. (1)求证:2CAO CDB ∠=∠ (2)如图2,过点O 作OH AD ⊥,垂足为点H ,求证:2OH CE DE += (3)如图3,在(2)的条件下,延长DB 、AC 交于点F ,过点D 作DM AC ⊥,垂足为M ,交AB 于N ,若12BC =,3AF BF =,求MN 的长. 3.已知抛物线2 17 22 2 y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点; (2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标; (3)如图,直线1y x =-与(2)中的抛物线并于A B 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以C D M N 、、、为顶点的四边形为平行四边形.

4.已知,在Rt △ABC 和Rt △DEF 中,∠ACB=∠EDF=90°,∠A=30°,∠E=45°,AB =EF =6,如图1,D 是斜边AB 的中点,将等腰Rt △DEF 绕点D 顺时针方向旋转角α(0°<α<90°),在旋转过程中,直线DE ,AC 相交于点M ,直线DF ,BC 相交于点N . (1)如图1,当α=60°时,求证:DM =BN ; (2)在上述旋转过程中, DN DM 的值是一个定值吗?请在图2中画出图形并加以证明; (3)如图3,在上述旋转过程中,当点C 落在斜边EF 上时,求两个三角形重合部分四边形CMDN 的面积. 5.如图,在等边ABC ?中,延长AB 至点D ,延长AC 交BD 的中垂线于点E ,连接 BE ,DE . (1)如图1,若310DE =,23BC =,求CE 的长; (2)如图2,连接CD 交BE 于点M ,在CE 上取一点F ,连接DF 交BE 于点N ,且 DF CD =,求证:12 AB EF =; (3)在(2)的条件下,若45AED ∠=?直接写出线段BD ,EF ,ED 的等量关系 6.如图,90EOF ∠=?,矩形ABCD 的边BA 、BC 分别在OF 、OE 上,4AB =, 3BC =,矩形ABCD 沿射线OD 方向,以每秒1个单位长度的速度运动.同时点P 从点A 出发沿折线AD DC -以每秒1个单位长度的速度向终点C 运动,当点P 到达点C 时,

中考数学必考题型《规律探索》分类专项练习题

类型一 数式规律 1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为1 4尺,…,第n 天折断一半后得到的木棍长应为________尺. 12n 2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________. 第2题图 41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n =n (n +1) 2,∴第8行最后一个数为8×9 2=36=6, 则第9行从左至右第5个数是36+5=41. 3. 观察下列关于自然数的式子: 第一个式子:4× 12-12 ①

第二个式子:4× 22-32 ② 第三个式子:4×32-52 ③ … 根据上述规律,则第2019个式子的值是______. 8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1 n (n 为正整数)顺次排成一列:1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=1 2,…,S 1=a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________. 63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个1 3的和为1,…;∵1+2+3+…+63=2016个数,则第2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3×1 64=63364. 类型二 图形规律 5. 如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3, …,

2017上海历年中考数学压轴题专项训练

24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分) 如图,已知抛物线2y x bx c =++经过()01A -, 、()43B -,两点. (1)求抛物线的解析式; (2 求tan ABO ∠的值; (3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标. 24.解:(1)将A (0,-1)、B (4,-3)分别代入2 y x bx c =++ 得1, 1643c b c =-?? ++=-? , ………………………………………………………………(1分) 解,得9 ,12 b c =-=-…………………………………………………………………(1分) 所以抛物线的解析式为29 12 y x x =- -……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分) 在Rt AOH ?中,OA =1,4 sin sin ,5 AOH OBC ∠=∠=……………………………(1分) ∴4sin 5AH OA AOH =∠= g ,∴322,55 OH BH OB OH ==-=, ………………(1分) 在Rt ABH ?中,4222 tan 5511 AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为1 12y x =- -, ……………………………………………(1分) 设点M 的坐标为29(,1)2m m m --,点N 坐标为1 (,1)2 m m -- 那么MN =2 291 (1)(1)422 m m m m m - ----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3 解方程2 4m m -=3 得2m =± ……………………………………………(1分) 解方程2 43m m -+=得1m =或3m =; ………………………………………(1分)

