人教版八年级数学上册三角形
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
完成下表
△ABC内点的个数
1
2
3
…
1002
构成不重叠的小三角形的个数
3
5
…
考点9
1. 下列正多边中,能铺满地面的是()
A、正方形 B、 正五边形 C、 等边三角形 D、 正六边形
结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180°
(1)构造平角
①可过A点作MN∥BC(如图)
②可过一边上任一点,作另两边的平行线(如图)
(2)构造邻补角,可延长任一边得 邻补角(如图)
构造同旁内角,过任一顶点作射线平行于对边(如图)
结论2:在直角三角形中,两个锐角互余.表示:
人教版八年级数学(上册)
第一章:三角形
(一)、三角形相关概念
1.三角形的概念
由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2.三角形的表示
通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.
如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
2.如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系
3如图4,∠1+∠2+∠3+∠4等于多少度;
考点7
1、已知等腰三角形的一个外角是120°,则它是( )
A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形
2、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )
8、如图,则∠1=______,∠2=______,∠3=______,
9、已知等腰三角形的一个外角为150°,则它的底角为_______.
10、如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.
考点8
1.一个多边形的内角和等于它的外角和,这个多边形是 ( )
A.25° B.30° C.45° D.60°
4. 如图4,已知AB=AC=BD,那么∠1和∠2之间的关系是( )
A. ∠1=2∠2 B. 2∠1+∠2=180° C. ∠1+3∠2=180° D. 3∠1-∠2=180°
5.如图5,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且 = 4 ,则 等于( )
注意:①三角形的三条高是线段
②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.
(二)三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
A、3个 B、4个 C、5个D、5个
4.一个多边形中,它的内角最多可以有个锐角
5.如图是一副三角尺拼成图案,则∠AEB=_________°.
考点4
1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A. 3cm, 4cm, 8cm B. 8cm, 7cm, 15cm
C. 13cm, 12cm, 20cm D. 5cm, 5cm, 11cm
13.如图,在△ABC中,D,E分别是BC,AD的中点, =4 ,求 .
考点3
1.关于三角形的边的叙述正确的是 ( )
A、三边互不相等 B、至少有两边相等 C、任意两边之和一定大于第三边 D、最多有两边相等
2.已知△ABC中,∠A=200,∠B=∠C,那么三角形△ABC是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、正三角形
3.下面说法正确的是个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B= ∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC中,若∠A+∠B=∠C,则此三角形是直角三角形。
A.2 B. 1 C. D.
6.如图7,BD=DE=EF=FC,那么,AE是 _____ 的中线。
7.如图6,BD= ,则BC边上的中线为 ______, =__________。
8.如图1,在△ABC中,∠BAC=600,∠B=450,AD是△ABC的一条角平分线,则∠DAC=0,∠ADB=0
9.如图2,在△ABC中,AE是中线,AD是角平分线,AF是高,则根据图形填空:
2.下列长度的三条线段能组成三角形的是 ( )
A、 3,4,8 B、 5,6,11 C、 1,2,3 D、 5,6,10
3.等腰三角形两边长分别为3,7,则它的周长为( )
A、13 B、17 C、13或17 D、不能确定
4.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是________________.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
(三)三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
三角形内角和性质的推理方法有多种,常见的有以下几种:
(四)三角形的内角
2.下列图形中具有稳定性的有()
A 、正方形 B、长方形 C、梯形D、 直角三角形
3.装饰大世界出售下列形状的地砖: 正方形; 长方形; 正五边形; 正六边形。若只选购其中某一种地砖镶嵌地面,可供选用的地砖有( )
A. B. C. D.
4.下列图形中具有稳定性有( )
A、 2个 B、 3个 C、 4个 D、 5个
8、六边形共有_______条对角线,内角和等于__________,每一个内角等于_______。
9、内角和是1620°的多边形的边数是 ______。
10、如果一个多边形的每一外角都是24°,那么它是______边形。
11、将一个三角形截去一个角后,所形成的一个新的多边形的内角和________。
A 、三角形 B、 四边形 C、 五边形 D、 六边形
2.一个多边形内角和是10800,则这个多边形的边数为 ( )
A、 6 B、 7 C、 8 D、 9
3.一个多边形的内角和是外角和的2倍,它是( )
A、 四边形 B、 五边形 C、 六边形 D、 八边形
4、一个多边形的边数增加一倍,它的内角和增加( )
③三角形的一个外角与与之相邻的内角互补
3.外角个数
过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.
