光纤通信系统光源综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤通信系统光源综述

摘要:光源是光纤传输系统中的重要器件。它的作用是将电数字脉冲信号转换为光数字脉冲信号并将此信号送入光纤线路进行传送。目前,光纤通信系统中普遍采用的两大类光源是激光器(LD)和发光管(LED)。在这类光源具备尺寸小,耦合效率高,响应速度快,波长和尺寸与光纤适配,并且可在高速条件下直接调制等有点。在高速率、远距离传输系统中,均采用光谱宽度很窄的分布反馈式激光器(DFB)和量子阱激光器(MQW)。在采用多模光纤的数据网络中,现在使用了新型的垂直腔面发射激光器(VCSEL)。

关键词:光纤通信、光源、LD、LED

光纤通信系统光源综述

1.光纤通信系统光源的特点

1.1光纤通信对光源性能的基本要求

(1)发光波长与光纤的低衰减窗口相符。石英光纤的衰减—波长特性上有三个低衰耗的“窗口”,即850nm附近、1300nm附近和1550nm附近。因此,光源的发光波长应与这三个低衰减窗口相符。AlGaAs/GaAs激光二极管和发光二极管可以工作在850nm左右,InGaAsP/InP激光二极管和发光二极管可以覆盖1300nm和1550nm两个窗口。

(2)足够的光输出功率。在室温下能长时间连续工作的光源,必须按光通信系统设计的要求,能提供足够的光输出功率。以单模光源为例,目前激光而激光能提供500uW到2mW的输出光功率,发光二极管可输出10uW左右的输出光功率。为了适应中等距离(例如10-25km)传输要求,有的厂家研制了输出光功率为100-300uW左右的小功率激光器。

(3)可靠性高、寿命长。光纤通信系统一旦割接进网,就必须连续工作,不允许中断,因此要求光源必须可靠性高、寿命长,初期激光二极管的寿命只有几分钟,是无法实用的。现在的激光二极管寿命已达百万小时以上,这对多中继的长途系统来说是非常必要的。例如北京到武汉约1000km,若平均50km设一个中继站,单系统运行,则全程不少于40只激光二极管,若每只二极管的平均寿命为100万小时,则从概率统计的角度,每2.5万小时(相当于2.8年)就可能出现一次故障。

(4)温度稳定性好。光源的工作波长和输出光功率,都与温度有关,温度变化会使光通信系统工作不稳定甚至中断,因此希望光源有较好的温度特性。目前较好的激光二极管已经不再需要用致冷器和ATC电路来保持工作温度恒定,只需有较好的散热器即可稳定工作。

(5)光谱宽度窄。由于光纤有色散特性,使较高速率信号的传输距离受到一定限制。若光源谱线窄,则在同样条件下的无中继传输距离就长。例如,单模155Mb/s系统要求无再生传输全程总色散为300ps/nm,当采用普通单模光纤工作在1550nm窗口时,是一个色散限制系统,这时光纤色散约为18-20ps (km·nm)。如果光源谱宽为1nm,只传输17km左右;若光源谱宽为0.2时,传输距离可大80多km。目前较好的激光二极管谱宽已可做到小于0.1nm。

(6)调制特性好。光源调制特性要好,即有较高的调制效率和较高的调制频率,以满足大容量高速率光纤通信系统的需要。

(7)与光纤的耦合效率高。光源发出的光最终要耦合进光纤才能进行传输,因此希望光源与光纤有较好的耦合效率,使入纤功率大,中继间距加大。

目前一般激光二极管的耦合效率为20%—30%,较高水平的耦合效率可超过50%。

(8)尺寸小、重量轻。通信用光源必须尺寸小、重量轻,便于安装使用,利于减小设备的重量与体积。

1.2一般光源的类型与应用特点

目前光纤通信使用的光源均为半导体激光器(LD)和发光二极管(LED)。半导体光源最突出的优点是其工作波长可以对准光纤的低损耗、低色散窗口,此外它们还具有体积小、功耗低、易于实现内调制等特点,因而特别适用于光纤通信。半导体光源也存在非常突出的缺点,包括输出功率小、热稳定性差、远场发散角大。所谓远场发射角大,是指半导体光源发出的激光功率不够集中,因而有相当一部分光功率不能耦合进光纤,这一部分丢失的光功率就是“入纤损耗”的主要机理。半导体光源的输出功率小和入纤损耗大,对于光通信应用的主要影响是限制了通信的无再生距离。半导体光源的热稳定性差,因而对端机的环境温度有严格要求。

目前国内使用的LD有:双异质结(DH)激光器、掩埋条形(HL)激光器、分布反馈(DFB)激光器和多量子阱(MQW)激光器。输出功率大、阈值电流低、热稳定性好的量子阱(QW)激光器已完全达到商用水平。发光二极管亦分为边发光、面发光和超辐射三种结构。GaAs-GaAlAs系列用于中心波长为850nm的短波长光源,InP-InGaAsP系列则为1310nm、1550nm的长波长光源材料。光源的工作波长只取决于其材料的组成,与结构无关。同一波长的LD和LED采用相同组分的有源层,它们的区别在于结构和工作原理不同。表1-1列出了半导体光源性能指标的大致量级。从表中可以看出LD的输出功率大,入纤耦合效率高,但稳定性较差,而LED的输出功率小,耦合损耗也较大,但稳定性好,一般长途干线使用LD作为光源,短距离的本地网发送机选用LED。

表1-1

2.半导体光源的工作原理

2.1 发光二极管的工作原理

半导体发光二极管(LED)基本应用GaAlAs和InGaAsP材料,可以覆盖整个光纤通信系统使用波长范围,典型值为0.85um、1.31um及1.55um。在PN结构上,使用最多的是双异质结构(DH)。

2.1.1 发光二极管的类型结构

按照器件输出光的方式,可以将发光二极管分为三种类型结构:表面发光二极管、边发光二极管及超辐射发光二极管。

三种发光二极管的结构分别如图2-1、图2-2所示。图中,P表示较大禁带宽度(带隙)的空穴型半导体材料,其中的导电机理主要决定于空穴;p表示较小禁带宽度的空穴型半导体材料,其中的导电机理也主要决定于空穴;N 表示较大禁带宽度的电子型半导体材料,其中的导电机理主要决定于电子。这里的双异质结构是指禁带宽度较大的P型和N型限制层与禁带宽度较小的p型有源层之间使用了不同的物理材料。

尾纤

P型限制层P型限制层

尾纤

P型有源层P型有源层

N型限制层N型限制层

图2-1 表面发光二极管的结构图2-2 边发光二极管和超辐射发光二极管的结构

三种发光二极管的输出光方式是不同的:表面发光二极管输出的光束方向垂直于有源层;边发光二极管和超辐射发光二极管是沿着有源层发光的。

2.1.2 发光二极管的工作原理

由于在结构上发光二极管没有谐振腔,因此它不存在阈值问题。当给LED 外加合适的正向电压时,Pp结之间的势垒(相对于空穴)和Np结之间的势垒(相对于电子)降低,大量的空穴和电子分别从P区扩散到p区和从N区扩散到p区(由于双异质结构,p区中外来的电子和空穴不会分别扩散到P区和N区),在有源区形成粒子数反转分布状态,最终克服受激吸收及其他衰减而产生自发辐射的光输出。

2.2 激光二极管的工作原理

在结构上,半导体激光二极管(LD)与其他类型的激光器是相同的,都主要由三部分构成:激励源、工作物质及谐振腔。激励源的主要作用是使工作物质形成粒子数反转分布状态,为受激放大提供条件。有多种激励方式,

相关文档
最新文档