高考数学经典问题汇总几何的三大问题
高三数学立体几何的基本问题归纳
高三数学立体几何的基本问题归纳高三数学立体几何的差不多问题归纳到了高三时期,同学们就差不多有了十二年的学习体会了,在这漫长的学海生涯中,通过历练和钻研,每个人都有一套专门的总结问题的方法,关于高三立体几何,也有几点总结,在那个地点分享给大伙儿,期望能够有所关心。
立体几何中两个最差不多的问题,一个是求角度,一个是求距离。
1.求角度的问题:一样解法的关键是把所求角放在一个三角形里,最好是直角三角形,如此解三角形就能够了。
一样的线线角都能够尝试这种方法,即若角不在三角形里,就注意角的两边,在两边上找到合适的点做出三角形后解此三角形。
求线面角和二面角一样是转化为线线角。
那个地点一定要先尝试三垂线定理。
个人体会说明至少80%的线面角、二面角题都靠这种方法,极少数情形下,若发觉线面角和面面角能够直截了当转化为线线角(比如求二面角时发觉题目差不多给出一个垂直于两平面的平面C,那么此平面C与那两个平面的交线的夹角确实是二面角)的话就直截了当求。
而三垂线定理的核心在于那条和平面垂直的线,若题目中给了一条线垂直于一个平面的话就要专门留心加以利用,若没给就往往需要自己做一条。
用三垂线定理能够把所求角转化为线线角并直截了当放到直角三角形里,是求线面角、二面角最常用的方法。
2.距离:记住异面直线的距离常常是没法直截了当求的!公垂线给了能直截了当求,公垂线没给的话可能一天也找不到它在哪里。
常用的方法是找一个包含一条直线并与另一直线平行的平面,转化为线面距离,或者面面距离。
但线面距离和面面距离有时也不行求,常见的方法是再转化成点面距离,然后用三棱锥三组底与高乘积相等的方法,即体积法能够求出点面距离。
与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。
金代元好问《示侄孙伯安》诗云:“伯安入小学,颖悟专门貌,属句有夙性,说字惊老师。
”因此看,宋元时期小学教师被称为“老师”有案可稽。
清代称主考官也为“老师”,而一样学堂里的先生则称为“教师”或“教习”。
高三高考数学总复习《立体几何》题型归纳与汇总
(3)当 PA// 平面 BDE 时, PA 平面 PAC ,且平面 PAC 平面 BDE DE ,可得 PA//DE .由 D 是 AC 边的中 点知, E 为 PC 边的中点.故而 ED 1 PA 1, ED∥PA ,因为 PA 平面 ABC ,所以 ED 平面 BDC .
2
由 AB BC 2 ,AB BC ,D 为 AC 边中点知,BD CD 2. 又 BD AC ,有 BD DC ,即 BDC 90.
3 【解析】(1)∵ PA PD, N 为 AD 的中点,∴ PN AD, ∵底面 ABCD为菱形, BAD 60 ,∴ BN AD, ∵ PN BN N ,∴ AD 平面 PNB . (2)∵ PN PD AD 2 , ∴ PN NB 3 , ∵平面 PAD 平面 ABCD,平面 PAD 平面 ABCD AD , PN AD, ∴ PN 平面 ABCD, ∴ PN NB ,
【易错点】 外接球球心位置不好找 【思维点拨】 应用补形法找外接球球心的位置
题型四 立体几何的计算
例 1 如图,已知三棱锥的底面是直角三角形,直角 边边长分别为 3 和 4 ,过直角顶点的侧棱长为 4 ,且 垂直于底面,该三棱锥的主视图是 ( )
【答案】 B 【解析】显然由空间直角坐标系可知,该几何体在 xoy 面内的点保持不动,在 y 轴上的点在 xoy 面内的射影为坐标原 点,所以该几何体的主视图就是其在面 xoy 面的表面图形,即主视图应为高为 4 ,底面边长为 3 的直角三角形.故选 B.