(六)多边形
①多边形的对角线 条对角线
②n边形的内角和为(n-2)×180°
③多边形的外角和为360°
考点1
1.对下面每个三角形,过顶点A画出中线,角平分线和高.
考点2
3.三角形中的三种重要线段
三角形的角平分线、中线、高线是三角形中的三种重要线段.
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
注ຫໍສະໝຸດ Baidu:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.
②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.
D、∠HEC>∠B
5、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ).
A、直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定
6、如图,若∠A=100°,∠B=45°,∠C=38°,则∠DFE等于( )
A. 120° B. 115° C. 110° D. 105°
7、如图,∠1=______.
A. 30° B. 60° C. 90° D. 120°
3、已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数( ).
A. 90° B. 110° C. 100° D. 120°
4、如图,下列说法错误的是( )
A、∠B>∠ACD
B、∠B+∠ACB=180°-∠A
C、∠B+∠ACB<180°
5、如图,一扇窗户打开后用窗钩AB可将其固定,这里所运用的几何原理是( )
A、三角形的稳定性 B、两点确定一条直线
C、两点之间线段最短 D、垂线段最短
6.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的性;
考点6
1.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5,则∠B=0,∠C=0
12、一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为______。
13、一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边。
14.已知一个十边形中九个内角的和的度数是12900,那么这个十边形的另一个内角为度
15、.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.
③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
注意:①三角形有三条中线,且它们相交三角形内部一点.
②画三角形中线时只需连结顶点及对边的中点即可.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.
A. 180° B. 360° C. (n-2)·180° D. n·180
5、若一个多边形的内角和与外角和相加是1800°,则此多边形是( )
A、八边形 B、十边形 C、十二边形 D、十四边形
6、正方形每个内角都是 ______,每个外角都是 _______。
7、多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条。
5.长为11,8,6,4的四根木条,选其中三根组成三角形有种选法,它们分别是
6.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为
7.已知a,b,c是三角形的三边长,化简|a-b+c|+|a-b-c|.
考点5
1.不是利用三角形稳定性的是( )
A、自行车的三角形车架 B、三角形房架 C、照相机的三角架 D、矩形门框的斜拉条
1、下列说法错误的是( ).
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
2、下列四个图形中,线段BE是△ABC的高的图形是( )
3.如图3,在△ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C恰好落在点D处,则∠B等于( )
⑴BE== ;⑵∠BAD== ⑶∠AFB==900;
10.如图在△ABC中,∠ACB=900,CD是边AB上的高。那么图中与∠A相等的角是( )
A、 ∠B B、 ∠ACD C、 ∠BCD D、 ∠BDC
11.在△ABC中,∠A= ∠C= ∠ABC, BD是角平分线,求∠A及∠BDC的度数(
12.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数
(1)观察直线AB与直线DE的位置关系,你能得出什么结论?并说明理由;
(2)试求∠AFE的度数.
16、阅读材料,并填表:
在△ABC中,有一点P1,当P1,A,B,C没有任何三点在同一条直线上时,可构成三个不重叠的小三角形(如图(1)).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?
(五)三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,
这两个角为对顶角,大小相等.
2.性质:
①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B.
△ABC内点的个数
1
2
3
…
1002
构成不重叠的小三角形的个数
3
5
…
考点9
1. 下列正多边中,能铺满地面的是()
A、正方形 B、 正五边形 C、 等边三角形 D、 正六边形
结论1:三角形的内角和为180°.表示: 在△ABC中,∠A+∠B+∠C=180°
(1)构造平角
①可过A点作MN∥BC(如图)
②可过一边上任一点,作另两边的平行线(如图)
(2)构造邻补角,可延长任一边得 邻补角(如图)
构造同旁内角,过任一顶点作射线平行于对边(如图)
结论2:在直角三角形中,两个锐角互余.表示:
人教版八年级数学(上册)
第一章:三角形
(一)、三角形相关概念
1.三角形的概念
由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形
要点:①三条线段;②不在同一直线上;③首尾顺次相接.
2.三角形的表示
通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角.
如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=180°)
注意:①在三角形中,已知两个内角可以求出第三个内角
如:在△ABC中,∠C=180°-(∠A+∠B)
②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.
