EVIEWS格兰杰检验解读

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Eviews做单位根检验和格兰杰因果分析
一,首先我根据ADF检验结果,来说明这两组数据对数情况下是否是同阶单整的(同阶单整即说明二者是协整的,这是一种协整检验的方法),我对你的两组数据分别作了单位根检验,结果如下:
1.LNFDI水平下的ADF结果:
Null Hypothesis: LNFDI has a unit root
Exogenous: Constant
Lag Length: 2 (Automatic based on AIC, MAXLAG=3 Augmented Dickey-Fuller test statistic
t-Statistic Prob.*
-1.45226403166189 0.526994561264069
Test critical values:
1% level -4.00442492401717
5% level -3.09889640532337
10% level -2.69043949557234
*MacKinnon (1996 one-sided p-values.
Warning: Probabilities and critical values calculated for 20
observations and may not be accurate for a sample size of 14
从上面的t-Statistic对应的值可以看到, -1.45226403166189大于下面所有的临界值,因此LNFDI在水平情况下是非平稳的。

然后我对该数据作了二阶,再进行ADF检验结果如下:
t-Statistic Prob.*
- 2.8606168858628 0.0770552989049772
Test critical values:
1% level -4.05790968439663
5% level -3.11990956512408
10% level -2.70110325490427
看到t-Statistic的值小于10% level下的-2.70110325490427,因此可以认为它
在二阶时,有90%的可能性,是平稳的。

2.LNEX的结果:
它的水平阶情况与LNFDI类似,T统计值都是大于临界值的。

因此水平下非平稳,
但是二阶的时候,它的结果如下:
t-Statistic Prob.*
-4.92297051527175 0.00340857899403409
Test critical values:
1% level -4.20005563101359
5% level -3.17535190654929
10% level -2.72898502029817
即,T统计值-4.92297051527175小于1% level的值,因此认为,它在二阶的时候,是有99%的可能是平稳的。

这样就可以认为两者LNFDI和LNEX是单阶同整
的。

即通过了协整检验。

二,GRANGER检验(因果关系检验)
这个就是为了看这两组数据是否存在因果关系。

我做了他们的二阶因果关系检验(因为他们在二阶时都平稳),结果如下:Null Hypothesis: Obs F-Statistic Probability
LNEX does not Granger Cause LNFDI 15
7.47260684251629 0.0103529438201321
LNFDI does not Granger Cause LNEX
71.0713505999399 0.0103529438201321
看到,Probability下面对应的值,0.0103529438201321
和0.0103529438201321都是小于0.05的,因此我们可以认为这两组数据之间相互存在着因果关系。

Granger因果关系检验法的基本思想很简单:如果X的变化引起Y的变化,则X的变化应当发生在Y的变化之前。

特别地,说“X是引起Y变化的原因”,则必须满足两个条件:第一,X应该有助于预测Y,即Y关于Y的过去值的回归中,添加X的过去值作为独立变量应当显著地增加回归的解释能力。

第二,Y不应当有助于预测X,其原因是如果X有助于预测Y,Y也有助于预测X,则很可能存在一个或几个其他的变量,它们既是引起X变化的原因,也是引起Y 变化的原因。

要检验这两个条件是否成立,我们需要检验一个变量对预测另一个变量没有帮助的原假设,例如,要想检验“X不是引起Y变化的原因”的原假设,我们把Y对Y的滞后值以及X的滞后进行回归(称为无限制条件模型UR),再将Y只对Y的滞后值(有限制条件模型R)进行回归。

然后用联合检验F检验来确定X的滞后值是否对第一个回归的解释能力有显著的贡献。

如果贡献显著,我们就能拒绝原假设,认为数据与X是Y的原因相一致。

“Y不是引起X变化的原因”的假设也用同样的方法检验。

要检验X是否为引起Y变化的原因的过程如下:首先,检验“X不是引起Y变化的原因”的原假设,对下列两个回归模型进行估计:
无限制条件回归UR: 公式XXX
有限制条件回归UR: 公式XXX
然后用各回归的残差平方和计算F统计量,检验系数是否同时显著地不为0。

如果是这样,我们就拒绝“X不是引起Y变化的原因”的原假设。

F联合检验XXX
然后,检验“Y不是引起X变化的原因”的原假设,做同样的回归估计,但是交换X与Y,检验Y的滞后项是中显著地不为0。

要得到X是引起Y变化的原因的结论,必须拒绝原假设“X不是引起Y变化的原因”,同时接受原假设“Y不是引起X变化的原因”。

单位根是否应该包括常数项和趋势项可以通过观察序列图确定,通过Quick-graph-line操作观察你的数据,若数据随时间变化有明显的上升或下降趋势,则有趋势项,若围绕0值上下波动,则没有趋势项;其二,关于是否包括常数项有两种观点,一种是其截距为非零值,则取常数项,另一种是序列均值不为零则取常数项。

第二,滞后阶数的问题。

最佳滞后阶数主要根据AIC SC准则判定,当你选择好检验方式,确定好常数项、趋势项选择后,在lagged differences栏里可以从0开始尝试,最大可以尝试到7。

你一个个打开去观察,看哪个滞后阶数使得结论最下方一栏中的AIC 和SC值最小,那么该滞后阶数则为最佳滞后阶数。

单位根检验、协整检验与格兰杰检验的关系
实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平
稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。

如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。

一、讨论一
1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。

2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。

3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验
A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性
B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)
4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别
二、讨论二
1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。

2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。

所以,非平稳序列的因果关系检验就是协整检验。

3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。

2)协整检验中要用到每个序列的单整阶数。

3)判断时间学列的数据生成过程。

三、讨论三
其实很多人存在误解。

有如下几点,需要澄清:
第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。

第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。

第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后,进行协整,看变量是否存在长期均衡。

第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。

相关文档
最新文档