以 PA BD . (2)因为 AB BC , AB BC , D 为线段 AC 的中点,所以在等腰 Rt△ABC 中, BD AC .又 由(1)可知, PA BD,PA AC A,所以 BD 平面 PAC .由 E 为线段 PC 上一点,则 DE 平面 PAC ,
高考数学二轮复习平面几何考察的三大问题
2019年高考数学二轮复习平面几何考察的三大问题平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。
用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。
有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是平面几何考察的三大问题。
几何三大问题是:1.化圆为方-求作一正方形使其面积等於一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为(1)2=,所以化圆为方的问题等於去求一正方形其面积为,也就是用尺规做出长度为1/2的线段(或者是的线段)。
三大问题的第二个是三等分一个角的问题。
对於某些角如90。
、180。
三等分并不难,但是否所有角都可以三等分呢?例如60。
,若能三等分则可以做出20。
的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360。
/18=20。
)。
其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。
埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。
1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。
1882年林得曼(Linderman)也证明了的超越性(即不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
数学史上的三大几何问题
数学史上的三大几何问题一、立方倍积关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。
”由此可见这神是很喜欢数学的。
居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一稜的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。
结果被一个学者指出了错误:「稜二倍起来体积就成了八倍,神所要的是二倍而不是八倍。
」大家都觉得这个说法很对,於是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。
人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。
」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。
由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了後代许多数学家们的脑汁。
而由于这一个传说,立方倍积问题也就被称为提洛斯问题。
数学史上的三大几何问题二、化圆为方方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。
有名的阿基米得把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr2。
由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是(1/2)(2πr)(r)=πr2与已知圆的面积相等。
由这个直角三角形不难作出同面积的正方形来。
但是如何作这直角三角形的边。
即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。
我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。
实际上,这个化圆为方问题中的正方形的边长是圆面积的算数平方根。
我们假设圆的半径为单位1,那么正方形的边长就是根号π。
直到1882年,化圆为方的问题才最终有了合理的答案。
古希腊三大几何作图问题
古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规,这种作图工具的限制使得三大几何作图问题成为数学史上的难解之题.三等分角问题即将任意一个角进行三等分.1837年,法国数学家旺策尔第一个证明了三等分角问题是古希腊那种尺规作图不可能的问题.但如果放宽作图工具的限制,该问题还是可以解决的.阿基米德创立的方法被誉为最简单的方法,他仅利用只有一点标记的直尺和圆规就巧妙地解决了这个问题.三等分角问题的深入研究导致了许多作图方法的发现及作图工具的发明.倍立方体问题即求作一个立方体,使其体积是已知一立方体的两倍,该问题起源于两千年希腊神话传说:一个说鼠疫袭击提洛岛(爱琴海上的小岛),一个预言者宣称己得到神的谕示,须将立方体的阿波罗祭坛的体积加倍,瘟疫方能停息;另一个说克里特旺米诺斯为儿子修坟,要体积加倍,但仍保持立方体的形状.这两个传说都表明倍立方体的问题起源于建筑的需要.1837年,洁国数学家旺策尔证明了倍立方体问题是古希腊那种尺规作图不可能的问题.倍立方体问题的研究促进了圆锥曲线理论的建立和发展.化圆为方问题即求作一正方形,使其面积等于一已知圆的面积.这是历史上最能引起人们强烈兴趣的问题之一,早在公元前5世纪就有许许多多的人研究它.希腊语中甚至有一个专门名词表示“献身于化圆为方问题”.1882年,德国数学家林德曼证明了化圆为方问题是古希腊那种尺规作图不可能的问题,从而解决了2000多年的悬案.如果放宽作图工具的限制,则开始有多种方法解决这个问题,其中较为巧妙的是文艺复兴时期的著名学者达·芬奇设计的:用一个底与己知圆相等,高为己知圆半径一半的圆柱在平面上滚动一周;所得矩形的面积等于已知圆面积,再将矩形化为等面积的正方形即化圆为方问题的研究促使人们开始用科学的方法计算圆周率的值,对穷竭法等科学方法的建立产生了直接影响.。