中考数学压轴题解题技巧及训练(完整版)

中考数学压轴题解题技巧及训练(完整版)

0=64a+8b 解得a=-12,b=4 ∴抛物线的解析式为:y=-12x 2+4x …………………3分 (2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE= PE AP =BC AB ,即PE AP =48 ∴PE=1 2AP=12t .PB=8-t . ∴点E的坐标为(4+12t ,8-t ). ∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分 ∴EG=-18t 2+8-(8-t) =-18t 2+t. ∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分 t 1= 16 3, t 2=4013,t 3. …………………11分 中考数学《三类押轴题》专题训练 第一类:选择题押轴题 1. (湖北襄阳3分)如果关于x 的一元二次方程2kx 10-+=有两个不相等的实数根,那么k 的取值范围是【 】

A .k <12 B .k <12且k ≠0 C .﹣12≤k <12 D .﹣12 ≤k <12 且k ≠0 【题型】方程类代数计算。 【考点】 ; 【方法】 。 2. (武汉市3分)下列命题: ①若0a b c ++=,则240b ac -≥; ②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ). A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④. 【题型】方程、等式、不等式类代数变形或计算。 【考点】 ; 【方法】 。 3. (湖北宜昌3分)已知抛物线y=ax 2﹣2x+1与x 轴没有交点,那么该抛物线的顶点所在的象限是【 】 A .第四象限 B .第三象限 C .第二象限 D .第一象限 【题型】代数类函数计算。 【考点】 ; 【方

中考数学专题 规律探索题

1 规律探索 类型一 数式规律 1. 我国战国时期提出了“一尺之棰,日取其半,万世不竭”这一命题,用所学知识来解释可理解为:设一尺长的木棍,第一天折断一半,其长为12尺,第二天再折断一半,其长为1 4尺,…,第n 天折断一半后 得到的木棍长应为________尺. 12n 2. 如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是________. 第2题图 41【解析】由图形可知,第n 行最后一个数为1+2+3+…+n = n (n +1) 2 ,∴第8行最后一个数为 8×9 2 =36=6,则第9行从左至右第5个数是36+5 =41. 3. 观察下列关于自然数的式子:

2 第一个式子:4×12-12 ① 第二个式子:4×22-32 ② 第三个式子:4×32-52 ③ … 根据上述规律,则第2019个式子的值是______. 8075 【解析】∵4×12-12=3①,4×22-32=7②,4×32-52=11③,…,4n 2-(2n -1)2=4n -1,∴第2019个式子的值是4×2019-1=8075. 4. 将数1个1,2个12,3个13,…,n 个1 n (n 为正整数)顺次排成一列: 1,12,12,13,13,13,…,1n ,1n ,…,记a 1=1,a 2=12,a 3=1 2,…,S 1 =a 1,S 2=a 1+a 2,S 3=a 1+a 2+a 3,…,S n =a 1+a 2+…+a n ,则S 2019=________. 63364 【解析】根据题意,将该数列分组,1个1的和为1,2个12的和为1,3个1 3的和为1,…;∵1+2+3+…+63=2016个数,则第 2019个数为64个164的第3个数,则此数列中,S 2019=1×63+3× 1 64=633 64 .

中考数学压轴题专题

中考数学压轴题专题 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐 标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对 称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解 析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()221221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-=22,得到方程☆:()()22 2R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

