齿轮故障诊断方法综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

齿轮故障诊断方法综述

摘要齿轮是机械设备中常用的部件,而齿轮传动也是机械传动中最常见的方式之一。在许多情况下,齿轮故障又是导致设备失效的主要原因。因此对齿轮进行故障诊断具有非常重要的意义。介绍了故障的特点和几种诊断方法,并比较了基于粒子群优化的小波神经网络,基于相关分析与小波变换,基于小波包和BP神经网络和基于小波分析等故障诊断方法的优缺点,并提出了齿轮故障诊断的难点和发展方向。

关键字齿轮故障诊断诊断方法分析比较发展

目录

第一章齿轮故障诊断发展及故障特点 (1)

1.1 齿轮故障诊断的发展 (1)

1. 2齿轮故障形式与震动特征 (1)

第二章齿轮传动故障诊断的方法 (2)

2. 1高阶谱分析 (2)

2.1.1参数化双谱估计的原理 (3)

2.1.2试验装置与信号获取 (3)

2.1.3 故障诊断 (4)

2.1.4应用双谱分析识别齿轮故障 (5)

2.2基于边频分析的齿轮故障诊断 (6)

2.2.1分析原理 (6)

2.2.2铣床振动测试 (6)

2.2.3边频带分析 (8)

2.2.4故障诊断 (9)

2. 3时域分析 (10)

2.3.1时域指标 (10)

2.3.2非线性时间分析 (11)

第一章齿轮故障诊断发展及故障特点

1.1 齿轮故障诊断的发展

齿轮故障诊断始于七十年代初,早期的齿轮故障诊断仅限于在旋转式机械上测量一些简单的振动参数,用一些简单的方法进行诊断。这些简单的参数和诊断方法对齿轮故障诊断反应灵敏度较低,根本无法准确判断发生故障的部位。七十年代末到八十年代中期,旋转式机械中齿轮故障诊断的频域法发展很快,其中R.B.Randall和James1.Taylor等人做好了许多有益的工作,积累了不少故障诊断的成功实例,出现了一些较好的频域分析方法,对齿轮磨损和齿根断裂等故障诊断较为成功。进入九十年代以后,神经网络、模糊推理和网络技术的发展和融合使得齿轮系统故障诊断进入了蓬勃发展的时期。

我国学者在齿轮故障诊断研究方面也做了大量工作。1986年,屈梁生、何正嘉在《机械故障诊断学》中分析了齿轮故障的时频域特点。1988年,颜玉玲、赵淳生对滚动轴承的振动监测及故障诊断进行了分析。1997年,郑州工业大学韩捷等在“齿轮故障的振动频谱机理研究”中对齿轮的故障机理做了探讨。西安交通大学张西宁等在“齿轮状态监测和识别方法的研究”中提出了一种新方法即基于一致度分析。

1. 2齿轮故障形式与震动特征

通常齿轮在运转时,由于制造不良或操作维护不善会产生各种形式的故障。故障形式又随齿轮材料、热处理、运转状态等因素的不同而不同,常见的齿轮故障形式有齿面磨损、齿面胶合和擦伤、齿面接触疲劳和弯曲疲劳与断齿。

在齿轮运转状态下,伴随着内部故障的发生与发展,必然会产生振动上的异常。实践证明,振动分析是齿轮故障检测中最有效的方法。若齿轮副主轮转速为n1,齿数为z1,频率为f1;从轮转速为n2,齿数为z2,频率为f2,则齿轮啮合频率fC为:fC=Nf1z1=Nf2z2=Nn160z1=Nn260z2(1) 式中:N=1, 2, 3,…。齿轮处于正常或异常状态下,啮合频率振动成分及其倍频总是存在的,但两种状态下的振动水平有差异。如果仅仅依靠对齿轮振动信号的啮合频率及其倍频成分的差异

齿轮故障诊断分析第1页

来识别齿轮的故障是不够的,因故障对振动信号的影响是多方面的,其中包括幅值调制、频率调制和其他频率成分。

第二章齿轮传动故障诊断的方法

齿轮故障的诊断方法从难易程度来说可以分为简易诊断方法和精密诊断方法。

简易诊断方法包括:有经验的人员可以通过直接听噪声,或感受振动强度来初步判断齿轮系统是否处在正常状态。通过直接观察信号波形的幅值、变化趋势来判断齿轮的工作状态。简易诊断方法简单、快速,但效果一般。精密诊断方法利用精密仪器来获取系统运行的信号,并对信号进行一系列处理来获得所需要的信息。精密诊断方法的准确性高,但对人员素质要求高,需要的仪器也比较精密。

齿轮系统在运行过程中,和运行状态有关的一系列物理量都是随时间的变化,以各种各样的信号表达出来。因此,信号处理方法是齿轮故障诊断中最关键的一个环节。它对前面环节所得到的信号进行分析,又给后面最终的决策环节提供信息。有关齿轮的信号处理方法目前已经取得了很大的发展,它借鉴了振动力学、摩擦学、系统论、控制论、计算机技术、人工智能技术和非线性理论等多个领域的研究成果,广泛采用传感器技术、计算机和信息处理等现代科学技术作为其技术支持。

2. 1高阶谱分析

高阶谱是在高阶累积量的基础上发展起来的,是近年来国际上在一个信号处理方面比较新的方向。它是用来分析非高斯、非线性、非最小相位的有力工具,相对于相关函数和功率谱来说,它不仅能提供时间、幅值、频率上的信息,还能提供相位上的信息。目前国内外已经将其引入齿轮检测中。双谱技术用于齿轮故障诊断,利用该方法能有效地识别出信号中的二次相位耦合情况,可以准确地检测出齿轮中存在的分布缺陷。将双谱和双相干谱进行比较,通过对齿轮在正常、磨损、断齿状态下的分析表明双谱比双相干谱的能量分布更集中,更利于故障特征提取。

齿轮故障诊断分析第2页

齿轮啮合过程中的振动信号往往呈现出非线性、非高斯性,加上强噪声的干扰,给故障特征的提取带来了较大的困难。为实现齿轮单一故障的分类和诊断,采用时序参数化的双谱分析方法,对齿轮故障模拟试验台上采集的正常状态和3种故障状态的振动信号进行了分析,根据双谱谱峰的分布及数目的差异性,实现了齿轮正常、裂纹、磨损、剥落4种状态的识别和分类。结果表明,双谱分析可以抑制背景噪声,并有效提取信号中的非高斯成分,是一种有效的故障诊断方法。

2.1.1参数化双谱估计的原理

双谱的计算方法有2种:①直接由定义计算双谱(实质上,双谱定义为平稳时序的3阶自相关函数的二维傅立叶变换);②间接由参数模型估计双谱,其计算简便,本研究利用AR(p)模型来估计双谱。

2.1.2试验装置与信号获取

试验装置为齿轮故障模拟实验台,它由控制台、直流电动机、加载电机、直流调速加载系统、齿轮减速器组成,如图1所示。传感器的安装位置是正确获取信号的关键,对于齿轮箱而言,齿轮故障的振动信号在传递中经过环节较多(齿轮—轴—轴承—轴承座—测点),很多高频信号在传递中可能丧失了,所以,进行测试时应选择轴承座附近刚性较好的部位,两个压电式传感器分别布置在中间轴和输出轴的轴承座外壁上,方向均为竖直向上。

齿轮故障诊断分析第3页

相关文档
最新文档