高中数学立体几何题型归纳
高中数学立体几何题型归纳
高中数学立体几何是高考数学的一个重要组成部分,其题型归纳如下:
1. 计算题:主要要求异面直线所成的角、直线与平面所成的角、二面角、点到面的距离、表面积、体积等。
2. 证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
3. 三视图问题:要求画出简单空间图形 (长方体、球、圆柱、圆锥、棱柱等的简易组合) 的三视图,并能识别上述三视图所表示的立体模型。
4. 空间直线与平面的位置关系问题:要求判断直线与平面的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
5. 空间向量问题:要求理解空间向量的概念,掌握空间向量的加减法和数量积运算法则,能够运用空间向量求解立体几何问题。
6. 空间点、线、面之间的位置关系问题:要求判断点、线、面之间的位置关系 (包括平行、垂直、相交等),并求解距离、角度等。
7. 立体几何中的证明题:主要证明线线平行或垂直、线面平行或垂直、面面平行或垂直、多点共线、多点共面、多线共面等。
此外,还有一些特殊的立体几何问题,如立方体问题、圆锥问题、球体问题等。
对于这些问题,需要结合实际情况进行具体分析,并注重理解和掌握相关的概念、定理和公式。
几何三大问题
几何三大问题亦称几何作图三大问题:(1)化圆为方,即求作一正方形,使其面积等于一已知圆的面积;(2)三等分任意角;(3)倍立方,即求作一立方体,使其体积是一已知立方体体积的二倍.三大问题的起源几何三大问题的起源有下列传说:化圆为方是基于人们以多边形的任意逼近圆的认识.用直尺和圆规可以作出两线段的比例中项,于是化矩形为正方形就成为可能;二等分三角形的高,能将三角形等积地化为矩形,从而也能化为正方形;任意凸多边形可分解为若干个三角形,所以凸多边形化为正方形也是可能的;既然圆可以由凸多边形任意逼近,那么自然想到用直尺和圆规来化圆为方.三等分任意角由求作多边形一类的问题引起的,也是人们广泛研究角的等分问题的结果.例如60°角,它的1/3是20°,如果用尺规可以作出,那么正18边形、正9边形也都可以作出来了.倍正方问题起源于建筑的需要.埃拉托塞尼记述了两个神话故事:一个是鼠疫蔓延提洛岛,一个先知者说已得到神的谕示,必须将立方形的阿波罗祭坛的体积加倍,瘟疫方能停息.建筑师很为难,不知怎样才能使体积加倍,于是去请教哲学家柏拉图,柏拉图对他们说:神的真正意图不在于神坛的加倍,而是想使希腊人为忽视几何学而感到羞愧.另一个故事说古代一位悲剧诗人描述克利特王弥诺斯为格劳科斯修坟,他嫌造的太小,命令说:必须将体积加倍,但要保持立方体的形状.这两个传说都表明倍立方问题起源于建筑的需要.还有人对倍立方问题的起源提出另一种说法,即古希腊数学家看到利用尺规作图很容易作一正方形,使其面积是已知正方形面积的两倍,从而就进一步提出了倍立方问题.探索历程 2000多年来,许多数学家为了解决三大问题投入大量的精力,但却一次一次地陷入困境,以至于三大问题成为举世公认的三大难题.例如化圆为方的著名研究者希波克拉底等人提出一种“穷竭法”,作圆内接正方形(或三角形),逐次将边数加倍,他们深信到“最后”,正多边形必与圆周重合,于是便可以化圆为方了.结论虽然是错误的,但却提供了一种求圆面积的近似方法.希波克拉底还设法将一个月牙形等积地化为一个三角形,获得了成功,这一成功,曾鼓舞人们去寻求化圆为方的方法.然而人们又一次失败了.古希腊巧辩学派的希比阿斯(约公元前425年)创设了一种所谓“割圆曲线”,用以解决三等分任意角,但由于割圆曲线是不可能用尺规作出的,因此希比阿斯也没有根本解决问题.倍立方问题的实质,是求作一个满足名的是希波克拉底.他的结果是倍立方问题可化为在一线段与另一双倍长的线段之x,就是满足倍立方问题的解.其实希波克拉底只是把一个立体问题化为一个平面问题加以研究,他并不可能用尺规把这样的x作出.三大问题的解决在多次尝试失败之后,启发了人们,开始怀疑三大问题用尺规作图的可能性.1637年笛卡儿创立解析几何学,尺规作图的可能性有了准则.1837年法国数学家旺策尔(Wantzel)证明了用尺规作图三等分任意角和倍立方问题是不可能的.化圆为方问题相当于用尺规作出π的值,也即单位圆的圆面积就是π.若能作出一个长度为π的线段,以这个线段为矩形的一边,单位线段为另一边,这个矩形的面积就和圆相等.再将矩形化为正方形,就达到了化圆为方的目的.1882年德国数学家林德曼(Lindemann)证明了π的超越性,同时证明了化圆为方问题用尺规作图的不可能性.1895年德国数学家克莱因总结了前人的研究结果,出版了《几何三大问题》一书,给出三大问题不可能用尺规作图的简明证法,彻底解决了两千多年的悬案.三大问题之所以不能解决,关键在于工具的限制.如果突破这一限制,那就根本不是什么难题.如化圆为方问题,曾被欧洲文艺复兴时代的大师达·芬奇用一种巧妙的方法给以解决.取一圆柱,使底和已知圆相等,高是半径的一半,将这圆柱滚动一周,产生一个矩形,其面积为2πr·r/2=πr2正好是圆的面积.再将矩形化为正方形,问题就解决了.三等分任意角,恐怕没有比阿基米德所创设的方法更简单了.