2020中考数学压轴题特训详解

2020中考数学压轴题特训详解 1、〔安徽〕按右图所示的流程,输入一个数据x ,依照y 与x 的关系式就输出一个数据y ,如此能够将一组数据变换成另一组新的数据,要使任意一组都在20~100〔含20和100〕之间的数据,变换成一组新数据后能满足以下两个要 求: 〔Ⅰ〕新数据都在60~100〔含60和100〕之间; 〔Ⅱ〕新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的 对应的新数据也较大。 〔1〕假设y 与x 的关系是y =x +p(100-x),请讲明:当p =1 2 时,这种 变 换满足上述两个要求; 〔2〕假设按关系式y=a(x -h)2 +k (a>0)将数据进行变换,请写出一个满足上述要求的这种关系式。〔不要求对关系式符合题意作讲明,但要写出关系式得出的要紧过程〕 【解】〔1〕当P= 12时,y=x +()11002x -,即y=1 502 x +。 ∴y 随着x 的增大而增大,即P= 1 2 时,满足条件〔Ⅱ〕……3分 又当x=20时,y= 1 100502 ?+=100。而原数据都在20~100之间,因此新数据都在60~100之间,即满足条件〔Ⅰ〕,综上可知,当P=1 2 时,这种变换满足要求;……6分 〔2〕此题是开放性咨询题,答案不唯独。假设所给出的关系式满足:〔a 〕h ≤20;〔b 〕假设x=20,100时,y 的对应值m ,n 能落在60~100之间,那么如此的关系式都符合要求。 如取h=20,y=()2 20a x k -+,……8分 ∵a >0,∴当20≤x ≤100时,y 随着x 的增大…10分 令x=20,y=60,得k=60 ① 令x=100,y=100,得a ×802 +k=100 ②

中考数学找规律题

中考数学探索题训练—找规律 一 序数与数据之间的规律 1. )先找规律,再填数: 1111111111111111,,,,12234212563307 8456 (111) +_______.2011201220112012 +-=+-=+-=+-=-=?则 2、观察下面的变形规律: 211? =1-12; 321?=12-31;431 ?=31-4 1;…… 解答下面的问题: (1)若n 为正整数,请你猜想) 1(1 +n n = ; (2)证明你猜想的结论; (3)求和: 211?+321?+431?+…+2010 20091? . 3. (2011湖南益阳,16,8分)观察下列算式: ① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1 ④ …… (1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来; (3)你认为(2)中所写出的式子一定成立吗?并说明理由. 4.(2011广东汕头,20,9分)如下数表是由从1 开始的连续自然数组成,观察规律并完成各题的解答. (1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;

(2)用含n 的代数式表示:第n 行的第一个数是 , 最后一个数是 ,第n 行共有 个数; ( 3)求第n 行各数之和. 5.已知:321232 3=??= C ,1032134535=????=C ,154 32134564 6=??????=C ,…, 观察上面的计算过程,寻找规律并计算=6 10C . 小结:多观察,分析变化与不变化 2、几何变化类 1. (2011广东肇庆,15,3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n 是大于0的整数)个图形需要黑色棋子的个数是 ▲ . 2. (2011内蒙古乌兰察布,18,4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形 有 个小圆. (用含 n 的代数式表示) 3. (2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第_____个图形共有120 个。 第1个图形 第 2 个图形 第3个图形 第 4 个图形 第 18题图

中考数学压轴题专题 动点问题

2012年全国中考数学(续61套)压轴题分类解析汇编 专题01:动点问题 25. (2012吉林长春10分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到 点B停止.点P在AD的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作 PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s). (1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).(2)当点N落在AB边上时,求t的值. (3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式. (4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s 的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P 在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 【答案】解:(1)t-2。 (2)当点N落在AB边上时,有两种情况: ①如图(2)a,当点N与点D重合时,此时点P在DE上,DP=2=EC,即t-2=2,t=4。 ②如图(2)b,此时点P位于线段EB上. ∵DE=1 2 AC=4,∴点P在DE段的运动时间为4s, ∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4。 ∵PN∥AC,∴△BNP∽△BAC。∴PN:AC = PB:BC=2,∴PN=2PB=16-2t。 由PN=PC,得16-2t=t-4,解得t=20 3 。 综上所述,当点N落在AB边上时,t=4或t=20 3 。 (3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况:

中考数学压轴题专项训练十套(含答案)

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1, 1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速 度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

做题时间:_______至_______ 家长签字:_____________ 共__________分钟 日 期:_____月_____日 三、解答题 23. (11分)如图,抛物线22++=bx ax y 与x 轴交于A (-1,0),B (4,0)两点, 与y 轴交于点C ,与过点C 且平行于x 轴的直线交于另一点D ,点P 是抛物线上一动点. (1)求抛物线的解析式及点D 的坐标. (2)点E 在x 轴上,若以A ,E ,D ,P 为顶点的四边形是平行四边形,求此时点P 的坐标. (3)过点P 作直线CD 的垂线,垂足为Q .若将△CPQ 沿CP 翻折,点Q 的对应点为Q ′,是否存在点P ,使点Q ′恰好在x 轴上?若存在,求出此时点P 的坐标;若不存在,请说明理由. 备用图

