遥感影像分类envi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感课程教学实验之二:
遥感影像分类
实验二遥感影像的分类遥感影像的监督分类
•实验目的
理解计算机图像分类的基本原理以及监督分类的过程,学会利用遥感图像处理软ENVI
件对遥感图像进行分类的方法。
•实验容
1、遥感图像分类原理。
2、遥感图像监督分类。
3、最大似然法分类
•实验条件
电脑、ENVI4.5软件。市TM遥感影像。
•实验步骤
1、启动ENVI软件,从文件菜单打开多波段影像文件,从可用波段列表中装载彩色或假色
影像,显示遥感影像。
2、从主图像窗口的工具Tools →Region of Interest →ROI Tools;
3、在自动打开的ROI Tools窗口中,设定ROI_Type 为“Polygon”(多边形),选定样本采
集的窗口类型,用Zoom(缩放窗口)进行采集。。
4、在选定的窗口如Zoom用鼠标左键画出样本区域,在结束处击鼠标右键二次,样本区域
被红色充填,同时ROI Tools窗口中显示采集样本的信息。采集新的样本点击“New Region”,重新上述步骤进行多个地物样本采集。。
5、从ENVI主菜单中,选 Classification > Supervised > Maximum Likelihood;或在端元
像元采集对话框 Endmember Collection中选择 Algorithm >MaximumLikelihood 进行最大似然法分类。
6、在出现Classification Input File 对话框中,选择输入影像文件,出现 Maximum
Likelihood Parameters 对话框。
7、输入常规的分类参数。
设定一个基于似然度的阈值(Set Prpbability Threshold):如不使用阈值,点击“None”
按钮。要对所有的类别使用同一个阈值,点击“Single Value”按钮,在“Probability Threshold”文本框中,输入一个0 到1 之间的值。似然度小于该值的像元不被分入该类。
要为每一类别设置不同的阈值:
●在类别列表中,点击想要设置不同阈值的类别。
●点击“Multiple Values”来选择它。
●点击“Assign Multiple Values”按钮。
●在出现的对话框中,点击一个类别选中它,然后在对话框底部的文本框中输入阈值。为每
个类别重复该步骤。
最后给定输出结果的保存方式:文件或存,当影像较大时建设保存到文件中,以免因存不够而出错运算错误。
点击“OK”计算机开始自动分类运算。
8、在可用波段列表中显示分类图像。
•实验总结
遥感图像分类包括监督分类(Supervised)与非监督分类两大类,它是遥感影像的计算机解译的重要容。Supervised 分类根据训练样本类别(training classes)对图像分类,监督分类技术包括:平行六面体、最小距离、马氏距离、最大似然、波谱角(SAM)以及二进制编码。Unsupervised 分类不需要何训练样本,用统计方法对数据集中的像元进行聚类,常用非监督分类技术包括Isodata 和K-Means。实验介绍最大似然法分类(Maximum
Likelihood)
遥感影像分类是影像分析的一个重要容,它是利用计算机通过对影像中不同地物的空间信息和光谱信息进行分析,选择特征,并将特征空间划分为互不重叠的子空间,然后将影像中的各个像元划归到子空间去。而遥感影像的监督分类的主要方法是最大似然判别法,也称为贝叶斯分类,是基于图像统计的监督分类法,也是典型的和应用最广的监督分类方法。
它建立在贝叶斯准则的基础上,偏重于集群分布的统计特性。
监督分类原理:是假定训练样本数据在光谱空间的分布是服从高斯正态分布规律的,做出样本的概率密度等值线,确定分类,然后通过计算标本(像元)属于各组(类)的概率,将标本归属于概率最大的一组。是在已知类别的训练场地上提取各类别训练样本,通过选择特征变量,确定判别函数或判别式把影像中的各个像点划归到各个给定类的分类。
遥感影像的非监督分类
•实验目的
理解遥感图像非监督分类的原理与过程,学会利用遥感图像处理软ENVI件对遥感图像进行非监督分类的方法
•实验容
1、遥感图像非监督分类。
2、K-mean 与Isodata分类方法
•实验条件
电脑、ENVI4.5软件。市TM遥感影像。
•实验步骤
----启动ENVI软件,从文件菜单打开多波段影像文件,从可用波段列表中装载彩色或假色影像,显示遥感影像。
•
(1)K-Means 分类
1.打开遥感影像,进行标准文件选择,根据需要,选取输入文件的任意子集和掩模。
2.选择Classification --> Unsupervised --> K-Means。
3.在出现的K-Means Parameters 对话框中设置参数。该对话框中的可选项包括:设定所分类别数(Number Class);像元变化阈值( Change Threshold )
(0~100%);用于分类的最多迭代次数( Maximum Iteretion )
4.要选择输出到磁盘文件或存,选择“File”或“Memory”,点击“OK”,开始进行K-Means 分类。
分类原理:K-Means 非监督分类计算数据空间上均匀分布的初始类别均值,然后用最短距离技术对像元进行叠代,把它们聚集到最近的类中。每次迭代重新计算了类别均值,且用这一新的均值对像元进行再分类。除非限定了标准差和距离的阈值(这时,如果一些像元不满足选择的标准,他们就不参与分类),所有像元都被归并到与其最临近的类别中。这一过程持续到每一类的变化像元数少于所选的像元变化阈值或已经到了迭代的最多次数。
(2)Isodata 分类
●打开一幅遥感影像。
●选择Classification --> Unsupervised-- > Isodata。