如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.
2.如图,已知点P在△ABC内任一点,试说明∠A与∠P的大小关系
3如图4,∠1+∠2+∠3+∠4等于多少度;
考点7
1、已知等腰三角形的一个外角是120°,则它是( )
A.等腰直角三角形 B.一般的等腰三角形 C.等边三角形 D.等腰钝角三角形
2、如果三角形的一个外角和与它不相邻的两个内角的和为180°,那么与这个外角相邻的内角的度数为( )
8、如图,则∠1=______,∠2=______,∠3=______,
9、已知等腰三角形的一个外角为150°,则它的底角为_______.
10、如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.
考点8
1.一个多边形的内角和等于它的外角和,这个多边形是 ( )
A.25° B.30° C.45° D.60°
4. 如图4,已知AB=AC=BD,那么∠1和∠2之间的关系是( )
A. ∠1=2∠2 B. 2∠1+∠2=180° C. ∠1+3∠2=180° D. 3∠1-∠2=180°
5.如图5,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且 = 4 ,则 等于( )
注意:①三角形的三条高是线段
②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.
(二)三角形三边关系定理
①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.
②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.
A、3个 B、4个 C、5个D、5个
4.一个多边形中,它的内角最多可以有个锐角
5.如图是一副三角尺拼成图案,则∠AEB=_________°.
考点4
1.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是( )
A. 3cm, 4cm, 8cm B. 8cm, 7cm, 15cm
C. 13cm, 12cm, 20cm D. 5cm, 5cm, 11cm
13.如图,在△ABC中,D,E分别是BC,AD的中点, =4 ,求 .
考点3
1.关于三角形的边的叙述正确的是 ( )
A、三边互不相等 B、至少有两边相等 C、任意两边之和一定大于第三边 D、最多有两边相等
2.已知△ABC中,∠A=200,∠B=∠C,那么三角形△ABC是( )
A、锐角三角形 B、直角三角形 C、钝角三角形 D、正三角形
3.下面说法正确的是个数有( )
①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B= ∠C,那么△ABC是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在 ABC中,若∠A+∠B=∠C,则此三角形是直角三角形。
A.2 B. 1 C. D.
6.如图7,BD=DE=EF=FC,那么,AE是 _____ 的中线。
7.如图6,BD= ,则BC边上的中线为 ______, =__________。
8.如图1,在△ABC中,∠BAC=600,∠B=450,AD是△ABC的一条角平分线,则∠DAC=0,∠ADB=0
9.如图2,在△ABC中,AE是中线,AD是角平分线,AF是高,则根据图形填空:
2.下列长度的三条线段能组成三角形的是 ( )
A、 3,4,8 B、 5,6,11 C、 1,2,3 D、 5,6,10
3.等腰三角形两边长分别为3,7,则它的周长为( )
A、13 B、17 C、13或17 D、不能确定
4.△ABC中,如果AB=8cm,BC=5cm,那么AC的取值范围是________________.
注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可
(三)三角形的稳定性
三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.
三角形内角和性质的推理方法有多种,常见的有以下几种:
(四)三角形的内角
2.下列图形中具有稳定性的有()
A 、正方形 B、长方形 C、梯形D、 直角三角形
3.装饰大世界出售下列形状的地砖: 正方形; 长方形; 正五边形; 正六边形。若只选购其中某一种地砖镶嵌地面,可供选用的地砖有( )
A. B. C. D.
4.下列图形中具有稳定性有( )
A、 2个 B、 3个 C、 4个 D、 5个
8、六边形共有_______条对角线,内角和等于__________,每一个内角等于_______。
9、内角和是1620°的多边形的边数是 ______。
10、如果一个多边形的每一外角都是24°,那么它是______边形。
11、将一个三角形截去一个角后,所形成的一个新的多边形的内角和________。
A 、三角形 B、 四边形 C、 五边形 D、 六边形
2.一个多边形内角和是10800,则这个多边形的边数为 ( )
A、 6 B、 7 C、 8 D、 9
3.一个多边形的内角和是外角和的2倍,它是( )
A、 四边形 B、 五边形 C、 六边形 D、 八边形
4、一个多边形的边数增加一倍,它的内角和增加( )
③三角形的一个外角与与之相邻的内角互补
3.外角个数
过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.