做题时间:_______至_______ 家长签字:_____________ 共__________分钟日期:_____月_____日 三、解答题 23.(11分)如图,已知直线 1 1 2 y x =-+与坐标轴交于A,B两点,以线段AB 为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E. (1)请直接写出C,D两点的坐标,并求出抛物线的解析式; (2 个单位长度的速度沿射线AB下滑,直至顶点D落 在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围; (3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积. 备用图

中考数学规律题(附答案)

1.我们平常用的数是十进制数,如2639=2×103+6×102+3×101+9×100 ,表示十进制的数要用10个数码(又叫数字):0,1,2,3,4,5,6,7,8,9。在电子数字计算机中用的是二进制,只要两个数码:0和1。如二进制中101=1×22 +0×21 +1×20 等于十进制的数5,10111=1×24 +0×23 +1×22 +1×21 +1×20 等于十进制中的数23,那么二进制中的1101等于十进制的数 。 2.任何一个正整数n 都可以进行这样的分解:n s t =?(s t ,是正整数,且s t ≤),如果p q ?在 n 的所有这种分解中两因数之差的绝对值最小,我们就称p q ?是n 的最佳分解,并规定: ()p F n q = .例如18可以分解成118?,29?,36?这三种,这时就有31 (18)62 F ==.给出下列关于()F n 的说法:(1)1(2)2F =;(2)3 (24)8 F =;(3)(27)3F =;(4)若n 是一个完全平方数,则()1F n =. 其中正确说法的个数是( B ) A.1 B.2 C.3 D.4 3.若(x 2 -x -1)x +2=1,则x =___________.2、-1、0、-2 4.观察下面的一列单项式:x ,22x -,34x ,4 8x -,…根据你发现的规律,第7个单项式为 ; 第n 个单项式为 .7 64x ;1 (2)n n x -- 5.已知2 1 (123...)(1)n a n n = =+,,,,记112(1)b a =-,2122(1)(1)b a a =--,…, 122(1)(1)...(1)n n b a a a =---,则通过计算推测出n b 的表达式n b =_______. (用含n 的代数式表示) 6.已知n 是正整数,111222(,),(,),,(,),n n n P x y P x y P x y L L 是反比例函数k y x = 图象上的一列点,其中121,2,,,n x x x n ===L L .记112A x y =,223A x y =,1n n n A x y +=L L ,, 若1A a =(a 是非零常数),则12n A A A ???L 的值是________________________(用含a 和n 的代数式表示).(2)1 n a n + 7.已知22223322333388 + =?+=?,,

中考数学压轴题专题

中考数学压轴题专题Prepared on 21 November 2021

专题1:抛物线中的等腰三角形 基本题型:已知AB,抛物线()0 2≠ bx y,点P在抛物线上(或坐 c ax =a + + 标轴上,或抛物线的对称轴上),若ABP ?为等腰三角形,求点P坐标。 分两大类进行讨论: =):点P在AB的垂直平分线上。 (1)AB为底时(即PA PB 利用中点公式求出AB的中点M; k,因为两直线垂直斜率乘积为1-,进利用两点的斜率公式求出AB 而求出AB的垂直平分线的斜率k; 利用中点M与斜率k求出AB的垂直平分线的解析式; 将AB的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对 称轴)的解析式联立即可求出点P坐标。 (2)AB为腰时,分两类讨论: =):点P在以A为圆心以AB为半径的圆 ①以A ∠为顶角时(即AP AB 上。 =):点P在以B为圆心以AB为半径的圆 ②以B ∠为顶角时(即BP BA 上。 利用圆的一般方程列出A(或B)的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P坐标。 专题2:抛物线中的直角三角形

基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标 轴上,或抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称 轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出 PA (或PB )的斜率k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-=。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。

相关文档
最新文档