力的分解方法透析

力的分解方法透析
力的分解方法透析

力的分解方法透析

【摘要】力的分解在高中物理学中,很重要,也常常困扰许多同学.这里重点介绍力的分解的基本方法和一个力在特定条件下的分解.

【关键词】力的分解;一组解;两组解;无解

求一个已知力的分力叫做力的分解.在解决力学问题时,为了研究问题的方便,很多时候需要对已知力进行分解.力的合成是唯一的,而力的分解却是各种各样的.这就要求我们掌握力的分解的基本方法及在特定条件下如何进行力的分解.

1力的分解的基本方法

力的分解是力的合成的逆运算,同样遵循平行四边形定则.即以表示已知力F的有向线段作为平行四边形的对角线来作平行四边形,那么,与该有向线段的起点共点的平行四边形的两条邻边就表示力F 的两个分力.

需要注意的是,如果没有其他限制,对于同一条对角线,可以作出无数个不同的平行四边形.也就是说,同一个力F可以分解为无数对不同的分力.

2一个力有确定的两个分力的条件

2.1两个分力的方向确定

力的分解方法

力的分解方法 力的分解是高中物理的一个核心思想。虽然不会有题目考察力的分解的概念,但是基本上所有题都需要用到力的来分析的思想。力的分解通常有两种方式,一是按力的作用效果分解,另一种是正交分解。这两种方式适用的场景不同,选取当前场景中合适的方法会有效简化我们的解题过程。下面我来介绍一下这两种方法分别适合什么场景。 按力的作用效果分解 举个例子,如下图 物体静止在斜面上。斜面上的物体受重力摩擦力支持力。重力的作用效果有两个,一个是把物体压在斜面上(即Gcosθ),另一个是把物体往斜面下拽(即Gsinθ)。因此我们可以把重力分解成这两个力,这就是按力的作用效果分解的意思。 如果题目中力的实际作用效果的方向上很容易找到平衡力,那就用按力的作用效果分解。比如上面的例子,我们很容易看出,重力沿斜面方向的分力可以和摩擦力平衡,重力垂直于斜面的分力和支持力平衡,因此我们按力的作用效果分解很容易写出以下两个方程式:N+Gcosθ=0 F+Gsinθ=0 正交分解 如下图:

正交分解是指不考虑力的实际作用效果,统一将所有力分解成水平方向(x)和竖直方向(y)两个分力。 如果题目中力的实际作用效果不明显,或者物体受的力较多,那推荐用正交分解法。将每个力都分解成水平和竖直方向,然后每个方向上的所有分力加加减减,最终可以把这些力统一转化为水平方向和竖直方向上的两个力,这样虽然每个力都要分解,过程多了一些,但是我们的思路是很清晰的。 总结 其实我们做力的分解的目的是为了列出平衡力方程式。以上两种方法没有优劣之分,可能在某些场景下按力的作用效果分解更容易列出平衡力方程式,而在另一些场景下正交分解更加有效。大家还是需要多做题,多思考,做的题目足够多了自然会养成题感,会很快选出当前最适合的方法。

透析方法简介

生物大分子的分离纯化(透析、超滤、冷冻干燥) 2. 透析 自Thomas Graham 1861年发明透析方法至今已有一百多年。透析已成为生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为"保留液",袋(膜)外的溶液称为"渗出液"或"透析液"。 透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国Union Carbide (联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管,截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为1万左右。商品透析袋制成管状,其扁平宽度为23 mm~50 mm不等。为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01 mol/L碳酸氢钠和0.001 mol/L EDTA溶液洗涤,最后用蒸馏水冲洗即可使用。实验证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。使用后的透析袋洗净后可存于4℃蒸馏水中,若长时间不用,可加少量NaN2,以防长菌。洗净凉干的透析袋弯折时易裂口,用时必须仔细检查,不漏时方可重复使用。 新透析袋如不作如上的特殊处理,则可用沸水煮五至十分钟,再用蒸馏水洗净,即可使用。使用时,一端用橡皮筋或线绳扎紧,也可以使用特制的透析袋夹夹紧,由另一端灌满水,用手指稍加压,检查不漏,方可装入待透析液,通常要留三分之一至一半的空间,以防透析过程中,透析的小分子量较大时,袋外的水和缓冲液过量进入袋内将袋涨破。含盐量很高的蛋白质溶液透析过夜时,体积增加50%是正常的。为了加快透析速度,除多次更换透析液外,还可使用磁子搅拌。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒或两端封口的玻璃管,以使透析袋沉入液面以下。 检查透析效果的方法是:用1%BaCl2检查(NH4)2SO4,用1%AgNO3 检查NaCl、KCl等。 为了提高透析效率,还可以使用各种透析装置。使用者也可以自行设计与制作各种简易的透析装置。美国生物医学公司(Biomed Instruments Inc.)生产的各种型号的Zeineh 透析器,由于使用对流透析的原理,使透析速度和效率大大提高。 3. 超滤 超过滤即超滤,自20年代问世后,直至60年代以来发展迅速,很快由实验室规模的分离手段发展成重要的工业单元操作技术。超滤现已成为一种重要的生化实验技术,广泛用于含有各种小分子溶质的各种生物大分子(如蛋白质、酶、核酸等)的浓缩、分离和纯化。 超滤是一种加压膜分离技术,即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。超滤根据所加的操作压力和所用膜的平均孔径的不同,可分为微孔过滤、超滤和反渗透三种。微孔过滤所用的操作压通常小于4×104 Pa,膜的平均孔径为500埃~14微米(1微米=104埃),用于分离较大的微粒、细菌和污染物等。超滤所用操作压为4×104 Pa~7×105 Pa,膜的平均孔径为10-100埃,用于分离大分子溶质。反渗透所用的操作压比超滤更大,常达到35×105 Pa~140×105 Pa,膜的平均孔径最小,一般为10埃以下,用于分离小分子溶质,如海水脱盐,制高纯水等。 超滤技术的优点是操作简便,成本低廉,不需增加任何化学试剂,尤其是超滤技术的实验条件温和,

