九年级上册旋转几何综合易错题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册旋转几何综合易错题(Word版含答案)
一、初三数学旋转易错题压轴题(难)
1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.
(1)如图①,若∠B、∠ADC都是直角,把ABE
△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;
(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有
EF=BE+DF;
(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.
【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3
【解析】
【分析】
(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;
(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即
180
ADG ADF
∠+∠=︒,即180
B D
∠+∠=︒;
(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.
【详解】
(1)解:如图,
∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,
∴AE=AG,∠BAE=∠DAG,BE=DG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,
即∠EAF=∠GAF=45°,
在△EAF和△GAF中
AF AF
EAF GAF
AE AG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=BE+DF;
(2)解:∠B+∠D=180°,
理由是:
如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,
∵∠B+∠ADC=180°,
∴∠ADC+∠ADG=180°,
∴F、D、G在一条直线上,
和(1)类似,∠EAF=∠GAF=45°,
在△EAF和△GAF中
AF AF
EAF GAF
AE AG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
∴△EAF≌△GAF(SAS),
∴EF=GF,
∵BE=DG,
∴EF=GF=BE+DF;
故答案为:∠B+∠D=180°;
(3)解:∵△ABC中,2BAC=90°,
∴∠ABC=∠C=45°,由勾股定理得:22
AB AC
+,
如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .
则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,
∵∠DAE=45°,
∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,
∴∠FAD=∠DAE=45°,
在△FAD 和△EAD 中
AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩
∴△FAD ≌△EAD ,
∴DF=DE ,
设DE=x ,则DF=x ,
∵BD=1,
∴BF=CE=4﹣1﹣x=3﹣x ,
∵∠FBA=45°,∠ABC=45°,
∴∠FBD=90°,
由勾股定理得:222DF BF BD =+,
22(3)1x x =-+, 解得:x=
53, 即DE=53
. 【点睛】
本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.
2.在△ABC 中,∠C =90°,AC =BC =6.
(1)如图1,若将线段AB 绕点B 逆时针旋转90°得到线段BD ,连接AD ,则△ABD 的面积为 .
(2)如图2,点P 为CA 延长线上一个动点,连接BP ,以P 为直角顶点,BP 为直角边作等腰直角△BPQ ,连接AQ ,求证:AB ⊥AQ ;
(3)如图3,点E ,F 为线段BC 上两点,且∠CAF =∠EAF =∠BAE ,点M 是线段AF 上一个动点,点N 是线段AC 上一个动点,是否存在点M ,N ,使CM +NM 的值最小,若存在,
求出最小值:若不存在,说明理由.
【答案】(1)36;(2)详见解析;(3)存在,最小值为3.
【解析】
【分析】
(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;
(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;
(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.
【详解】
解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,
∴△ABD是等腰直角三角形,
∵∠ACB=90°,
∴BC⊥AD,
∴AD=2BC=12,
∴△ABD的面积=1
2
AD•BC=
1
2
12×6=36,
故答案为:36;
(2)如图,过Q作QH⊥CA交CA的延长线于H,
∴∠H=∠C=90°,
∵△BPQ是等腰直角三角形,
∴PQ=PB,∠BPQ=90°,
∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,