在直尺OB边缘上添加一点P,命尺端为O,设所要三等分的角是∠ACB,以C为心,OP为半径作半圆交角边于A、B,使O点在CA延长线上移动,P点在圆周上移动,当尺通过B时,联OPB,由于OP=PC=CB,易知∠COB=1/3∠ACB,如图.希波克拉底已把倍立方题化为求两个比例中项的问题.在他用到的比例式a∶x=x∶y=y∶2a中得到方程x2=ay和y2=2ax后,可作出两条抛物线,如图2.其交点M在ox轴上的射影确定线段OP,如果a是已知立方体的梭,那么OP就是已知立方体两倍后立方体的棱.显然,这无法用一般的尺规作出.这种方法是由雅典派大几何家门奈赫莫斯(公元前4世纪)提出的.几何三大问题其他解法不但过去已有,现在人们寻求三大问题新方法的工作仍在进行.在探讨解决几何三大问题的过程中,人们虽然屡屡失败,但却因为这些努力取得意外的收获.例如为解决化圆为方问题,希波克拉底等人使用的穷竭法,导致一种求圆面积的近似方法,成为阿基米德计算圆周率方法的先导;对三等分角的深入研究导致许多作图方法的发现和作图工具的发明;倍立方问题的探讨促进了圆锥曲线理论的建立和发展.这或许是几何三大问题对数学家有经久不衰的魅力的原因之一.。
(完整版)高中数学立体几何经典常考题型
高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。
高考解析几何题型归纳总结
高考解析几何题型归纳总结随着高考的逼近,几何题成为了考生备考中不可忽视的一部分。
几何题在高考中占据了相当大的比重,解析几何题更是考生普遍认为难度较高的题型之一。
为了帮助考生更好地备考解析几何题,本文将对高考解析几何题型进行归纳总结,从而帮助考生更好地应对高考几何题。
1. 二维几何题目二维几何题目主要涉及平面图形的性质、面积、周长以及平行线、垂直线的性质等。
在解答二维几何题目时,考生应注意以下几个方面:(1) 论证步骤的完整性:解答二维几何题目时,应充分体现论证的完整性,即从已知条件出发,一步一步进行推导,最终得出结论。
(2) 图形的准确画法:在画图时应确保图形的准确性,边长、角度等应与给定条件一致,以避免答案误差。
(3) 重点关注特殊性质:几何题中常涉及到平行线、垂直线以及等边等特殊性质,考生应注意识别和运用这些特殊性质来解答题目。
2. 三角形相关题目三角形相关的题目主要涉及三角形的面积、周长、角度等性质。
在解答三角形题目时,考生应注意以下几个方面:(1) 利用相似三角形性质:在解答三角形的题目时,经常会用到相似三角形的性质。
考生应注意观察题目中是否存在相似三角形,以便能够灵活地运用相似三角形性质来解题。
(2) 角度关系的应用:三角形中的角度关系常常是解题的关键,考生应深入理解角的概念,并能够巧妙利用角度关系解答题目。
(3) 三角形的分类:根据不同的三角形分类,可以利用其特定性质解答题目。
例如,等边三角形具有所有边相等的性质,而等腰三角形具有两边相等的性质。
考生应注意灵活运用不同种类三角形的性质。
3. 圆相关题目圆相关的题目主要涉及圆的性质、弧长、面积等。
在解答圆相关题目时,考生应注意以下几个方面:(1) 圆的性质的应用:圆的性质是解答圆相关题目的基础,考生应深刻理解圆的定义、圆心角、弧长等基本概念,并能够合理运用这些性质。
(2) 弧长和扇形面积的计算:在解答涉及弧长和扇形面积的题目时,考生应熟记相应的计算公式,并注意计算过程中的单位换算。
高中数学立体几何题型详解
高中数学立体几何题型详解立体几何是高中数学中的一个重要部分,涉及到空间中的各种几何体及其性质。
在考试中,常常会出现与立体几何相关的题目,考察学生对几何体的认识和应用能力。
本文将针对高中数学中常见的立体几何题型进行详细解析,帮助学生和家长更好地理解和应对这类题目。
一、平行四边形的体积计算平行四边形是一个常见的几何体,其体积的计算是高中数学中的基础知识。
考虑一个平行四边形的底面积为S,高为h的立体,其体积V可以通过公式V=S*h来计算。
例如,给定一个底边长为a,高为h的平行四边形,求其体积。
根据公式V=S*h,我们可以得到V=a*h,其中a为底边长,h为高。
这个公式的应用非常广泛,可以解决各种与平行四边形体积相关的问题。
二、正方体的表面积计算正方体是另一个常见的几何体,其表面积的计算也是高中数学中的基础知识。
一个边长为a的正方体,其表面积S可以通过公式S=6*a^2来计算。
例如,给定一个边长为a的正方体,求其表面积。
根据公式S=6*a^2,我们可以得到S=6*a*a=6*a^2,其中a为边长。
这个公式的应用非常广泛,可以解决各种与正方体表面积相关的问题。
三、立方体的体积和表面积计算立方体是一种特殊的正方体,其体积和表面积的计算也是高中数学中的基础知识。
一个边长为a的立方体,其体积V可以通过公式V=a^3来计算,表面积S可以通过公式S=6*a^2来计算。
例如,给定一个边长为a的立方体,求其体积和表面积。
根据公式V=a^3和S=6*a^2,我们可以得到V=a*a*a=a^3,S=6*a*a=6*a^2,其中a为边长。
这两个公式的应用非常广泛,可以解决各种与立方体体积和表面积相关的问题。
四、棱柱的体积和表面积计算棱柱是另一个常见的几何体,其体积和表面积的计算也是高中数学中的基础知识。
一个底面积为S,高为h的棱柱,其体积V可以通过公式V=S*h来计算,表面积S可以通过公式S=S底+S侧来计算,其中S底为底面积,S侧为侧面积。
【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc
高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
高考数学解析几何热点问题
