引物设计原则(最全汇总)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引物设计原则(汇总)

普通引物设计(适用于从载体上扩增模板):

1. 普通引物长度一般在20-30bp之间,常用24-28bp左右以保证基因特异性;

2. 下载基因序列到Vector NTI;

3. 找到所需安装载体序列;

4. 将基因序列的CDS高亮标记;

5. 寻找载体序列中常用酶切位点,一般为EcoRI、BamHI、HindIII、XhoI等等,比对检测基因序列中是否有这些位点,有的话舍弃,最后选择两个酶切位点,最好离得远一点,并且最好buffer用一样的。酶切位点一般是6bp的回文序列;

6. 从基因ATG开始往后选择10-20bp均可(我的习惯是27bp-6bp酶切位点-2bp保护碱基-xbp 补齐序列),但最好保证最后两个是G或者C,以减少错配率;

7. 将上游酶切位点序列补在ATG前方,并根据载体对框情况补足两者之间的空缺,再根据序列的GC含量和TM值在酶切位点前补足保护碱基,以保证GC和AT的含量不能过高。注意,所有的补齐不能用到终止密码子;

8. 检测上游序列的结构情况,理论上不要太多二级结构以及3’端匹配即可;不过重复的序列也不能太多,以免移码;

9. 从下游终止密码子开始向前选择10-20bp均可,但最好保证最后两个是G或者C,以减少错配率;

10. 选择complementary sequence,在N端补齐下游酶切位点,如果tag在C端(即下游),则在第9点中应该从终止密码子前开始选择(即舍弃终止密码子),并且下游引物也要对框,如果tag在N端,则下游引物不需要对框,只要在N端加上下游酶切位点,再根据情况加上2个保护碱基,然后检测二级结构,原则上3’端部匹配即可。不过重复的序列也不能太多,以免移码;

11. 将设计好的上下游引物放在一起检测二级结构,原则上3’端部匹配即可。不过重复的序列也不能太多,以免移码;

12. 最后在NCBI的primer Blast网站上比对引物序列,看是否基因特异性的。

2011年10月18日左洁

1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。

2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。

3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。另外,引物二聚体或发夹结构也可能导致PCR反应失败。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。

4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。

5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。

6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。

7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。

引物序列应该都是写成5-3方向的,

Tm之间的差异最好控制在1度之内,

另外我觉得扩增长度大一些比较好,500bp左右。

要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能形成二级结构,那就可以在这一区域设计引物。

① 引物应用核酸系列保守区内设计并具有特异性。② 产物不能形成二级结构。

③ 引物长度一般在15~30碱基之间。④ G+C含量在40%~60%之间。⑤ 碱基要随机分布。⑥ 引物自身不能有连续4个碱基的互补。⑦ 引物之间不能有连续4个碱基的互补。⑧ 引物5′端可以修饰。⑨ 引物3′端不可修饰。⑩ 引物3′端要避开密码子的第3位。

1.引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互

补碱基同源。

2.避开产物的二级结构区某些引物无效的主要原因是引物重复区DNA二级

结构的影响,选择扩增片段时最好避开二级结构区域。用有关计算机软件可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′- 脱氧GTP取代dGTP对扩增的成功是有帮助的。

3.长度寡核苷酸引物长度为15~30bp,一般为20~27mer。引物的有效长度:

Ln=2(G+C)+(A+T),Ln值不能大于38,因为>38时,最适延伸温度会超过Taq DNA聚合酶的最适温度(74℃),不能保证产物的特异性。

4.G+C含量 G+C含量一般为40%~60%。其Tm值是寡核苷酸的解链温度,即在

一定盐浓度条件下,50%寡核苷酸双链解链的温度,有效启动温度,一般高于Tm值5~10℃。若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。

5.碱基础随机分布引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚

嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在G+C 富集序列区错误引发。

6.引物自身引物自身不应存在互补序列,否则引物自身会折叠成发夹状结构

牙引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。

若用人工判断,引物自身连续互补碱基不能大于3bp。 7.引物之间两引物之间不应不互补性,尤应避免3′端的互补重叠以防引物二聚体的形成。一对引物间不应多于4个连续碱基的同源性或互补性。 8.引物的3′端引物的延伸是从3′端开始的,不能进行任何修饰。3′端也不能有形成任何二级

相关文档
最新文档