引力波探测现状
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1970s: 激光干涉引力波探测可行性分析,1972MIT发表了公里级探测器 构想,并评估了噪声主要来源。 1979:国家基金会为加州理工学院和麻省理工学院的激光干涉仪的研究和发展建立基金 1983:麻省理工学院和加州理工学院向国家基金会提交了详细的工程研究 1990:国家基金会同意LIGO建设 1992:LIGO选址在华盛顿州汉福德和路易斯安那州的利文斯顿,加州理工学院与国家基 1994:两个观测站开建 1997:LIGO科学合作组织组成 1999:举行就职典礼 2001:第一次同步操作两个LIGO和GEO600干涉仪 2002-2003:搜集LIGO、GEO600、TAMA300干涉仪的数据 2004:国家基金会同意增强型LIGO设计 2005:LIGO设计成功,开始两年的数据记录 金会签署协议
Albert-Einstein-Institut:马克斯普朗克引力物理研究所 / 阿尔伯特爱因斯坦研究 所(德国)(56人) California Institute of Technology:加州理工大学 (79人) Cardiff University:卡迪夫大学(英国)(25人) Hanford Observatory:汉福德天文台 (38人) Livingston Observatory:利文斯顿天文台(37人) Massachusetts Institute of Technology:麻省理工学院(37人) University of BirminghamBaidu Nhomakorabea伯明翰大学(英国)(29人) University of Glasgow:格拉斯哥大学(英国)(61人) University of Western Australia:西澳大学(澳大利亚)(21人)
2007:与Virgo开展合作
2008:增强型LIGO器件开始建造 2010:总结第一版LIGO,开始增强型LIGO安装 2011-2014:增强型LIGO安装测试 2014:增强型LIGO安装完成
2015:9月增强型LIGO开始首次观测
2016:2月首次观测结束
重要成就:
在2015年9月14日北京时间17点50分45秒, LIGO位于美国利文斯顿与汉福德的两台探 测器同时观测到了GW150914信号。这个信 号首先由低延迟搜索方法来识别(这种搜索 方法并不关心精确的引力波波形,它通过寻 找可能为引力波的某些特征迹象来较快速地 寻找引力波),在仅仅三分钟之后,低延迟 搜索方法就将此作为引力波的候选事件汇报 了出来。之后LIGO干涉仪获得的引力波应 变数据又被LSC的数据分析专家们拿来和一 个海量的由理论计算产生的波形库中的波形 相对照,这个过程是为了找到和原数据最匹 配的波形,也就是通常所说的匹配滤波器法。 图7展示了进一步数据分析后的主要结果, 证实了GW150914是两个黑洞并合的事件
国际引力波研究现状
• LIGO天文台是由美国国家科学基金资助,由加州理工和麻省理工构思、 建造并运行的。 • LIGO的研究工作由LIGO科学合作组织(LSC)完成,这一合作组织包含 来自美国和其他14各国家的1000多名科学家。LSC中的90多所大学 和研究所参与研发了探测器所使用的技术,并分析其产生的数据;在组 织中,有约250名做出重要贡献的成员是学生。
也就是说,LIGO团队的后续计划还是主要在扩展全球的观测网,提高观测精度,以此 来观测更多的样本,配合其他波段的观测设备,获取更多信息
In Fall 2016, they will start another observing run, having made some improvements in the performance of the detector, which is already the best in the world by far but is only at about one-third of its design sensitivity.
•
Virgo位于意大利的比萨,主要参与单位是法国科学研究中心和意大利核能物 理研究所,该实验装置有法国和意大利共同出资建设。目前Virgo正在更新换 代更新,期望达到LIGO实验装置的灵敏度。预计2016年可以全面运营。
法国
意大利
荷兰
匈牙利
波兰
网址:http://public.virgo-gw.eu/the-virgo-collaboration/
EPPT software
幻灯片辅助设计软件
catalogue
目录
一是
国际引力波研究现状
地面引力波探测装置:LIGO、Virgo、GEO600、TAM300、KAGRA 空间引力波探测装置:LISA (eLISA)、EDCIGO
二是
国内引力波研究现状
太极计划
天琴计划
阿里计划
国际引力波研究现状
•
Current operating facilities in the global network include the twin LIGO detectors— in Hanford, Washington, and Livingston, Louisiana—and GEO600 in Germany. The Virgo detector in Italy and the Kamioka Gravitational Wave Detector (KAGRA) in Japan are undergoing upgrades and are expected to begin operations in 2016 and 2018, respectively. A sixth observatory is being planned in India. Having more gravitational-wave observatories around the globe helps scientists pin down the locations and sources of gravitational waves coming from space
• Virgo的一些技术
Some of the key improvements of Advanced Virgo are: • The suspension system, which is fundamental to reduce seismic noise. In Advanced Virgo the mirrors at the end of the tubes will remain quiet even during a moderate earthquake! • The new mirrors of Advanced Virgo have the best quality in the world. The defects on their surface are kept below one nanometer (a millionth of a millimeter). Also, they reflectivity is exactly as requested by the initial design. The mirrors at the end of the tubes have a reflectivity of 99.999%, and leak toward the external benches only 4 part per million of power, in order to control the interferometer performance. The input and recycling mirrors (LINK) have reflectivity much less than 100%, according to their function. • Laser beam will propagate in an ultra-high-vacuum improved by a factor ten with respect to Virgo: the residual pressure in the tubes will be a millionth an atmosphere. The tubes of Advanced Virgo (7000 m3) will be the largest Ultra-High-Vacuum system in Europe and the third in the world, just after the two of LIGO. • The electro-optical systems are much improved and make the high-power laser beams perfectly stable and controllable in wavelength, power, and shape of the beam.
未来方向:
目前并没有看到LIGO详细的发展规划,但其团队发表在《Physical Review 上的文章,在后面的OUTLOOK部分,它们提到了后续的计划:
•
Letters》
Efforts are under way to enhance significantly the global gravitational_wave detector network [117]. These include further commissioning of the Advanced LIGO detectors to reach design sensitivity, which will allow detection of bin aries like GW150914 with 3 times higher SNR. Additionally, Advanced Virgo, KAGRA, and a possible third LIGO d etector in India [118] will extend the network and significantly improve the position reconstruction and parameter e stimation of sources.
•
Virgo 2016-2020年计划
The first version of Virgo, could detect gravitational wave signals from the coalescence of a binary neutron star up to a distance of 30 million light-years。 However, the sensitivity of Advanced Virgo will allow us to observe gravitational wave sources ten times further away and explore a volume 1000 times larger than before. In such a large volume, the detection of a gravitational wave event will be way more probable. In fact, one could expect to detect at least one gravitational wave signal per month or even per week.
hungary
• GEO600位于德国的汉诺 威,由德国的普朗克研究 所和英国格拉斯哥大学支 持修建。
•
GEO600 is a 0.6 km (600 m) interferometer located near Hannover, Germany. It is funded by a collaboration of both the German and British governments. This working gravitational wave detector also serves as a test site to develop advanced interferometer and optical suspension systems for use in future improved detectors. An agreement between the GEO collaboration and the LIGO Scientific Collaboration ensures the joint analysis of data, and makes all members of the GEO collaboration also members of the LIGO Scientific Collaboration (LSC).