生物工程专业英语四
生物工程专业英语ppt课件
acetic 【 ə‘sitɪk 】酸的,醋酸的
acetic acid 乙酸
butanol 【 ‘bjutə,nol 】丁醇
acetone【 ‘æsə,ton 】丙酮 contaminate【 kən‘tæmə,net 】污染、毒害
我们无法确定这些微生物生产过程的出现是源于 偶然还是主观实验,但其进一步不断发展的早期 实例证明了人类能够利用微生物的生命活动来满 足自己的需要。
reliant 【 rɪ‘laɪənt 】依赖、依靠 proportion 【 prə‘porʃən 】比例、比率
humble 【‘hʌmb! 】低下的、卑微的 origin【‘ɔrədʒɪn】起源
其他的微生物过程,如奶酪和酸奶等发酵 乳制品的生产,以及酱油和豆豉等各种东 方食品的生产,都同样有悠久的历史。
Of more rencent introduction is mushroom cultivation which probably dates back many hundreds of years for Japanese shii-ta-ke cultivation and about 300 years for the Agaricus mushroom now widely cultivated throughout the temperate world.
formulate 【‘fɔ:mjuleit 】确切地阐述,
用公式表示
Anton van Leeuwenhoek安东尼·列文虎
克,荷兰博物学家,显微镜创造者
The recognition that these processes were being affected by living organisms, yeasts, was not formulated until the 17th century, by Anton van Leeuwenhoek.
生物工程专业英语
Abstract:Biological engineering, a relatively young yet rapidly growing field, combines principles from biology, engineering, and computer science to solve complex problems in healthcare, agriculture, and the environment. This interdisciplinary field is at the forefront of technological advancements, offering innovative solutions to some of the most pressing challenges faced by humanity. This paper provides an overview of the field of biological engineering, its history, key areas of research, applications, and future prospects.1. IntroductionThe field of biological engineering emerged in the late 20th century as a response to the increasing need for interdisciplinary approaches to address complex problems in various sectors. By integrating knowledge from biology, engineering, and computer science, biological engineers strive to develop innovative solutions that can improve human health, enhance agricultural productivity, and protect the environment. This field has gained significant attention in recent years, thanks to advancements in biotechnology, genetics, and computational tools.2. History of Biological EngineeringThe roots of biological engineering can be traced back to the early 20th century when scientists began to explore the application of engineering principles to biological systems. The field gained momentum in the 1950s and 1960s with the development of recombinant DNA technology and the establishment of biotechnology companies. Over the years, the field has evolved to encompass a wide range of applications, including medical devices, biofuels, and environmental remediation.3. Key Areas of Research in Biological Engineering3.1 Biomedical EngineeringBiomedical engineering is a major subfield of biological engineeringthat focuses on the application of engineering principles to improve human health. This includes the development of medical devices,diagnostic tools, and therapeutic agents. Some key areas of research in biomedical engineering include:- Tissue engineering: Developing bioartificial tissues and organs for transplantation.- Nanomedicine: Using nanotechnology to deliver drugs and imaging agents directly to diseased cells.- Biocompatibility: Ensuring that medical devices and implants are compatible with the human body.3.2 Biochemical EngineeringBiochemical engineering involves the design and optimization of processes that use biological systems to produce valuable products. This includes the development of industrial fermentation processes, enzyme engineering, and bioreactors. Some key areas of research in biochemical engineering include:- Bioprocessing: Developing efficient and sustainable methods for producing biofuels, pharmaceuticals, and other chemicals.- Enzyme engineering: Improving the properties of enzymes for industrial applications.