络合态重金属废水处理技术研究进展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
络合态重金属废水处理技术研究进展
金属矿冶炼、电解、电镀等行业每年要排放大量含重金属离子的废水,重金属废水排放到环境中不能被微生物降解,并通过土壤、水、空气,尤其是食物链,对人类健康、动植物及水生生物产生严重危害。近年来随着表面处理技术的发展,电镀、化学镀被广泛应用,而这种工艺中大量使用的络合剂,使重金属废水的成分更加复杂。以电镀行业重金属废水为例:电镀废水中含有铜、镍、镉、铅、铬等有毒有害重金属离子、氰化物、乙二胺四乙酸(EDTA)以及表面活性剂、光亮剂、防染盐等污染物。重金属离子通常与氰化物、EDTA或有机物形成络
合物,络合态重金属多数具有很高的水溶性,且在广泛的pH范围内能够稳定存在,现有化学中和沉淀等技术工艺难以将其去除,出水无法满足排放标准要求[1,2,3,4]。因此,对络合态重金属的处理已成为环境保护中亟待解决的问题之一。
对络合态重金属废水的处理方法主要包括化学沉淀法、氧化还原法、吸附法以及离子交换法等。笔者对络合态重金属废水处理的主要方法及其优缺点进行了探讨。
1络合态重金属废水的处理方法
1.1化学沉淀法
用于处理含络合态重金属废水的化学沉淀法主要有硫化物沉淀
法和螯合物沉淀法[5,6,7,8,9]等。如针对EDTA络合铜废水,采
用硫化物沉淀法是在废水中加入S2-使铜以更稳定形式的CuS沉淀(Ksp=6.3×10-36)析出,从而将络合铜中的Cu2+分离出来。陈文松等[5]对比了Na2S沉淀法、Fenton氧化法、混凝法等3种处理工艺对络合铜废水的处理效果。在相同条件下,这3种处理方法中以Na2S 沉淀法处理效果最好,处理后废水中的铜离子质量浓度都在0.5mg/L 以下,去除率均达到98.5%以上。硫化物沉淀法主要应用于高浓度络合重金属工业废水预处理,硫化物沉淀法具有成本低、操作简便的优点,对重金属去除彻底。但也存在着硫化物沉淀颗粒小,易形成胶体,给分离带来困难等缺点。同时也存在着S2-加入量难以准确控制、产生恶臭而引起二次污染的问题[10]。
螯合物沉淀法也是近年来发展起来的一种处理重金属络合物的
方法,其原理是利用重金属螯合剂如氨基二硫代甲酸盐树脂与重金属生成难溶盐来去除重金属[7,8]。韩旻等[7]开发了一种重金属捕集沉淀剂(DTCR)用于处理含络合铜的废水,对其处理效果与无机处理剂CaO、CaO+FeSO4进行了比较,发现DTCR对废水的处理不受络合剂的影响,对铜离子的捕集效率高,处理后的废水可达标排放,同时污泥生成速度快且稳定,量少、含水率低,不会产生二次污染。
1.2氧化还原法
氧化法主要通过氧化的方法对重金属络合物破络,使重金属游离出来,再用中和沉淀、混凝和吸附的方法进一步去除,从而达到处理要求。使用氧化法常用的氧化试剂有次氯酸钠、H2O2、Fenton、高铁
酸盐试剂等。例如,ShanhongLan等[11]利用Fenton试剂在酸性条件下联合内电解技术,采取先破络后絮凝的方法来处理EDTA络合铜废水,结果发现铜的去除率达100%,COD的去除率达87%。Fayuan Chen 等[12,13]详细研究了H2O2氧化Cu(CN)32-的效率与机制,结果发现,H2O2首先氧化Cu(CN)32-络合物中的CN-,随着CN-氧化为CNO-,Cu(CN)32-转化为Cu(CN)2-;随着Cu(CN)2-进一步被氧化,释放出铜离子。L.Pachuau等[14]利用高铁酸盐对Cu(Ⅱ)-IDA和
Zn(Ⅱ)-IDA(IDA:亚氨基二乙酸)的氧化作用,以及通过Fe(Ⅵ)还原成的Fe(Ⅲ)的絮凝作用实现离子态重金属和IDA的同时去除。
Xu Zhao等[15]进一步将H2O2预氧化与电Fenton相结合,处理包含CN-、Cu2+、Ni2+以及COD的电镀废水,达到了较好的处理效果,当CN-、Cu2+、Ni2+质量浓度分别为75、185、64mg/L时,利用一定浓度的H2O2氧化处理30min后,CN-质量浓度从75mg/L降到了
15mg/L。H2O2-电Fenton处理30min后,CN-、Cu2+、Ni2+质量浓度分别低于0.3、0.5、1.5mg/L,COD为65mg/L。因此,将H2O2预氧化再与其他方法结合可有效去除电镀废水中的CN-、重金属离子和有机物。
还原法则是利用还原剂使络合态重金属还原析出重金属离子的
方式来处理络合重金属废水。常用的还原试剂有铁粉、水合肼以及磷酸氢盐等。金洁蓉等[16]采用铁粉还原-Fenton氧化工艺处理络合铜工业废水,在初始Cu(Ⅱ)质量浓度为50mg/L,初始pH=3的体系中,
加入过量的铁粉反应30min后加碱调节pH=9进行沉淀处理,废水的COD去除率为86.5%,Cu(Ⅱ)去除率99.9%。
氧化还原法通常在处理过程中需要加入大量化学试剂,存在着二次污染等问题。
1.3光催化氧化法
光催化氧化法是近年来重金属络合物废水处理方法的热门研究
方向[17]。该方法具有强氧化性,能够实现重金属络合物的破络合,使重金属离子游离出来,有机物还可以被氧化降解,常用的光催化剂包括TiO2、ZnO、WO3、CdS、ZnS、SnO2等。其中TiO2研究较多,其原理是通过一定波长的紫外光照射半导体表面激发出光生空穴进而
产生羟基自由基实现重金属络合物的无选择性氧化降解。单独光催化会出现光生空穴和光生电子容易复合的缺点,这导致光催化的效率低下。目前的研究主要集中在提高TiO2的光量子效率上,包括TiO2的掺杂改性,纳米TiO2的固定化等。
J.K.Yang等[18]研究了紫外光照射TiO2粉末悬浊液体系降解Cu-EDTA的动力学及机理,发现不同的Cu-EDTA处理目标选择的处理条件也不相同,当处理目标是去除Cu(Ⅱ)时,可适当延长反应时间;Cu-EDTA的去除与TiO2的吸附能力有很大关系,中性pH时吸附效果较好,要使TiO2仅仅作为一种催化剂则应该控制反应体系在低的pH 下运行。M.S.Vohra等[19]研究了TiO2光催化降解Pb-EDTA的效能,结果表明:Pb-EDTA的降解发生在催化剂表面和液相体系中,较高pH