备战中考数学压轴题专题圆的综合的经典综合题附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、圆的综合真题与模拟题分类汇编(难题易错题)
1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.
(1)OC的长为;
(2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=;
(3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
【答案】(1)4;(2)3
5
;(3)点E的坐标为(1,2)、(
5
3
,
10
3
)、(4,2).
【解析】
分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则
MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°,
②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题.
详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH.
∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4.
∵∠BHA=90°,∠BAO=45°,
∴tan∠BAH=BH
HA
=1,∴BH=HA=4,∴OC=BH=4.
故答案为4.
(2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).
由(1)得:OH =2,BH =4.
∵OC 与⊙M 相切于N ,∴MN ⊥OC .
设圆的半径为r ,则MN =MB =MD =r .
∵BC ⊥OC ,OA ⊥OC ,∴BC ∥MN ∥OA .
∵BM =DM ,∴CN =ON ,∴MN =
12(BC +OD ),∴OD =2r ﹣2,∴DH =OD OH -=24r -.
在Rt △BHD 中,∵∠BHD =90°,∴BD 2=BH 2+DH 2,∴(2r )2=42+(2r ﹣4)2.
解得:r =2,∴DH =0,即点D 与点H 重合,∴BD ⊥0A ,BD =AD .
∵BD 是⊙M 的直径,∴∠BGD =90°,即DG ⊥AB ,∴BG =AG .
∵GF ⊥OA ,BD ⊥OA ,∴GF ∥BD ,∴△AFG ∽△ADB , ∴AF AD =GF BD =AG AB =12,∴AF =12AD =2,GF =12
BD =2,∴OF =4,
∴OG
同理可得:OB AB ,∴BG =
12AB .
设OR =x ,则RG x .
∵BR ⊥OG ,∴∠BRO =∠BRG =90°,∴BR 2=OB 2﹣OR 2=BG 2﹣RG 2,
∴(
2﹣x 2=()2﹣(x )2.
解得:x =5,∴BR 2=OB 2﹣OR 2=(2﹣(5)2=365,∴BR =5
.
在Rt △ORB 中,sin ∠BOR =BR OB
35. 故答案为35
. (3)①当∠BDE =90°时,点D 在直线PE 上,如图2.
此时DP =OC =4,BD +OP =BD +CD =BC =2,BD =t ,OP =t . 则有2t =2.
解得:t =1.则OP =CD =DB =1.
∵DE ∥OC ,∴△BDE ∽△BCO ,∴
DE OC =BD BC =12
,∴DE =2,∴EP =2, ∴点E 的坐标为(1,2).
②当∠BED =90°时,如图3.
∵∠DBE =OBC ,∠DEB =∠BCO =90°,∴△DBE ∽△OBC ,
∴BE
BC =2DB BE OB ∴,∴BE =5
t . ∵PE ∥OC ,∴∠OEP =∠BOC .
∵∠OPE =∠BCO =90°,∴△OPE ∽△BCO ,
∴OE
OB =
25
OP
BC
∴
,=
2
t
,∴OE=5t.
∵OE+BE=OB=255
,∴t+5
t=25.
解得:t=5
3
,∴OP=
5
3
,OE=
55
,∴PE=22
OE OP
-=
10
3
,
∴点E的坐标为(510
33
,).
③当∠DBE=90°时,如图4.
此时PE=PA=6﹣t,OD=OC+BC﹣t=6﹣t.
则有OD=PE,EA=22
PE PA
+=2(6﹣t)=62﹣2?t,∴BE=BA﹣EA=42﹣(62﹣2t)=2t﹣22.
∵PE∥OD,OD=PE,∠DOP=90°,∴四边形ODEP是矩形,∴DE=OP=t,DE∥OP,∴∠BED=∠BAO=45°.
在Rt△DBE中,cos∠BED=BE
DE
=
2
,∴DE=2BE,
∴t=22
(t﹣22)=2t﹣4.
解得:t=4,∴OP=4,PE=6﹣4=2,∴点E的坐标为(4,2).
综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(1,2)、
(510
33
,)、(4,2).
点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数