永磁无刷电动机系统发展现状

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永磁无刷电动机系统发展现状

莫会成

(西安微电机研究所,西安710077)

来源:永磁电机会议论文集,编辑:闫晶芬

摘要:永磁无刷电动机系统是以电机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构的电气传动控制系统。随着电机技术、控制理论、数字脉宽调制技术、新材料技术、微电子技术及现代控制技术的进步,伺服系统经历了从步进伺服到直流伺服,进而到永磁无刷电机伺服系统的发展历程,目前已成为电机控制技术的主流方向。

1 系统组成

永磁无刷电动机系统是根据位置、速度和转矩等反馈信息构成的控制系统,由永磁无刷电动机、传感(传感器)和驱动器三部分组成(见图1)。系统有开环运行、转矩控制、速度控制和位置控制4种基本运行方式,见图2~图5。其中图4和图5是用于高精度的控制系统,如数控机床的进给驱动等。

图1 永磁无刷电动机系统方框图图2 开环运行方框图

图3 转矩控制系统方框图图图4 速度控制系统方框图

永磁无刷电动机是通过电子电路换相或电流控制的永磁电动机。永磁无刷电动机有正弦波驱动和方波驱动两种型式:驱动电流为矩形波的通常称为永磁无刷直流电动机,驱动电流为正弦波的通常称为永磁交流伺服电动机,按传感类型可分为有传感器电动机和无传感器电动机。

驱动器指接受控制指令、可实现对电动机的转矩、速度和转子位置控制的电气装置。

驱动器按其控制电路和软件的实现方式可分为模拟量控制、数字模拟混合控制和全数字控制三种;按驱动方式可分为方波驱动和正弦波驱动。

图5 位置控制系统方框图

传感部分的作用是检测永磁无刷电动机的位置、速度和电流。常用的传感器有接近开关、光电编码器、旋转变压器、霍尔元件和电流传感器等。

2 结构、设计和工艺

2.1电机结构

永磁无刷直流电动机的基本结构是将永磁直流电动机的定、转子位置进行互换,通常称为“内翻外”,转子为永磁结构,产生气隙磁通,定子为电枢,有多相对称绕组,直流电动机的电刷和机械换向器被逆变器和转子位置传感器所代替。所以无刷电动机实际上是一种永磁同步电机,如图6所示。

图6 永磁无刷电动机结构图7 外转子永磁无刷直流电动机

另外,永磁无刷直流电动机可以做成外转子型和盘式转子型。其结构见图7和图8。外转子型电机的永磁磁极转子位于定子的外侧,转矩脉动小,容易做成扁平型,惯量较大。盘式转子型电机的气隙平面与轴垂直,盘式转子与永磁磁极相向配置,电机成扁平形,可做成有槽结构,见图8,也可以做成无槽、无铁心结构。这种电动机常用于FDD和CD的直接驱动等。

图8 盘式转子无刷直流电动机

无刷直流电动机多采用钐钴(SmCo)和钕铁硼(NdFeB)等稀土永磁。常见的转子结构有表面式磁极,嵌入式磁极和环形磁极3种,如图9所示。图9a结构是在铁心表面粘贴径向充磁的瓦片形永磁体,有时也采用矩形小条拼装成瓦片形磁极,以降低制造成本。图9b 结构是在铁心中嵌入矩形永磁体。其优点是一个极距下的磁通由相邻两个磁极并联提供,可以获得较大的磁通。但结构需要作隔磁处理或者采用不锈钢轴。对于高转速运行的电机,图9a和图9b的结构需在转子外表面套一个0.3 mm~0.8 mm的磁性紧圈,防止离心力将磁钢甩出。紧圈材料通常采用不导磁的不锈钢,也可以用环氧无纬玻璃丝带缚扎。图9c结构是在铁心外套上一个整体稀土永磁环。该环形磁体径向充磁为多极,适用于小功率的电机。这种结构的转子制造工艺性较好。