力的分解方法

力的分解方法 Prepared on 22 November 2020

力的分解方法 课前预习 1.按力的实际效果分解 按力的实际效果求分力的方法:先根据力的实际作用效果确定两个实际分力的方向,再根据两个实际分力的方向画出平行四边形,并由平行四边形定则求出两个分力的大小. 2.按问题的需要进行分解 (1)已知合力的大小和方向以及两个分力的方向,可以 唯一地作出力的平行四边形,对力F进行分解,其解 是唯一的. (2)已知合力和一个分力的大小与方向,力F的分解也是唯一 的. 图3 (3)已知一个分力F1的方向和另一个分力F2的大小,对力F进 行分解,则有三种可能(F1与F的夹角为θ).如图3所示: ①F2

m m 思维突破把力按实际效果分解的一般思路: 跟踪训练1如图5所示,α=30°,装置的重力和摩擦力 均不计, 若用F=100 N的水平推力使滑块B保持静止,则工件 受到的向 上的弹力多大 图5 例2F1、F2是力F的两个分力.若F=10 N,则下列不可能是F的两个分力的是() A.F1=10 N,F2=10 N B.F1=20 N,F2=20 N C.F1=2 N,F2=6 N D.F1=20 N,F2=30 N 跟踪训练2关于一个力的分解,下列说法正确的是 () A.已知两个分力的方向,有唯一解 B.已知两个分力的大小,有唯一解 C.已知一个分力的大小和方向,有唯一解 D.已知一个分力的大小和另一个分力方向,有唯一解

透析袋用法

透析袋使用前处理方法 透析袋的使用方法透析原理透析是指溶质从半透膜的一侧透过膜至另一侧的过程,任何天然的(如腹膜)或人造的半透膜,只要该膜含有使一定大小的溶质通过的孔径,那么这些溶质就可以通过弥散和对流从膜的一侧移动到膜的另一侧。 透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。 人体内的毒物包括代谢产物,药物,外源性毒物,只要其原子量或分子量大小合适,就能够通过透析清除体外。其基本原理是弥散和对流。弥散就是半透膜两侧液体各自所含溶质浓度梯度及它所形成的不同渗透浓度,溶质从浓度高的一侧通过半透膜向浓度低的一侧移动。对流也称超滤,是指溶质和溶剂因透析膜两侧的静水压和渗透压梯度的不同而跨膜转运的过程。 自ThomasGraham1861年发明透析方法至今已有一百多年。透析已成为生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”。 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国Union Carbide(联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管,截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为1万左右。 透析袋的使用方法使用前处理: 1. 把透析袋剪成适当长度(10-20cm)的小段。 2. 在大体积的2%(W/V)碳酸氢钠和10mmol/L EDTA(pH8.0)中将透析袋煮沸10分钟。 3. 用蒸馏水彻底清洗透析袋。 4. 放在1mmol/L EDTA(pH 8.0)中将之煮沸10分钟。 5.冷却后,存放于4度,必须确保透析袋始终浸没在溶液内。从此时起取用透析袋是必须戴手套。 6. 用前在透析袋内装满水然后排出,将之清洗干净。 注意事项: 透析袋一般来讲,最好一次性利用。如果对样品的纯度没有很严格的要求,还是可以重复利用的。但是不要重复利用太多次,一般5次就差不多了,而且透析时尽量避免有机溶剂(乙醇除外),因为重复多次利用或经有机溶剂腐蚀,虽然从宏观上看袋子完好,但是有可能微观上已有破损或者孔径已经改变,截留分子量(MWCO)已经不可靠。 新透析袋如不作如上的特殊处理,则可用沸水煮五至十分钟,再用蒸馏水洗净,即可使用。使用时,一端用橡皮筋或线绳扎紧,也可以使用特制的透析袋夹夹紧,由另一端灌满水,用手指稍加压,检查不漏,方可装入待透析液,通常要留三分之一至一半的空间,以防透析过程中,透析的小分子量较大时,袋外的水和缓冲液过量进入袋内将袋涨破。含盐量很高的蛋白质溶液透析过夜时,体积增加50%是正常的。为了加快透析速度,除多次更换透析液外,还可使用磁子搅拌。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒或两端封口的玻璃管,以使透析袋沉入液面以下。

高中物理《力的平衡问题》常用解题方法

《力的平衡》常用解题方法【专题概述】 1 处理平衡问题的常用方法 2.一般解题步骤 (1)选取研究对象:根据题目要求,选取一个平衡体(单个物体或系统,也可以是结点)作为研究对象. (2)画受力示意图:对研究对象进行受力分析,画出受力示意图. (3)正交分解:选取合适的方向建立直角坐标系,将所受各力正交分解. (4)列方程求解:根据平衡条件列出平衡方程,解平衡方程,对结果进行讨论. 3.应注意的两个问题 (1)物体受三个力平衡时,利用力的分解法或合成法比较简单. (2)解平衡问题建立坐标系时应使尽可能多的力与坐标轴重合,需要分解的力尽可能少.物体受四个以上的力作用时一般要采用正交分解法 【典例精讲】 方法1 直角三角形法 用直角三角法解答平衡问题是常用的数学方法,在直角三角形中可以利用勾股定理、正弦函数、余弦函数等数学知识求解某一个力,若力的合成的平行四边形为菱形,可利用菱形的对角线互相垂直平分的特点进行求解.