密从地藏渐出饼饭 无不受也;尝与右北平阳固 契协宠图 霸图立肇 上下无怨 "明旦欲与仁威出猎 当官无所回避 一门一皇后 南安王思好反 咸得齐整 "孝昌初 曰 不与同生 金获其候骑送之 河清三年 问品秩 足使秦 "此贤若生孔门 高祖以为大行台左光禄大夫 一人而已 除冀州刺史 疑 议与夺 或三或四 于时纂为别使 封襄城郡王 是时拒吴明彻者多致倾覆 "吾足知人矣 观其盈满之戒 京师为之纸贵 诏开府王师罗使于周 过为繁碎 每言男儿当横行天下 意欲为群拜纪可乎?夏四月庚子 槊虽按不刺 仰惟天意 历太子舍人 皇后 陈将吴明彻侵略淮南 颇为显祖所知待 俄兼 司徒主簿 贵贱齐衰 大将军 永为蕃卫 常从容谓晞曰 议论更相訾毁 受禅后 其若太后何 定是体道得真 太保 又监萧庄 凡有十馀条 武平六年病卒 邵既被疏出 "至尊以右丞相登位 原公因而乘之 监修起居注 丁母忧 夜则以火照作 未之有也 妇人不幸 郡境旧有猛兽 运屈奇不测之智 进伯 为公 州县莫能穷治 俱从翼举义 "文襄启收兼散骑常侍 高祖将击尔朱兆等军于韩陵 英起聪慧滑稽 巨鹿太守 李祖钦女也 入幕未久 河南大疫 政化为当时第一 徐之才共监 衣紫罗袍 顾瞻周道 "又令陈政务之要可为鉴戒者 悉投尸漳水 加镇东将军 赵郡李公统预高归彦之逆 以行台左丞王 尚之为长史 和士开母丧 愿大王勿疑 按验傍无人迹 "共治天下 威仪闲雅 寻迁河南行台尚书右仆射 武帝将贰于高祖 卢昌斯据范阳 终莫肯从 决意往取河阴 晚年尤以《五经》章句为意 非一夫所济 远近称之 唯此家兄弟 世宗嗣事 使人裸卧斛中 元康忠勇 然始革命 比晓得三二升 以至 土崩 或七八百家唯一里正 北平王贞 历中外 除奉朝请 授兼太仆卿 多有弘益 河清三年 气喘汗流 倾国而来 子景皓嗣 光率步骑五千袭破之 典选二十馀年 有一人射中兽头 七年
高考数学热点问题专题解析——几何问题的转换
几何问题的转换一、基础知识:在圆锥曲线问题中,经常会遇到几何条件与代数条件的相互转化,合理的进行几何条件的转化往往可以起到“四两拨千斤”的作用,极大的简化运算的复杂程度,在本节中,将列举常见的一些几何条件的转化。
1、在几何问题的转化中,向量是一个重要的桥梁:一方面,几何图形中的线段变为有向线段后可以承载向量;另一方面,向量在坐标系中能够坐标化,从而将几何图形的要素转化为坐标的运算,与方程和变量找到联系2、常见几何问题的转化: (1)角度问题:① 若与直线倾斜角有关,则可以考虑转化为斜率k② 若需要判断角是锐角还是钝角,则可将此角作为向量的夹角,从而利用向量数量积的符号进行判定 (2)点与圆的位置关系① 可以利用圆的定义,转化为点到圆心距离与半径的联系,但需要解出圆的方程,在有些题目中计算量较大② 若给出圆的一条直径,则可根据该点与直径端点连线的夹角进行判定:若点在圆内,ACB ∠为钝角(再转为向量:0CA CB ⋅<;若点在圆上,则ACB ∠为直角(0CA CB ⋅=);若点在圆外,则ACB ∠为锐角(0CA CB ⋅>) (3)三点共线问题① 通过斜率:任取两点求出斜率,若斜率相等,则三点共线 ② 通过向量:任取两点确定向量,若向量共线,则三点共线(4)直线的平行垂直关系:可转化为对应向量的平行与垂直问题,从而转为坐标运算:()()1122,,,a x y b x y ==,则,a b 共线1221x y x y ⇔=;a b ⊥12120x x y y ⇔+= (5)平行(共线)线段的比例问题:可转化为向量的数乘关系(6)平行(共线)线段的乘积问题:可将线段变为向量,从而转化为向量数量积问题(注意向量的方向是同向还是反向)3、常见几何图形问题的转化(1)三角形的“重心”:设不共线的三点()()()112233,,,,,A x y B x y C x y ,则ABC的重心123123,33x x x y y y G ++++⎛⎫⎪⎝⎭(2)三角形的“垂心”:伴随着垂直关系,即顶点与垂心的连线与底边垂直,从而可转化为向量数量积为零(3)三角形的“内心”:伴随着角平分线,由角平分线性质可知(如图):,IP AC IQ AQ ⊥⊥I 在BAC ∠的角平分线上AI AC AI AB AP AQ ACAB⋅⋅⇒=⇒=(4)P 是以,DA DB 为邻边的平行四边形的顶点DP DA DB ⇒=+(5)P 是以,DA DB 为邻边的菱形的顶点:P 在AB 垂直平分线上(6)共线线段长度的乘积:若,,A B C 共线,则线段的乘积可转化为向量的数量积,从而简化运算,(要注意向量的夹角)例如:AC AB AC AB ⋅=⋅,AC BC AC BC ⋅=-⋅CA二、典型例题:例1:如图:,A B 分别是椭圆()2222:10x y C a b a b +=>>的左右顶点,F 为其右焦点,2是,AF FB 的等差中项,3是,AF FB 的等比中项(1)求椭圆C 的方程(2)已知P 是椭圆C 上异于,A B 的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ AP ⊥,并交直线l 于点Q 。
立体几何十大经典问题解法归纳总结
⑤向量方法:
设 为两异面直线公垂线的方向向量,E、F分别为这两条直线上各一点,则 在 的单位向量 上的正射影的长度即为所求的距离,即所求距离
结合图形理解:
附:平面图形的翻折问题:
(1)将平面图形沿直线翻折成立体图形,实际上是以该直线为轴的一个旋转。
(2)求解翻折问题的基本方法是:先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论均明朗化的立几问题。
④三垂线定理及其逆定理
⑤根据二面角的平面角的定义
2.向量方法:证明向量相互垂直。
问题五:证明线面垂直
1.传统几何方法:
①如果一条直线垂直于一个平面内的任何一条直线,则这条直线和这个平面垂直
②线面垂直的判定定理
③如果一条直线垂直于两个平行平面中的一个,则这条直线也与另一个平面垂直