2.2 设计工艺技术发展动向

1)设计手段不断完善

随着计算机技术的发展以及电磁场数值计算、优化设计和仿真技术的不断完善,形成了以电磁场数值计算、等效磁路解析求解、场路结合求解等一整套分析研究方法和计算机辅助分析的设计软件。如Ansoft公司、MagneForce公司、Jmag公司均推出各种类型的电机设计软件,以方便快捷地完成从电机的电磁设计计算、损耗计算、优化设计、噪声抑制、特性分析等。针对无刷电机特点,提供多种转子类型、多种绕组型式及主电路的连接方式,以便组合。2006年三季度,加拿大以电磁计算分析著名的Infolytica公司,推出了专门针对永磁无刷电机的Motorsolve设计软件。

图9 无刷直流电动机转子结构形式

这些软件除了对电机进行电磁设计,还可对电机在槽形、绕组、材料等设计变量改变情况下多方案比较分析、电磁场精确计算和电机多目标优化设计,并包括控制电路、控制算法在内的整个设计流程,既可以提供任意时刻电机内电磁场分布数据,又能对电机工作时所关心的各类运行曲线,如转矩、转速、电流、功率、效率等提供结果,同时还能提供齿槽转矩、转矩脉动、转速波动等详细指标参数,并可完成电机的各类正常工况和故障工况的仿真实验,包括起动、堵转、突加突减负载、突然短路等等。

2)分数槽技术应用日益增多

分数槽绕组技术在永磁无刷电动机中的应用已逐渐增多。如在电动自行车电机中采用三相、40极、36槽;Collmorgen公司Goldline系列交流伺服电机采用4极、18槽,6极、24槽等;松下伺服电机采用6极、9槽,8极、12槽等每极每相槽数q=1/2的分数槽绕组结构。

对于多极的无刷电动机采用分数槽绕组,可以较少的定子槽数达到多槽能达到的效果。采用分数槽绕组有以下优点:

a)电机电枢槽数大为减少,有利于槽利用率的提高;

b)较少数目的元件数,可简化嵌线工艺和接线,有助于降低成本;

c)有可能得到线圈节距y=1的设计(集中绕组),便于采用自动绕线机绕制,提高工效;同时各个线圈端部没有重叠,不必设相间绝缘;

d)线圈周长和绕组端部缩短,电动机绕组电阻减小,铜损随之也减低,提高了电动机的性能。采用分数槽绕组的磁动势谐波远大于整数槽绕组,如图10所示。

图10 整数槽绕组与分数槽绕组(q=1/2)时的反电动势比较3)无槽、无铁心结构电机

无铁心无刷电动机的出现是采用新材料、新工艺的结果。电枢采用耐热性能优越的材料制成刚性整体,可以在高温及高速情况下长期稳定运行;由于电枢无铁心,电感小,完全消除了铁心中的磁滞损耗和涡流损耗,消除了由齿槽效应带来的转矩波动,具有优异的控制性能;运行效率高、温升低、转速范围广;电机的电枢中无齿槽且采用全塑封结构,负载动行时,噪声及振动都很低。

无铁心无刷电机可采用轴向磁场结构和径向磁场结构。轴向磁场结构的电机电枢绕组径向按一定规律分布,在专用模具中固化成形,电枢两侧均为盘状转子体,转子磁体为轴向磁化,两侧转子可同时布置永磁体磁极及转子轭,成双励磁转子结构,也可一侧布置永磁体磁极而另一侧布置转子磁轭,成单励磁转子结构。径向磁场结构电机的电枢绕组轴向按一定规律分布成筒状,其电枢内、外圆处均为筒状转子体,转子磁极为径向磁化,内、外圆可同时布置永磁体磁极及转子轭,成双励磁转子结构,也可在其中一个圆周上布置永磁体磁极,而另一圆周上只布置转子磁轭,成单励磁转子结构。径向磁场结构和轴向磁场结构均可根据要求制造成内转子和外转子结构。图11为径向磁场结构的无铁心无刷电动机典型结构。

图11 无铁心无刷电动机结构图图12 分割型定子冲片和铁心

典型盘式无刷电动机定子、转子均为圆盘形,采用轴向气隙磁场,可做成有铁心和无铁心两种结构,定子绕组呈径向分布。

相关文档
最新文档