- Bioreactor design: Optimizing the design of reactors to maximize the production of desired products.3.3 Environmental EngineeringEnvironmental engineering in biological engineering focuses on the development of technologies to protect and restore the environment. This includes the treatment of wastewater, air pollution control, and bioremediation. Some key areas of research in environmental engineering include:- Bioremediation: Using biological agents to clean up contaminated sites.- Wastewater treatment: Developing efficient methods for treating and recycling wastewater.- Air pollution control: Using biological systems to remove pollutants from industrial emissions.4. Applications of Biological Engineering4.1 HealthcareBiological engineering has revolutionized healthcare by developing new treatments, diagnostics, and medical devices. Some notable applications include:- Gene therapy: Using genetic engineering to treat genetic disorders.- Artificial organs: Developing bioartificial organs for transplantation.- Drug delivery systems: Using nanotechnology to deliver drugs directly to diseased cells.4.2 AgricultureBiological engineering has contributed to the development of sustainable agricultural practices that enhance crop yield and reduce environmental impact. Some key applications include:- Genetically modified organisms (GMOs): Developing crops with improved resistance to pests and diseases.- Precision agriculture: Using sensors and data analytics to optimize crop management.- Biopesticides: Developing environmentally friendly alternatives to chemical pesticides.4.3 Environmental ProtectionBiological engineering plays a crucial role in protecting the environment by developing technologies to remediate pollution and reduce waste. Some applications include:- Bioremediation: Using biological agents to clean up oil spills and contaminated sites.- Wastewater treatment: Developing sustainable methods for treating and recycling wastewater.- Air pollution control: Using biological systems to remove pollutants from industrial emissions.5. Future ProspectsThe field of biological engineering is expected to continue growing rapidly in the coming years, driven by technological advancements and increasing demand for sustainable solutions. Some future prospects include:- Development of personalized medicine: Tailoring treatments to individual patients based on their genetic makeup.- Advancements in biofuels: Developing more efficient and sustainable methods for producing biofuels.- Addressing global challenges: Using biological engineering to address issues such as climate change, food security, and water scarcity.6. ConclusionBiological engineering is a dynamic and rapidly evolving field that offers immense potential for solving complex problems in healthcare, agriculture, and the environment. By integrating knowledge from various disciplines, biological engineers are at the forefront of technological innovation, developing innovative solutions that can improve the quality of life for people around the world. As the field continues to grow, it is poised to play an even more significant role in shaping the future of humanity.。
生物工程专业英语
acid酸acidify酸性actinomycete放线菌adapability适应性adjunct辅助剂adjunctive therapy辅助治疗adsorbeacid酸acidify酸性actinomycete放线菌adapability适应性adjunct辅助剂adjunctive therapy辅助治疗adsorbent吸附剂adsorption吸附aeration通气,通风agar琼脂agarose gel琼脂糖凝胶agitation搅动alcohol醇,乙醇alga海藻algae(复)藻类alkalinity碱性amio氨基的ammonium铵amply扩增amylase淀粉酶anaerobe厌氧的analog类似物analogue类似物antibiotic抗生素antibiotic resistance抗生素抗性antibody抗体antifoam消泡剂antigen抗原apparatus仪器,器械archeologist考古学家aseptic无菌的bacterial细菌的bacteriophage噬菌体base pair碱基对batch一次生产量biodegredable可降解的bioinformatics生物信息学biomolecule生物分子biosensor生物传感器botany植物学brew酿造broth肉汤,发酵液bubble column bioreacter鼓泡塔式反应器buffer缓冲液,缓冲calcium钙carbohydrate碳水化合物carbonate碳酸盐catabolic分解代谢的cellulase纤维素酶cellulose纤维素centrfugal离心的,离心机centrifugation离心法,离心centrifuge离心机chemostat恒化器chitin几丁质chloroplast叶绿体chromatography色谱chromosome染色体citric