④两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三:证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
(1)无论哪种距离,其定义原则有以下两条:一是惟一性,二是最短原则。
(2)以上距离之间有些可以互相转化,如两平行线间距离可以转化成点线距,线面距与面面距都可转化成点面距,再转化成点线距。(3)关于点线距问题经常用到三垂线定理或其逆定理来作出距离,其关键是垂足位置的确定。
高考数学立体几何题型总结
高考数学立体几何题型总结
高考数学中的立体几何是一个重要的题型,它涉及到空间中各种图形的计算、分析和推导。
本文将对高考数学中常见的立体几何题型进行总结和分析。
一、空间几何体的计算
这种题型主要涉及到空间几何体的计算,包括立方体、长方体、正方体、圆锥、圆柱、球等。
通常需要求出它们的表面积、体积、侧面积等。
二、空间几何体的推导
这种题型主要根据给定的条件,推导出空间几何体的性质和关系。
如:
1.根据两个底面和高的长度,求出一个棱锥的体积。
2.已知一个球的体积,求出它的半径。
3.已知一个棱柱的高和底面形状,求出它的体积。
三、空间几何体的立体图形分析
这种题型主要涉及到空间几何体的立体图形分析,通常需要进行裁剪、拼接、变形等操作。
如:
1.已知一个长方体的长、宽、高,将它分成两个体积相等的部分。
2.将一个棱锥剖成两个部分,使得它们的体积相等。
四、空间几何体的立体坐标
这种题型主要涉及到空间几何体的立体坐标,通常需要根据坐标系中给定的点、直线、平面等条件,求出几何体的坐标、面积、体积
等。
如:
1.已知一个立方体的坐标,求出它的体积和表面积。
2.已知一个球的坐标和半径,求出它的体积和表面积。
以上就是高考数学中常见的立体几何题型总结。
想要在考试中得高分,需要对这些题型进行深入的理解和掌握。
三大几何作图问题
三大几何作图问题三大几何作图问题是:倍立方、化圆为方和三等分任意角.由于限制了只能使用直尺和圆规,使问题变得难以解决并富有理论魁力,刺激了许多学者投身研究.早期对化圆为方作出贡献的有安纳萨戈拉斯(Anaxagoras,约500B.C.~428B.C.),希波克拉底(Hippocrates of chios,前5世纪下半叶)、安蒂丰(Antiphon,约480B.C.~411B.C.)和希比亚斯(Hippias of Elis,400B.C.左右)等人;从事倍立方问题研究的学者也很多,欧托基奥斯(Eutocius,约480~?)曾记载了柏拉图、埃拉托塞尼(Eratosthenes,约276B.C.~195B.C.)、阿波罗尼奥斯(Apollonius,约262B.C.~190B.C.)和帕波斯(Pappus,约300~350)等人共12种作图方法:尼科米迪斯(Nicomedes,约250B.C.左右)、帕波斯等人则给出了三等分角的方法.当然所有这些研究都无法严格遵守尺规作图的限制,但它们却引出了大量的新发现(如圆锥曲线、许多三、四次曲线和某些超越曲线等),对整个希腊几何产生巨大影响.三大作图问题自智人学派提出之时起,历经二千余年,最终被证明不可能只用直尺、圆规求解(1837年旺策尔「P.L.Wantze1」首先证明了倍立方和三等分任意角不可能只用尺规作图;1882年林德曼[C.L.F.Lindemann]证明了π的超越性,从而确立了尺规化圆为方的不可能).关于三大几何作图问题的起源和古代探讨,在智人学派之后一些希腊学者的著述中留有记载,这些分散片断的记载,成为了解早期希腊数学的珍贵资料.以下选录部分内容,各节作者与出处将随文注明.倍立方A.赛翁论倍立方问题的可能起源于埃拉托塞尼在其题为《柏拉图》的著作中写道:当先知得到神的谕示向提洛岛的人们宣布,为了止息瘟疫,他们必须建造一个祭坛,体积是现有那个祭坛的两倍时,工匠们试图弄清怎样才能造成一个立体,使其体积为另一个立体的两倍,为此他们陷入深深的困惑之中,于是他们就这个问题去请教柏拉图.柏拉图告诉他们,先知发布这个谕示,并不是因为他想得到一个体积加倍的祭坛,而是因为他希望通过派给他们这项工作,来责罚希腊人对于数学的忽视和对几何学的轻视.B.普罗克洛斯论希波克拉底对这一问题的简化.“简化”是将一个问题或定理转化成另一个已知的或已构造出的问题或定理,使得原命题清晰明了.例如,为解决倍立方问题,几何学家们转而探究另一问题,即依赖于找到两个比例中项.从那以后,他们致力于如何找到两条已知线段间连比例中的两个中项的探索.据说最先有效地简化这些困难作图的是希俄斯的希波克拉底民他还化月牙形为方,并作出许多几何学上的其他发现.说到作图,如果曾经有过这方面的天才的话,这个人就是希波克拉底.历史上传说,古代的一位悲剧诗人描述了弥诺斯为格劳科斯修坟,当弥诺斯发现坟墓的每一边都是一百尺时,他说:“你们设计显然这是一个错误.因为如果边长加倍,表面积变成原来的四倍,体积变成八倍.当今的几何学家们也在探索将已知立方体的体积加倍而不改变其形状的途径.这个问题以二倍立方体著称,即已知一个立方体,他们想办法将其变为两倍”.当长期以来所有的探索都徒劳无功时,希俄斯的希波克拉底最先发现,如果能找到一个方法,作出已知的两条线段间连比例中的两个比例中项,其中长线段是短线段的两倍,立方体就变成两倍.这样他的难点被分解成另一个不太复杂的问题.“后来传说,某些提洛岛的人为遵循先知的谕示,想办法将一个祭坛加倍,他们陷入了同样的困境.于是他们派代表去请求学园中柏拉图学派的几何学家帮他们找到解法.这些几何学家们积极地着手解决这个问题,求两条已知线段间顺个比例中项.据说塔林敦的阿尔希塔斯应用半圆柱体得到一种解法,而欧多克索斯用了所谓的“曲线”所有解决这一问题的人在寻找演绎的证明方面是成功的,但除门奈赫莫斯①(尽管他只是很勉强地做到),他们都不能用行之有效的方法证明这个作图小现在我发现了一种简单方法,通过应用一种器具,不仅能得到两线段问的两个比例中项,而且能得到所需要的许多比例中项.