【典例1】如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为 A.2 sin αmg B.2 cos αmg C.21 mgtan α D.21 mgcot α 【答案】 A 直角三角形,且∠OCD 为α,则由21mg =F N sin α可得F N =2sin αmg ,故A 正确. 方法2 相似三角形法 物体受到三个共点力的作用而处于平衡状态,画出其中任意两个力的合力与第三个力等值反向的平行四边形中,可能有力三角形与题设图中的几何三角形相似,进而得到力三角形与几何三角形对应边成比例,根据比值便可计算出未知力的大小与方向. 【典例2】 如图所示,一个重为G 的小球套在竖直放置的半径为R 的光滑圆环上,一个劲度系数为k ,自然长度为L(L<2R)的轻质弹簧,一端与小球相连,另一端固定在圆环的最高点,求小球处于静止状态时,弹簧与竖直方向的夹角φ.

瑞达恒辉即用型RC膜透析袋使用说明书

即用型RC膜透析袋使用说明书 一、膜技术参数: 生物技术RC膜(再生纤维素),重金属离子和硫化物含量为痕迹级别,湿型,浸泡在0.05%叠氮钠防腐储存液中,即用型,不需预处理,蒸馏水冲洗后使用;生物技术RC膜拥有广泛的化学兼容性,能承受弱酸弱碱或稀释的强酸强碱,绝大部分的醇类物质;弱极性有机物或者稀释过的强极性有机物,如DMSO,接触强极性有机溶剂可能会损害RC膜;标准RC膜能适用pH值2-12以及温度4-132 °C之间。 二、储存条件: 透析膜浸泡在储存液中,密封放置于4-25°C之间环境。建议密封放在冰箱冷藏室4℃保存。 透析袋使用方法: 1、先带好手套,把透析袋剪成适当长度(10cm左右)的小段,长度可以根据需要,但必须有足够的容器来容纳。 2、用蒸馏水彻底清洗透析袋,两头用手微微捏住,检查是否有漏袋。透析袋保存液含有防腐剂,对活性物质有抑制作用,至少用蒸馏水(纯水、去离子水均可)反复冲洗三次,有时间最好用蒸馏水浸泡30分钟再使用。 3、不使用的透析膜放回储存液中,密封保存,接触透析膜过程中必须戴手套。

4、使用时,一端用透析袋夹子夹紧,灌满水后,用手指适当加压,检查不漏,另一头也同样反复一次,以免夹子不够紧。然后装入样品,通常要留三分之一至一半的空间,以防透析过程中,袋外的水和缓冲液过量进入袋内将袋胀破。装完样品后,用夹子夹紧袋口,即可进行透析。为了加快透析速度,除多次更换透析缓冲液外,还可使用磁力搅拌器。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。根据样品浓度决定透析时间,也可以过夜透析,透析时间在24~48小时为宜。用线吊着透析袋,使透析袋处于悬浮状态,也可以加速透析速度。

力的合成与分解 知识点总结与典例(最新)

力的合成与分解 知识点总结与典例 【知识点梳理】 知识点一力的合成 1.共点力合成的常用方法 (1)作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示). (2)计算法:几种特殊情况的共点力的合成. 类型作图合力的计算 ①互相垂直F=F21+F22 tan θ= F1 F2 ②两力等大,夹角为θF=2F1cos θ 2 F与F1夹角为 θ 2 ③两力等大且夹角为 120° 合力与分力等大 (3)力的三角形定则:将表示两个力的图示(或示意图)保持原来的方向依次首尾相接,从第一个力的作用点,到第二个力的箭头的有向线段为合力.平行四边形定则与三角形定则的关系如图甲、乙所示. 2.合力的大小范围 (1)两个共点力的合成 |F1-F2|≤F合≤F1+F2 即两个力大小不变时,其合力随夹角的增大而减小,当两力反向时,合力最小,为|F1-F2|,当两力同向时,合力最大,为F1+F2. (2)三个共点力的合成

①三个力共线且同向时,其合力最大,为F1+F2+F3. ②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力最小值为零;如果第三个力不在这个范围内,则合力最小值等于最大的力减去另外两个力. 【归纳总结】 三种特殊情况的共点力的合成 类型作图合力的计算 ①互相垂直F=F21+F22 tan θ= F1 F2 ②两力等大,夹角θF=2F1cos θ 2 F与F1夹角为 θ 2 ③两力 等大且夹角 120° 合力与分力等大 知识点二力的分解 1.矢量、标量 (1)矢量 既有大小又有方向的量。相加时遵从平行四边形定则。 (2)标量 只有大小没有方向的量。求和时按代数法则相加。有的标量也有方向。 2.力的分解 (1)定义 求一个力的分力的过程。力的分解是力的合成的逆运算。 (2)遵循的原则 ①平行四边形定则。 ②三角形定则。 3.分解方法 (1)按作用效果分解力的一般思路

