水力发电原理及水电站概况(DOCX 45页)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水力发电原理及水电站概况(DOCX 45页)
水力发电原理及水电站概况
本课程主要内容为介绍水力发电的基本原理,以及概述性地介绍水电站各组成系统的设备的类型、作用。主要是让读者从总体上了解水电站是如何实现水能转化为电能?实现这个过程需要哪些设备的支撑?这些设备的具体分工是如何的?由于本课程为总体性概述,因此对于具体设备的工作原理和内部结构则不作具体性的阐述,若读者对这些问题感兴趣,可以参考其他水力专业性书籍。
一. 水力发电基本原理及水电站在电力系统中的工作方式
1.水力发电基本原理
水力发电过程其实就是一个能量转换的过程。通过在天然的河流上,修建水工建筑物,集中水头,然后通过引水道将高位的水引导到低位置的水轮机,使水能转变为旋转机械能,带动与水轮机同轴的发电机发电,从而实现从水能
到电能的转换。发电机发
出的电再通过输电线路送
往用户,形成整个水力发
电到用电的过程。
如图1-1所示,高处
水库中的水体具有较大的
势能,当水体经由压力管
道流进安装在水电站厂房
内的水轮机而排至水电站
的下游时,水流带动水轮机的转轮旋转,使得水动能转变为旋转的机械能,水轮机带动同轴的发电机转子切割磁力线,在发电机的定子绕组上产生感应电动势,当定子绕组与外电路接通时,发电机就向外供电了。如此,水轮机的选择机械能就通过发电机转变
为电能。
2. 水电站的出力和发电量的计算
水电站在某时刻输出的功率,称为水电站在该时刻的出力。水电站的理论出力公式如下:
)(81.9kW QH gQH t gVH P g g g t ===ρρ 上式中的Q 为水轮机的引用流量,H g 为水电站上、下游的高程差,称为水电站的
毛水头。
水电站的实际出力公式如下:
)(81.9)(81.9kW KQH QH h H Q P g ==∆-=ηη
上式中H 称为水轮机的工作水头,△h 为水头损失;η为水轮发电机组的总效率;K=水电站的出力系数,对于大中型水电站,K 值可取为8.0~8.5,对于小型水电站,K 值一般取为6.5~8.0。
3. 水电站的运行特点
目前,在我国的电力系统中,主要是火电厂与水电站以及少数的核电厂、风力发电厂、地热能发电厂联合工作。为了使得各
类电厂合理分担电力系统的负荷,各种类型的电厂
在电力系统中承担着不尽相同的作用。以下图2-1
为电力系统日负荷曲线图:
一般来说,由于火电和核电机组在机组性
能上的特点,它们一般在电力系统中主要承担基荷
和腰荷的负荷,而结合水电机组的特点以及不同的
季节,水电机组在承担电力负荷上选择性更为灵
活。下面我们先了解一下水电站的运行特点:
水电站的工作情况随河川径流的多变而变化。
水电站的出力和发电量受到天然径流来水
年调节水电站以及多年调节水电站。水库的调节能力不同,导致水电站在系统中的工作方式也不一样,但总体原则是尽量减少水库不必要的弃水,若水库库容不具备调节能力,应使水电站运行在基荷位置,充分利用水资源;若水库库容尚具备调节空间,应使水电站运行在峰荷或腰荷位置,以充分发挥水电机组调节能力强、运行灵活的特点。
二. 水电站的基本类型
1.河床式水电站
一般修建在河流中下游河道纵坡平缓的河段上,为了避免大量淹没,坝建得较低,故水头较小。河床式水电站的引用流量一般较大,属于低水头大流量型水电站。其特点是:厂房与坝一起建在河床上,厂房本身承受上游水压力,并成为挡水建筑物的一部分,一般不设专门的引水管道,水流直接从厂房上游进水口进入水轮机。
2.坝后式水电站
坝后式水电站一般修建在河流中上游的山区峡谷地段,受水库淹没限制相对较小,所以坝可建得较高,水头也较大。由于水头较高,厂房不能承受上游过大水压力而建在坝后(坝下游)。其特点是:水电站厂房布置在坝后,厂坝之间常用缝分开,上游水压力全部由坝承担。
3.坝内式水电站
坝内式水电站是指将厂房布置在拦河坝体内部,采用如此布置主要是由于河谷狭窄不足以布置坝后式厂房,而坝高足够允许在坝内留出一定大小的空腔布置厂房。由于坝内式水电站的厂房布置在溢流坝内,坝体内部的空腔削弱了坝体强度,并使得坝体应力复杂化。由于厂房尺寸受到坝体尺寸的限制,因此此类水电站的机电设备选择在尺寸上也受到相应的限制。另外坝内式水电站要特别注意防渗、防潮、通风、照明等问题。
4.引水式水电站
发电用水来自较长的引水道,厂房远离挡水和进水建筑物,厂房上游不承受水压力,厂房布置在引水系统末端的的河岸上。由于厂房布置在地面的河岸上,因此称为引水河岸式水电站。当由于河谷狭窄,岸坡陡峻,或者其它原因,布置地面厂房有困难时,将厂房建在地下的山体内,则此类可称为引水地下式厂房。
5.抽水蓄能电站
抽水蓄能电站可认为是一种
特殊类型的水电站。水电机组具
备启停迅速、运行灵活,适宜担
任调峰、调频和事故备用负荷等
特点,而抽水蓄能机组可将水电机组上述特点发挥到极致。抽水蓄能电站不是为了开发水能资源向系统提供电能,而是以水体为贮能介质,对电力系统起到调节作用。抽水蓄能电站包括抽水蓄能和放水发电两个过程,它有上下两个水库,一般用压力管道相连,蓄能电站厂房建在离下水库不远的地下山体内。在系统负荷低谷时,利用系统多余的电能带动泵站机组(电动机+水泵)将下库的水抽到上库,以水的势能形式储存起来;当系统负荷高峰时,将上库的水放下来推动水轮发电机组(水轮机+发电机)发电,以补充系统中电能的不足。由于抽水蓄能电站较之常规水电站可运行的工况更多,因此其在对电力系统的调节功能上更为灵活。
三. 水电站建筑物简介
为了控制水流,实现水力发电而修建的一系列水工建筑物,称为水电站建筑物。水电站枢纽一般由以下建筑物组成。
1.挡水建筑物
用以拦截河流,集中落差,形成水库的拦河坝、闸或河床式水电站的厂房等水工建筑物,如混凝土重力坝、拱坝、土石坝、堆石坝及拦河闸等。
2.泄水建筑物
用以宣泄洪水,供下游用水,放空水库的建筑物,如开敞式河岸溢洪道、溢流坝、溢洪洞及放水底孔等。
3.进水建筑物
用以从河道或水库按发电要求引进发电流量的引水道首部建筑物,如有压、无压进水口等。
4.引水建筑物
用以集中水头,输送流量到水轮发电机组或将发电后的水排往下游河道的建筑物,如渠道、隧洞、压力管道、尾水渠等。
5.平水建筑物
用以平稳由于水电站负荷变化在引水或尾水系统中引起的流量及压力的变化,保证水电站调节稳定的建筑物,如有压引水式水电站的调压塔或调压井,无压引水式水电站渠道末端的压力前池。
6.厂区枢纽建筑物
水电站厂区枢纽建筑物主要是指水电站的主厂房、副厂房、变压器场、高