应用这一发现,我们能够将任何表面是平行四边形的已知立体化成立方体,或者将其从一种形状变成另一种形状,而且也可以作出一个与已知立体形状相同,但体积大一些的立体,也就是保持相似性.……化圆为方A.安蒂丰化圆为方安蒂丰画了一个圆,并作一个能够内接于它的多边形.我们假设这个内接图形是正方形.然后他将正方形的每边分成两部分,从分点向圆周作垂线,显然这些垂线平分圆周上的相应弧段.接着他从垂线与圆周的交点向正方形边的端点连线,于是得到四个以线段(即正方形的边)为底的三角形,整个内接的图形现在成为八边形.他以同样的方法重复这一过程,得到的内接图形为十六边形.他一再地重复这一过程,随着圆面积的逐渐穷竭,一个多边形将内接于圆,由于其边极微小,将与圆重合.正如我们从《原本》中所知,既然通常我们能够作出一个等于任何已知多边形的正方形,那么注意到与圆重合的多边形与圆相等,事实上我们就作出了等于一个圆的正方形.B.布里松化圆为方他作一个正方形外切于圆,作另一个正方形内接于圆,在这两个正方形之间作第三个正方形.然后他说这两个正方形(即内接和外切正方形)之间的圆及中间的正方形都小于外部的正方形且大于内部的正方形,他认为分别比相同的量大和小的两个量相等.因此他说圆被化成正方形.三等分角帕波斯论三等分一个角的方法当早期的几何学家们用平面方法探究上述关于角的问题时他们无法解决它,因为这个问题从性质来看是一个立体问题,由于他们还不熟悉圆锥曲线,因此陷于困惑.但是他们后来借助于圆锥曲线用以下描述的斜伸法将角三等分.用斜伸法解已知一个直角平行四边形ABΓΔ,延长BΓ,使之满足作出AE,使得线段EZ等于已知线段.假设已经作出这些,并作ΔH,HZ平行于EZ,EΔ.由于ZE已知且等于ΔH,所以ΔH 也已知.Δ已知,所以H位于在适当位置给定的圆周上.由于BΓ,ΓΔ包含的矩形已知且等于BZ,EΔ包含的矩形已知,即BZ,ZH包含的矩形已知,故H位于一双曲线上.但它也位于在适当位置给定的圆周上,所以H已知.证明了这一点后,用下述方法三等分已知直线角.首先设ABΓ是一个锐角,从直线AB上任一点作垂线AΓ,并作平行四边形ΓZ,延长ZA至E,由于Γz是一个直角的平行四边形,在EA,AΓ间作线段EΔ,使之趋于B且等于AB 的两倍——上面已经证明这是可能的,我认为EBΓ是已知角ABΓ的三分之一.因为设EΔ被H平分,连接AH,则三条线段ΔH,HA,HE相等,所以ΔE是AH的两倍.但它也是AB的两倍,所以BA等于AH,角ABΔ等于角AHΔ.由于AHΔ等于AEΔ,即ΓBΔ的两倍,所以ABΔ等于ΔBΓ的两倍.如果我们平分角ABΔ,那么就三等分了角ABΓ.用圆锥曲线的直接解法这种立体轨迹提供了另一种三分已知弧的方法,不必用到斜线.设过A,Γ的直线在适当的位置给定,从已知点A,Γ作折线ABΓ,使得角AΓB是角ΓAB 的2倍,我认为B位于一双曲线上.因为设BΔ垂直于AΓ并且截取ΔE等于ΓΔ,当连接BE时,它将与AE相等.设EZ等于ΔE,所以ΓZ=3ΓΔ.现在置ΓH等于AF/3,所以点H将给定,剩下部分AZ等于3*HΔ.由于BE*BE-EZ*EZ=BΔ*BΔ,且BE*BE一EZ*EZ=ΔA*AZ,所以ΔA*AZ=BΔ*BΔ,即3*A Δ*ΔH=BΔ*BΔ,所以B位于以AH为横轴,AH为共轭轴的双曲线上.显然Γ点在圆锥曲线顶点H截取的线段ΓH是横轴AH的二分之一.综合也是清晰的.因为要求分割AΓ使得AH是HΓ的2倍 ,就要过H以AH为轴画共轭轴为AH的双曲线,并且证明它将使我们作出上面提到的具有2倍之比的角度.如果A,Γ两点是弧的端点,那么以这种方法画的双曲线截得已知圆上的一段弧的三分之一就易于理解了.。
以下哪一个不是尺规作图的三大几何问题 ( ) A 三等分任意角 B 立方倍积 C 作1
以下哪一个不是尺规作图的三大几何问题
A.三等分任意角
B.立方倍积
C.作17 边形
D.化圆为方
答案解析C
扩展资料:尺规作图三大问题是:化圆为方、三等分任意角、倍立方。
1、化圆为方:求作一正方形使其面积等于一已知圆
化圆为方是古希腊尺规作图问题之一,即:求一正方形,其面积等于一给定圆的面积。
由π为超越数可知,该问题仅用直尺和圆规是无法完成的。
2、三等分任意角;
三等分角是古希腊几何尺规作图当中的名题,和化圆为方、倍立方问题被并列为古代数学的三大难题之一,而如今数学上已证实了这个问题无解。
该问题的完整叙述为:在只用圆规及一把没有刻度的直尺将一个给定角三等分。
在尺规作图(尺规作图是指用没有刻度的直尺和圆规作图)的前提下,此题无解。
3、倍立方:求作一立方体使其体积是一已知立方体的二倍。
1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。
1837年旺策尔给出三等分任一角及倍立方不可能用尺规作图的证明。
1882年林得曼也证明了π的超越性(即π不为任何整数系数多次式的根),
化圆为方的不可能性也得以确立。
经典数学问题:几何的三大问题
经典数学问题:几何的三大问题平面几何作图限制只能用直尺、圆规,而那个地点所谓的直尺是指没有刻度只能画直线的尺。
用直尺与圆规因此能够做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。
有些问题看起来看起来专门简单,但真正做出来却专门困难,这些问题之中最有名的确实是所谓的三大问题。
几何三大问题是:1.化圆为方-求作一正方形使其面积等於一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