透析袋的选择和使用方法

透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,就叫做透析袋。 自ThomasGraham1861年发明透析方法至今已有一百多年。透析已成为生物化学实 验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 透析只需要使用专用的半透膜即可完成。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液中的大分子量的生物大分子被截留在袋内,而盐和小分子物质不断扩散透析到袋外,直到袋内外两边的浓度达到平衡为止。保留在透析袋内未透析出的样品溶液称为“保留液”,袋(膜)外的溶液称为“渗出液”或“透析液”。 透析的动力是扩散压,扩散压是由横跨膜两边的浓度梯度形成的。透析的速度反比于膜的厚度,正比于欲透析的小分子溶质在膜内外两边的浓度梯度,还正比于膜的面积和温度,通常是4℃透析,升高温度可加快透析速度。 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,目前常用的是美国UnionCarbide(联合碳化物公司)和美国光谱医学公司生产的各种尺寸的透析管, 截留分子量MwCO(即留在透析袋内的生物大分子的最小分子量,缩写为MwCO)通常为 1万左右。 商品透析袋制成管状,其扁平宽度为23mm~50mm不等。为防干裂,出厂时都用10% 的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01mol/L碳酸氢钠和0.001mol/LEDTA溶液洗涤,最后用蒸馏水冲洗即可使用。实 验证明,50%乙醇处理对除去具有紫外吸收的杂质特别有效。使用后的透析袋洗净后可存 于4℃蒸馏水中,若长时间不用,可加少量NaN2,以防长菌。洗净凉干的透析袋弯折时易 裂口,用时必须仔细检查,不漏时方可重复使用。 新透析袋如不作如上的特殊处理,则可用沸水煮五至十分钟,再用蒸馏水洗净,即可使用。使用时,一端用橡皮筋或线绳扎紧,也可以使用特制的透析袋夹夹紧,由另一端灌满水,用手指稍加压,检查不漏,方可装入待透析液,通常要留三分之一至一半的空间,以防透析过程中,透析的小分子量较大时,袋外的水和缓冲液过量进入袋内将袋涨破。含盐量很高的蛋白质溶液透析过夜时,体积增加50%是正常的。为了加快透析速度,除多次更换透析液外,还可使用磁子搅拌。透析的容器要大一些,可以使用大烧杯、大量筒和塑料桶。小量体积溶液的透析,可在袋内放一截两头烧园的玻璃棒或两端封口的玻璃管,以使透析袋沉入液面以下。 检查透析效果的方法是:用1%BaCl2检查(NH4)2SO4,用1%AgNO3检查NaCl、 KCl等。 为了提高透析效率,还可以使用各种透析装置。使用者也可以自行设计与制作各种简易的透析装置。美国生物医学公司(BiomedInstrumentsInc.)生产的各种型号的Zeineh透 析器,由于使用对流透析的原理,使透析速度和效率大大提高。 根据个人使用经验,建议使用透析袋效果比较好,还有具体需要什么规格的 要看你的目的蛋白量有多大,才能决定使用多大的截留分子量的透析袋,一般截 留量越大价格也就会越高,还有就是透析袋宽度的选择,要看你的实验一次需要 透析多少量来决定。目前我的实验室使用的是上海生工的透析袋,宽度70mm普 通型的!

