粒子群算法常用改进方法总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

粒群算法的改进方法
一.与其他理论结合的改进
1.协同PSO(CPSO)算法
原理:提出了协同PSO的基本思想,采用沿不同分量划分子群体的原则,即用N个相互独立的微粒群分别在D维的目标搜索空间中的不同维度方向上进行搜索。

优点:用局部学习策略,比基本PSO算法更容易跳出局部极值,达到较高的收敛精度.
缺点:此算法在迭代初期,适应值下降缓慢,且其收敛速度与种群所含微粒数目成反比.
2.随机PSO(SPSO)算法
原理:其基本思想是利用停止进化的微粒来改善全局搜索能力。

即将式(1)中的当前速度项V过去掉,从而使得速度本身失去记忆性,减弱了全局搜索能力.但这样也使得在进化的每一代均至少有一个微
粒出予处于微粒群的历史最好位置而停止进化.然后在搜索空问中重新随机产生新的微粒以代替停止微粒的进一步进化.这样就大大增强了全局搜索麓力.
3.有拉伸功能的PSO算法
原理:为了有效地求解多模态复杂函数优化问题,Parsopoulos等人将函数“Stretching”技术引入PSO算法,形成了一种高效的全局优化算法一“Stretching PSO”(SPSO)。

它通过消除不理想的局部极小而保留全局最小来避免陷入局部极小.在检测到目标函数的局部极小
点后,立即对待优化的目标函数进行拉伸变换.
优点:.SPSO具有稳健的收敛性和良好的搜索能力,在很多高维度,多局部极值的函数最小值的求解问题上,搜索成功率显著提高。

缺点:计算耗时相应地也会增加.
4.耗散PSO(DPSO)算法
原理:谢晓峰等人根据耗散结构的自组织性,提出了一种耗散型PSO 算法.耗散PSO算法构造了一个开放的耗散系统.微粒在开放系统中的“飞行”不只依赖于历史经历,还要受环境的影响.附加噪声从外部环境中,持续为微粒群弓|入负熵,使得系统处于远离平衡态的状态.又由于群体中存在内在的非线性相互作用,从而使群体能够不断进化。

二.与其他算法结合的改进
1.混合PSO(HPSO)算法
原理:Angeline于1998年提出采用进化计算中的选择操作的改进型PSO模型,成为混合PSO(HPSO)。

优点:HPSO提高了收敛速度并保持了一定的全局收敛能力
缺点:在解决超高维、非线性、多局部极值的复杂性优化问题时有些力不从心。

2.杂交PSO算法
原理:借鉴遗传算法的思想,Angelinec最早提出了杂交PSO算法的概念,而Lovbjerg等人进一步将进化计算机制应用于PSO算法,给出了算法交叉的具体形式。

优点:杂交PSO算法的收敛速度比较快,搜索精度也相对较高,可以很好地解决一些非线性优化问题.
3.基于模拟退火的PSO算法
原理:把模拟退火算法思想引入到PSO中,将PSO算法的全局寻优能力,以及计算速度抉,实现简单等优点与模拟退火算法的较强跳出局部最优解能力相结合
优点:避免了PSO容易陷入局部极值点的缺点,提高了PSO进化后期的收敛速度.
4.免疫PSO算法
原理:受生物免疫机制的扇发,把免疫系统的免疫信息处理机制引入到PSO中.此算法结合了PSO算法的全局寻优能力和免疫系统的免疫信息处理机制。

优点:,改善了PSO摆脱局部极值点的能力,提高了算法优化过程中的收敛速度和精度.
5.自适应变异的PSO(AMPSO)算法
原理:提出了自适应变异的PSO算法,即在进化过程中增加了随机变异算子,变异操作增强了PSO跳出局部最优解的能力,从而提高了全局搜索能力,并且能够有效避免早熟收敛的问题.。

相关文档
最新文档