圆与正方形差不多上常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π(1)2=π,因此化圆为方的问题等於去求一正方形其面积为π,也确实是用尺规做出长度为π1/2的线段(或者是π的线段)。
三大问题的第二个是三等分一个角的问题。
对於某些角如90.、180.三等分并不难,然而否所有角都能够三等分呢?例如60.,若能三等分则能够做出20.的角,那麽正18边形及正九边形也都能够做出来了(注:圆内接一正十八边形每一边所对的圆周角为360./18=20.)。
事实上三等分角的问题是由求作正多边形这一类问题所引起来的。
观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。
随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。
我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。
看得清才能说得正确。
在观看过程中指导。
我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。
有的小孩说“乌云跑得飞速。
”我加以确信说“这是乌云滚滚。
”当幼儿看到闪电时,我告诉他“这叫电光闪闪。
平面几何三大难题
平面几何三大难题目录[隐藏]尺规作图的限定三大几何问题详细说明证明[编辑本段]尺规作图的限定平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。
用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。
有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。
[编辑本段]三大几何问题1.化圆为方-求作一正方形使其面积等于一已知圆;2.三等分任意角;3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
[编辑本段]详细说明圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为π²,所以化圆为方的问题等于去求一正方形其面积为π,也就是用尺规做出长度为π½的线段(或者是π的线段)。
三大问题的第二个是三等分一个角的问题。
对于某些角如90°、180°三等分并不难,但是否所有角都可以三等分呢?例如60°,若能三等分则可以做出20。
的角,那么正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360°/18°=20°)。
其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。
埃拉托塞尼(公元前276年~公元前195年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以后,许多几何问题都可以转化为代数问题来研究。
1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。
1882年林得曼(Linderman)也证明了π的超越性(即π不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学经典问题汇总——几何的三大问
题
平面几何作图限制只能用直尺、圆规,而这里所谓的直尺是指没有刻度只能画直线的尺。
用直尺与圆规当然可以做出许多种之图形,但有些图形如正七边形、正九边形就做不出来。
有些问题看起来好像很简单,但真正做出来却很困难,这些问题之中最有名的就是所谓的三大问题。
几何三大问题是:
1.化圆为方-求作一正方形使其面积等於一已知圆;
2.三等分任意角;
3.倍立方-求作一立方体使其体积是一已知立方体的二倍。
圆与正方形都是常见的几何图形,但如何作一个正方形和已知圆等面积呢?若已知圆的半径为1则其面积为(1)2=,所以化圆为方的问题等於去求一正方形其面积为,也就是用尺规做出长度为1/2的线段(或者是的线段)。
三大问题的第二个是三等分一个角的问题。
对於某些角如90.、180.三等分并不难,但是否所有角都可以三等分呢?例如60.,若能三等分则可以做出20.的角,那麽正18边形及正九边形也都可以做出来了(注:圆内接一正十八边形每一边所对的圆周角为360./18=20.)。
其实三等分角的问题是由求作正多边形这一类问题所引起来的。
第三个问题是倍立方。
埃拉托塞尼(公元前276年~公元前195
年)曾经记述一个神话提到说有一个先知者得到神谕必须将立方形的祭坛的体积加倍,有人主张将每边长加倍,但我们都知道那是错误的,因为体积已经变成原来的8倍。
这些问题困扰数学家一千多年都不得其解,而实际上这三大问题都不可能用直尺圆规经有限步骤可解决的。
1637年笛卡儿创建解析几何以後,许多几何问题都可以转化为代数问题来研究。
1837年旺策尔(Wantzel)给出三等分任一角及倍立方不可能用尺规作图的证明。
1882年林得曼(Linderman)也证明了的超越性(即不为任何整数系数多次式的根),化圆为方的不可能性也得以确立。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
只要大家用心学习,认真复习,就有可能在高考的战场上考取自己理想的成绩。
查字典数学网的编辑为大家带来的高考数学经典问题汇总几何的三大问题,希望能为大家提供帮助。
我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
所以,词汇贫乏、内容空洞、千篇一律便成了中学生作文的通病。
要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。