力的分解与力的合成题型汇总

力的分解与力的合成题型汇总 作图法与计算法求合力(二力合成) 1已知F1=45N ,方向水平向右,F2=60N ,方向竖直向上,求F 合 作图法 计算法 计算法求合力要对以下几种情况了如指掌:1二分力大小相等,夹角等于120,60的情况;质点手大小相等夹角均为120的三个力的情况 二力合力范围或三力合力范围 1两个共点力的大小分别为F 1=15 N ,F 2=9 N ,它们的合力不可能等于( ) A .9 N B .25 N C .6 N D .21 N 2物体同时受到同一平面内的三个力的作用,下列几组力的合力可能为零的是( ) A .5 N 、7 N 、8 N B .5 N 、1 N 、3 N C .1 N 、5 N 、10 N D .10 N 、10 N 、10 N 合力一般常见题型 1如图所示,一个木块放在水平桌面上,在水平方向上共受到三个力即F1,F2和静摩擦力作用,而且三个力的合力为零,其中F1=10N ,F2=2N ,若撤去力F1,则木块在水平方向上受到的合力是多少 2如右图所示,质量为m 的长方形木块静止在倾角为a 角的斜面上,斜面上对木块的支持力与摩擦力的合力方向应该是( ) A 沿斜面向下 B 垂直于斜面向上 C 沿斜面向上 D 竖直向上 3如图所示,水平地面上固定着一根竖直立柱,某人用绳子通过柱顶的定滑轮将100 N 的货物拉住.已知人拉着绳子的一端,且该端与水平方向夹角为30°,则柱顶所受压力大小为( ) A .200 N B .100 3 N C .100 N D .50 3 N 三角形定则运用 如图所示(俯视图),物体静止在光滑水平面上,有一水平拉力F =20 N 作用在该物体上,若要使物体所受的合力在OO ′方向上(OO ′与F 夹角为30°),必须在水平面内加一个力F ′,则F ′的最小值为 ,这时合力大小等于 。 共点力的平衡问题(可采用两种方法:正交分解法以及力的分解法) 1如右图示,一个半径为r ,重为G 的圆球被长为r 的细线AC 悬挂在墙上,求球对细线的拉力F1和球对墙的压力F2. 2在图3-5-5中,电灯的重力为20 N ,绳OA 与天花板夹角为45°,绳OB 水平,求 绳OA 、OB 所受的拉力. 3在倾角α=30°的斜面上有一块竖直放置的挡板,在挡板和斜面之间放有一个重力为 G =20 N 的光滑圆球,如图3-5-7所示.试求这个球对斜面的压力和对挡板的压力. 4在图3-5-15中,用绳AC 和BC 吊起一个重100 N 的物体,两绳AC 、BC 与竖直方 向的夹角分别为30°和45°.求:绳AC 和BC 对物体的拉力的大小. 此类问题非常多一定要全部会做 动态问题中力的分析方法 1如图3-5-10所示,半圆形支架BAD ,两细绳OA 和OB 结于圆心O ,下悬重为G 的物体,使OA 绳固定不动,将OB 绳的B 端沿半圆支架从水平位置逐渐移至竖直的位置C 过程中,分析OA 绳和OB 绳所受的力大小如何变化 11 如图3-5-12所示,把球夹在竖直墙和BC 板之间,不计摩擦,球对墙的压力为F N1,球对板的压力为F N2,在将板BC 逐渐放至水平的过程中,试分析F N1,F N2的变化情况. 整体法解题 1 如图所示,质量均为m 的A 、B 两物体在水平推力F 的作用下,紧靠在竖直墙上处于静止状态,试确定A 所受的静摩擦力。若增大推力F ,物体A 所受的静摩擦力是否变化 2如图,位于水平桌面上的物块P ,由跨过定滑轮的轻绳与物块Q 相连,从滑轮 到P 和到Q 的两段绳都是水平的,已知Q 与P 之间以及桌面之间的动摩擦因数都 为μ,两物块的质量都是m ,滑轮质量、滑轮轴上的摩擦不计,若用一水平向右 的力F 拉P 使它做匀速运动,则F 的大小为( ) A. 4μmg B. 3μmg C. 2μmg D. μmg 合力与分力概念性选择题 1关于几个力与它们的合力的说法正确的是( ) A .合力的作用效果跟原来那几个力共同作用的效果相同 B .合力与原来那几个力 同时作用在物体上 C .合力的作用可以代替那几个力的作用 D .求几个力的合力遵从平行四边形定则 2.关于合力与其两个分力的关系,正确的是( ) A C O r r

透析袋使用说明

透析袋使用说明 自Thomas Graham1861年发明透析方法至今已有一百多年。透析已成为生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。 1技术指标 MWCO(截留分子量),单位:Diatoms。 透析时,小于MWCO的分子在透析膜二边溶液浓度差产生的扩散压作用下渗过透析膜,其速度与浓度梯度、膜面积及温度成正比。欲快速透析可采用直径较小的透析袋以增加膜面积。常用温度:4℃,升温、更换袋外透析液或用磁力搅拌器,均能提高透析速度。 2使用须知 某些化学物质会破坏透析袋微孔且不可逆转。计有:烃、卤化烃、醇、酮、酯、胺、丙酮、甲基乙基酮、二氧杂环乙烷、环已烷等。酸(甲酸、乙酸、稀强酸如5%HCI),10%苯酚,30%双氧水。甲醇、乙醇:浓度小于5%时,透析功能在,而MWCO变化。 2.1前处理 为防干裂,出厂时都用10%的甘油处理过,并含有极微量的硫化物、重金属和一些具有紫外吸收的杂质,它们对蛋白质和其它生物活性物质有害,用前必须除去。 2.1.1方法一 将透析袋剪成适当长度(10-20cm)的小段。在NaHCO3-EDTA处理液中煮沸10min后用蒸馏水彻底清洗干净,然后在EDTA处理液煮沸10min。冷却后,置于30%乙醇中,放于4℃冰箱,必须确保透析袋始终浸没在溶液内。使用前戴手套取用透析袋并用蒸馏水将透析袋内外清洗干净。[1] 2.2.2方法二 将透析袋剪成适当长度(10-20cm)的小段,沸水煮5至10分钟,再用蒸馏[1]乙二胺四乙酸二钠(EDTA)0.2mol/L储备液 称取7.4448g乙二胺四乙酸二钠,少量蒸馏水溶解,转至100mL容量瓶中,摇匀并定容。 EDTA处理液(1mmol/L pH8.0) 取2.5mL EDTA储备液,加蒸馏水并用1mol/LNaOH调节pH为8.0,定容至500mL。 NaHCO3-EDTA处理液 称取4.0g碳酸氢钠至200mLEDTA处理液中,配制成(2%)NaHCO3-(pH值8.01mmol/L)EDTA处理液。