(六)多边形
①多边形的对角线 条对角线
②n边形的内角和为(n-2)×180°
③多边形的外角和为360°
考点1
1.对下面每个三角形,过顶点A画出中线,角平分线和高.
考点2
3.三角形中的三种重要线段
三角形的角平分线、中线、高线是三角形中的三种重要线段.
(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
注ຫໍສະໝຸດ Baidu:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.
②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.
D、∠HEC>∠B
5、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( ).
A、直角三角形 B、锐角三角形 C、钝角三角形 D、无法确定
6、如图,若∠A=100°,∠B=45°,∠C=38°,则∠DFE等于( )
A. 120° B. 115° C. 110° D. 105°
7、如图,∠1=______.
A. 30° B. 60° C. 90° D. 120°
3、已知三角形的三个外角的度数比为2∶3∶4,则它的最大内角的度数( ).
A. 90° B. 110° C. 100° D. 120°
4、如图,下列说法错误的是( )
A、∠B>∠ACD
B、∠B+∠ACB=180°-∠A
C、∠B+∠ACB<180°
5、如图,一扇窗户打开后用窗钩AB可将其固定,这里所运用的几何原理是( )
A、三角形的稳定性 B、两点确定一条直线
C、两点之间线段最短 D、垂线段最短
6.桥梁拉杆,电视塔底座,都是三角形结构,这是利用三角形的性;
考点6
1.已知△ABC的三个内角的度数之比∠A:∠B:∠C=1:3:5,则∠B=0,∠C=0
12、一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为______。
13、一个多边形截去一个角后,所得的新多边形的内角和为2520°,则原多边形有____条边。
14.已知一个十边形中九个内角的和的度数是12900,那么这个十边形的另一个内角为度
15、.如图,CD∥AF,∠CDE=∠BAF,AB⊥BC,∠BCD=124°,∠DEF=80°.
③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.
(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
注意:①三角形有三条中线,且它们相交三角形内部一点.
②画三角形中线时只需连结顶点及对边的中点即可.
(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.
A. 180° B. 360° C. (n-2)·180° D. n·180
5、若一个多边形的内角和与外角和相加是1800°,则此多边形是( )
A、八边形 B、十边形 C、十二边形 D、十四边形
6、正方形每个内角都是 ______,每个外角都是 _______。
7、多边形的每一个内角都等于150°,则从此多边形一个顶点出发引出的对角线有条。
5.长为11,8,6,4的四根木条,选其中三根组成三角形有种选法,它们分别是
6.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为
7.已知a,b,c是三角形的三边长,化简|a-b+c|+|a-b-c|.
考点5
1.不是利用三角形稳定性的是( )
A、自行车的三角形车架 B、三角形房架 C、照相机的三角架 D、矩形门框的斜拉条
1、下列说法错误的是( ).
A.三角形的三条高一定在三角形内部交于一点
B.三角形的三条中线一定在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能相交于外部一点
2、下列四个图形中,线段BE是△ABC的高的图形是( )
3.如图3,在△ABC中,点D在BC上,且AD=BD=CD,AE是BC边上的高,若沿AE所在直线折叠,点C恰好落在点D处,则∠B等于( )
⑴BE== ;⑵∠BAD== ⑶∠AFB==900;
10.如图在△ABC中,∠ACB=900,CD是边AB上的高。那么图中与∠A相等的角是( )
A、 ∠B B、 ∠ACD C、 ∠BCD D、 ∠BDC
11.在△ABC中,∠A= ∠C= ∠ABC, BD是角平分线,求∠A及∠BDC的度数(
12.已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数
(1)观察直线AB与直线DE的位置关系,你能得出什么结论?并说明理由;
(2)试求∠AFE的度数.
16、阅读材料,并填表:
在△ABC中,有一点P1,当P1,A,B,C没有任何三点在同一条直线上时,可构成三个不重叠的小三角形(如图(1)).当△ABC内的点的个数增加时,若其他条件不变,三角形内互不重叠的小三角形的个数情况怎样?
(五)三角形的外角
1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角.
如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,
这两个角为对顶角,大小相等.
2.性质:
①三角形的一个外角等于与它不相邻的两个内角的和.
②三角形的一个外角大于与它不相邻的任何一个内角.
如图中,∠ACD=∠A+∠B , ∠ACD>∠A , ∠ACD>∠B.