第二章C力的分解

第二章 C 力的分解 执教:上海市市西中学崔显文 一、教学任务分析 力的分解是继力的合成之后,对力的等效方式的进一步学习,是以后解决力学问题的一个重要方法,也是中学阶段其他矢量运算的基础。力的分解既是本章教学的重点,也是本章教学的难点。 学习本节内容需要的知识有:力的图示、力的合成、平形四边形定则和等效的思想方法。 从生活中的常见的现象入手,通过演示实验和学生分组实验的探究,从等效的角度启发学生认识合力和分力,建立分力、力的分解的概念。 根据学生分组实验的自主探究的结果,通过分析、比较,总结出力的分解遵循平行四边形定则。 根据学生对实例的分析,归纳、总结得出按力作用的实际效果进行分解的思想方法,以达到通过简单的个性问题的分析推广到一般的情况,起到突破难点的作用。 通过对简单实际问题的研究,使学生知道力的分解在生产和生活中的应用,从而自觉联系生活、生产和科技实际,激发求知欲望和研究周围事物的兴趣。 二、教学目标 1、知识与技能 (1)知道力的分解是力的合成的逆运算。 (2)理解分力和力的分解的概念。 (3)初步学会按力的实际作用效果来分解力。 (4)初步学会用作图法求分力,初步学会用直角三角形的知识计算分力。 (5)初步学会用力的分解知识解释一些简单的物理现象。 2、过程与方法 (1)通过本节学习,感受实验是建立物理概念、探究物理规律的必由之路。 (2)通过用两个力等效地替代一个力,从而建立分力和力的分解概念,感受等效替代在力的合成与与分解学习中的重要性。 (3)通过对力按实际作用效果进行分解的探究过程,感受具体问题具体分析的方法。

3、情感、态度与价值观 (1)通过联系生活实际情景,激发求知欲望和探究的兴趣。 (2)通过对力的分解实际应用的分析与讨论,养成理论联系实际的自觉性。 (3)通过分组实验体验分工合作在实验过程中的重要作用,增强合作的意识。 三、教学重点和难点 教学重点:理解分力和力的分解的概念,利用平行四边形定则进行力的分解。 教学难点:按实际作用效果分解力。 四、教学资源 1、教学器材 (1)演示实验器材:一个1kg的砝码,一根细线,物品、刀刃的夹角不同的两把刀(刀刃的夹角差距要大些)、GQY数字化实验室数据采集分析器、GQY多功能实验台、斜面上力分解实验仪、小车、两个力传感器等,一端系有细绳的木块等。 (2)学生分组实验器材:木板、橡皮绳、细绳若干、白纸、图钉、自制定量研究力的分解遵循平行四边形定则的DIS实验器材、力传感器、数据采集器、计算机等。 2、教学课件 力的分解课件(几何画板) 五、教学设计思路 本设计的内容包括分力和合力的概念,力的分解两部分内容。 本设计的基本思路是:以生活中的常见现象和实验为基础,通过探究、分析、建立分力、力的分解概念。从等效的角度根据实验结论,通过分析、比较,各次的分力的作用效果,归纳总结得出力的分解遵循平行四边形定则。通过简单实际问题的分析、讨论,归纳出按实际效果分解一个力的思路。 本设计要突出的重点是:分力、力的分解的概念和利用平行四边形定则进行力的分解。方法是:以生活中的常见现象入手,通过演示实验、学生分组实验,结合学生的亲身感受,从等效性的角度,通过分析、推理,建立分力和力的分解的概念,进而通过DIS学生分组实验得出力的分解同样遵循平行四边形定则。 本设计要突破的难点是:按实际作用效果分解力。方法是:结合简单实例,并通过演示实验,把抽象的问题转化为直观形象的问题,根据具体情况,分析力作用的实际效果,按实际效果的方向分解力,然后从简单问题中归纳出规律,并推广到一般情况。 本设计强调学生的主动参与,重视概念、规律的形成过程以及伴随这一过程的科学方法的教

透析袋使用方法

透析袋前处理方法: 方法一: 1、把透析袋剪成适当长度(10-20cm)的小段。 2、在大体积(500mL)的2%(W/V)的碳酸氢钠和1mmol/L EDTA.2Na (pH=8.0)中将透析袋煮沸10min。 3、用蒸馏水彻底清洗透析袋。 4、放在500mL的1 mmol/L EDTA.2Na (pH=8.0)中将之煮沸10min。 5、冷却后,置于30%或者50%的酒精中,放于4℃冰箱,必须确保透析袋始终浸没在溶液内。从此时起取用透析袋必须戴手套。 6、在使用前要用蒸馏水将透析袋里外加以清洗干净。 说明: 透析液的配置:10g NaHCO3 + 186.6mg EDTA.2Na + 500mL蒸馏水 1 mmol/L EDTA.2Na:即373.2mg/L 方法二: 可用沸水煮5至10分钟,再用蒸馏水洗净,即可使用。 方法三: 可先用50%乙醇煮沸1小时,再依次用50%乙醇、0.01 mol/L碳酸氢钠和1 mmol/L EDTA (pH=8.0)溶液洗涤,最后用蒸馏水冲洗即可使用。 说明: 1.EDTA煮主要是为了除去生产时附着在透析袋上的金属离子。 2.透析袋的截留分子量3000kd。 使用后的透析袋保存方法: 1.用生理盐水浸泡以去掉蛋白,并用蒸馏水清洗干净,然后置于50%乙醇中保存即可; 2.用完以后,要彻底洗干净,透析袋也可以保存在0.1%叠氮钠(可防止微生物生长)里; 0.05%-0.1%叠氮钠,或者1mM EDTA,或者50%甘油中4度保存,公司的人建议前两种保存比较好! 3.使用后的透析袋洗净后可存于4℃蒸馏水或者30%乙醇中,确保透析袋始终浸没在溶液内。若长时间不用,可加少量NaN2,以防长菌。从此时起取用透析袋必须戴手套。洗净凉干的透析袋弯折时易裂口,用时必须仔细检查,不漏时方可重复使用。 透析膜前处理方法: 1. 戴手套把透析膜剪成适当长度,浸在蒸馏水中15 min 泡软。 2. 浸入10 mM sodium bicarbonate 中,并加热至80℃,同时不断搅拌至少30 min。 3. 换到10 mM EDTA.2Na 中浸泡30 min,以新鲜的EDTA 同样方法处理三次。 4. 再用80℃蒸馏水洗30 min,然后换到20% 酒精中,放在4℃冰箱中保存。

力的分解

力的分解导学案 学习目标:1理解分力与力的分解的概念。 2知道力的分解同样遵守平行四边形定则,会用几何知识求分力。 3理解多个力求合力时,常先分解再合成。知道常见的两种分解方法。 重点难点:力的分解方法 学海导航 一、力的分解 1.,叫力的分解。 2.力的分解是的逆运算,同样遵守定则。 若没有限制,对于一条对角线,可以做多少组平行四边形? 也就是说同一个力,可以分解为对大小、方向不同的分力。 二、两种分解方法 1、按效果分解 例:把物体放在倾角为θ的斜面上,物体受到的重力产生两个作用效果,一个是让物体压紧斜面,另一个是让物体沿斜面向下滑,如图所示: 看看下面物体受到的力产生了什么作用效果?可以怎么分解? 2、正交分解 (1)将一个力沿着两个相互垂直的方向进行分解的方法称为力的正交分解法。力的正交分解法是力学问题中处理力的最常用的方法。力的正交分解法的优点:其一,借助数学中的直角坐标系(x,y)对力进行描述;其二,几何图形关系简单,是直角三角形,解直角三角形方法多,容易求解。 (2)正交分解的一般步骤: 1)建立xOy直角坐标系 2)将所有力依次向x轴和y轴上分解为F x1、F x2……,F y1、F y2…… 3)求x轴和y轴上的合力F x、F y 4)列方程计算例:物体m=2kg在倾角为θ=370斜面上匀速下滑,求物体受到的支持力和摩擦力的大小?物体与斜面间的动摩擦因数为多少?(sin370=0.6) 练习:一重为G的物体放在粗糙的水平面上,与水平面动摩擦因数为μ,若对物体施一与水平成角θ的力F,使物体沿水平面运动,则物体所受的滑动摩擦力是多少? 三、几种一定条件情况下力的分解 若已经知道合力的大小和方向,讨论下列几种情况下力的分解(试试能做几个平行四边形?)(1)知道一个分力的大小和方向(2)知道两个分力的方向 (3)知道两个分力的大小 (4)知道一个分力的方向和一个分力的大小 当F2 < Fsinθ时 当F2 = Fsinθ时 当Fsinθ< F2< F时 当F2≥F时

透析袋原理、分子量的选择、使用方法步骤

透析袋原理、分子量的选择、使用方法步骤 透析袋原理 自1861年发明透析方法至今已有一百多年。透析已成为生物化学实验室最简便最常用的分离纯化技术之一。在生物大分子的制备过程中,除盐、除少量有机溶剂、除去生物小分子杂质和浓缩样品等都要用到透析的技术。通常是将半透膜制成袋状,将生物大分子样品溶液置入袋内,将此透析袋浸入水或缓冲液中,样品溶液 中的大分子量的生物大分子被截留在袋内。 分子量的选择 透析是一个简单的扩散过程,溶质中小分子物质从高浓度溶液通过半透性膜扩散到低浓度溶液中,直至渗透 压达到平衡。由于多孔膜的选择性,使得溶质中小分子物质可以通过,而较大物质则被截留,从而分离出不 同大小分子量的物质,依据分子量大小截留,可高效用于分离工艺,改变或控制透析的条件,可在多种透析 应用中得到预期效果,通过截留分子量(MWCO)可使目标分子得到分离。所以透析袋分子量的选择就决定了实验的成败。这篇文章就详细介绍了如何选择合适的透析袋。 透析膜的材质 透析膜可用动物膜和玻璃纸等,但用的最多的还是用纤维素制成的透析膜,主要有再生纤维素(RC)、纤维素酯(CE)、聚偏二氟乙烯(PVDF)。但随着生物技术发展,对透析袋处理样品更多更严格的要求,根据 生产工艺有可以分为标准膜和生物技术级膜。 生物技术纤维素酯(CE)膜 生物学惰性和超纯的生物技术CE膜,用于带电荷分子的分离及大分子纯化。生物技术CE膜对条件及溶剂要求较高。一般而言,CE膜能够抗弱的或稀的酸碱溶液和轻微乙醇,MWCO只有轻微改变。**直接与有机溶剂接触会破坏CE膜。生物技术CE膜能在pH2-9与4-37℃下使用。即用透析装置中也可使用CE膜。 生物技术再生纤维素(RC)膜 生物技术RC膜通过再生过程制得,物理抗性与化学相容性得到改良,具有与生物技术CE膜一样高纯度与均一的MWCO。RC膜能够与高浓度的弱酸碱、低浓度的强酸碱、大多数醇类及一些温和的或低浓度有机溶剂共用,**直接与强极性或有机溶剂接触会破坏RC膜。生物技术RC膜能在pH2-12与4-60℃条件下使用。 生物技术聚偏二氟乙烯(PVDF)膜 疏水、惰性及无电抗性,生物技术PVDF膜是实验室透析的革命性进步,能够耐极端高温(130℃)及溶剂 条件。只有生物技术PVDF膜能够经受与大多数的酸碱(包括硝酸)和大多数的有机溶剂(包括DMF)直 接接触,**PVDF膜还具有独特的高温高压蒸汽灭菌的能力,可热封进行样品分装。

求解共点力平衡问题的常见方法(经典归纳附详细答案)

求解共点力平衡问题的常见方法 共点力平衡问题,涉及力的概念、受力分析、力的合成与分解、列方程运算等多方面数学、物理知识和能力的应用,是高考中的热点。对于刚入学的高一新生来说,这个部分是一大难点。 一、力的合成法 物体在三个共点力的作用下处于平衡状态,则任意两个力的合力一定与第三个力大小相等,方向相反; 1.(2008年·广东卷)如图所示,质量为m 的物体悬挂在轻质支架上,斜梁OB 与竖直方向的夹角为θ(A 、B 点可以自由转动)。设水平横梁OA 和斜梁OB 作用于O 点的弹力分别为F 1和F 2,以下结果正确的是( ) A.F 1=mgsinθ B.F 1= sin mg q C.F 2=mgcosθ D.F 2=cos mg q 二、力的分解法 在实际问题中,一般根据力产生的实际作用效果分解。 2、如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,球被竖直的木板挡住,则球对挡板的压力和球对斜面的压力分别是多少? 3.如图所示,质量为m 的球放在倾角为α的光滑斜面上,试分析挡板AO 与斜面间的倾角β多大时,AO 所受压力最小。 三、正交分解法 解多个共点力作用下物体平衡问题的方法 物体受到三个或三个以上力的作用时,常用正交分解法列平衡方程求解: 0x F =合,0 y F =合. 为方便计算,建立坐标系时以尽可能多的力落在坐标轴上为原则 . θ

4、如图所示,重力为500N 的人通过跨过定滑轮的轻绳牵引重200N 的物体,当绳与水平面成60° 角时,物体静止。不计滑轮与绳的摩擦,求地面对人的支持力和摩擦力。 四、相似三角形法 根据平衡条件并结合力的合成与分解的方法,把三个平衡力转化为三角形的三条边,利用力的三角形与空间的三角形的相似规律求解. 5、 固定在水平面上的光滑半球半径为R ,球心0的正上方C 处固定一个小定滑轮,细线一端拴一小球置于半球面上A 点,另一端绕过定滑轮,如图5所示,现将小球缓慢地从A 点拉向B 点,则此过程中小球对半球的压力大小N F 、细线的拉力大小T F 的变化情况是 ( ) A 、N F 不变、T F 不变 B. N F 不变、T F 变大 C , N F 不变、T F 变小 D. N F 变大、T F 变小 6、两根长度相等的轻绳下端悬挂一质量为m 物体,上端分别固定在天花板M 、N 两点,M 、N 之间距离为S ,如图所示。已知两绳所能承受的最大拉力均为T ,则每根绳长度不得短于____ 。 五、用图解法处理动态平衡问题 对受三力作用而平衡的物体,将力矢量图平移使三力组成一个首尾依次相接的封闭力三角形,进而处理物体平衡问题的方法叫三角形法;力三角形法在处理动态平衡问题时方便、直观,容易判断. 7、如图4甲,细绳AO 、BO 等长且共同悬一物,A 点固定不动,在手持B 点沿圆弧向C 点缓慢移动过程中,绳BO 的张力将 ( ) A 、不断变大 B 、不断变小 C 、先变大再变小 D 、先变小再变大 六.矢量三角形在力的静态平衡问题中的应用 若物体受到三个力(不只三个力时可以先合成三个力)的作用而处于平衡状态,则这三个力一定能构成一个力的矢量三角形。三角形三边的长度对应三个力的大小,夹角确定各力的方向。 8.如图所示,光滑的小球静止在斜面和木版之间,已知球重为G ,斜面的倾角为θ,求下列情况

力的合成和分解的方法归纳

力的合成和分解的方法归纳 一.力的分解的多解性 例1.把一个已知力F 分解,要求其中一个分力F 1跟F 成30度角,而大小未知,另一个分力F 2= 33F ,但方向未知,则F 1的大小可能是( ) A. 33F B. 23F C.3F D. 3 32 F 例2.将一个20N 的力进行分解,其中一个分力的方向与这个力成30度角,则另一个分力的大小不会小 于多少? 例3.如图,一物块受一恒力F 作用,现要使该物块沿直线AB 运动,应该再加上另一个力作,则加上去 的这个力的最小值为多少? 例4.如图,力F 作用于物体的O 点,现要使作用在物体上的合力沿OO 1方向,需再作用一个 力F 1,则F 1的大小可能为( ) A. F 1=Fsin α B. F 1=Ftan α C. F 1=F D. F 1=

相关文档
最新文档