acid柠檬酸clarification澄清clone克隆clone library克隆文库cloning vector克隆载体coefficient系数colony菌落colorimeter比色计comparison比较,对照complementrary互补的component成分,组分composition组成compound化合物concentration浓缩,浓度conformation构象contamination污染,污染物crystallisation结晶化decomposition分解,腐烂decontaminate净化deficient缺乏的degrade降解,降级deplete使衰竭,耗尽deposite沉淀物,沉淀detoxification解毒devoid缺乏的dextran葡萄糖diameter直径digest消化,酶切diluent稀释的,稀释液dilute稀释dilution稀释disintegrant崩解剂disintegration瓦解dissociate解里,游离dissolve溶解double helix双螺旋double stranded双链的downcomer下流管,溢流管,液降duplicate使重复,复制electrophoresis电泳enzyme酶eradication根除eukaryote真核细胞exaggerate使增大,使夸大exceed超过,胜过expertise专门技术expression vector表达载体extracellular细胞外的fabricate虚构,制作,伪造feedback反馈fermentation发酵fermenter发酵罐filter过滤,过滤器filtration过滤flask烧瓶。
生物工程(生物技术)专业英语翻译
生物工程(生物技术)专业英语翻译Lesson One(4学时)Inside the Living Cell: Structure andFunction of Internal Cell Parts教学目的:使学生掌握细胞的组成结构(各种细胞器以及它们在细胞中的位置),Cytoplasm: The Dynamic, Mobile Factory细胞质:动力工厂Most of the properties we associate with life are properties of the cytoplasm. Much of the mass of a cell consists of this semifluid substance, which is bounded on the outside by the plasma membrane. Organelles are suspended within it, supported by the filamentous network of the cytoskeleton. Dissolved in the cytoplasmic fluid are nutrients, ions, soluble proteins, and other materials needed for cell functioning.生命的大部分特征表现在细胞质的特征上。
细胞质大部分由半流体物质组成,并由细胞膜(原生质膜)包被。
细胞器悬浮在其中,并由丝状的细胞骨架支撑。
细胞质中溶解了大量的营养物质,离子,可溶蛋白以及维持细胞生理需求的其它物质。
2The Nucleus: Information Central(细胞核:信息中心)The eukaryotic cell nucleus is the largest organelle and houses the genetic material (DNA) on chromosomes. (In prokaryotes the hereditary material is found in the nucleoid.) The nucleus also contains one or two organelles-the nucleoli-that play a role in cell division. A pore-perforated sac called the nuclear envelope separates the nucleus and its contents from the cytoplasm. Small molecules can pass through the nuclear envelope, but larger molecules such as mRNA and ribosomes must enter and exit via the pores.真核细胞的细胞核是最大的细胞器,细胞核对染色体组有保护作用(原核细胞的遗传物质存在于拟核中)。
生物工程专业英语单词(精品范文).doc
plasmid
白灵药
panacea
常染色体
autosomal chromosomes
性染色体
sex chromosome
红细胞
red blood cell
生殖细胞
germ cell
端粒
telomere
转化
transformation
插入
adding
精子
sperm
提取
extract
敲除
removing
Tip
链球菌
streptoccus
原生质体
cytoplasm
微生物
Microbe(s)
杆菌
bacillus
细胞壁
cell wall
Microorganism
弧菌
vibrio
染色体
chromosome
肉眼
Unaided eye
螺旋杆菌
spirillum
核糖体
ribosome
生态系统
ecosystem
新陈代谢
遗传
inheritance
密码子
codon
固氮
fix nitrogen
相互作用
interaction
三联密码子
triplet
酿
brewing
核苷酸碱基
nucleotidebases
内质网
endoplasmic reticulum
A
Adenine
氨基酸
amino acid
杂种
mule
T
Thymine
简并性
metabolism
叶绿体
chloroplast
生物工程生物技术专业英语翻译精修订
生物工程生物技术专业英语翻译SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#Lesson One(4学时)Inside the Living Cell: Structure andFunction of Internal Cell Parts教学目的:使学生掌握细胞的组成结构(各种细胞器以及它们在细胞中的位置),Cytoplasm: The Dynamic, Mobile Factory细胞质:动力工厂Most of the properties we associate with life are properties of the cytoplasm. Much of the mass of a cell consists of this semifluid substance, which is bounded on the outside by the plasma membrane. Organelles are suspended within it, supported by the filamentous network of the cytoskeleton. Dissolved in the cytoplasmic fluid are nutrients, ions, soluble proteins, and other materials needed for cell functioning.生命的大部分特征表现在细胞质的特征上。
细胞质大部分由半流体物质组成,并由细胞膜(原生质膜)包被。
细胞器悬浮在其中,并由丝状的细胞骨架支撑。
细胞质中溶解了大量的营养物质,离子,可溶蛋白以及维持细胞生理需求的其它物质。
The Nucleus: Information Central(细胞核:信息中心)The eukaryotic cell nucleus is the largest organelle and houses the genetic material (DNA) on chromosomes. (In prokaryotes the hereditary material is found in the nucleoid.) The nucleus also contains one or two organelles-the nucleoli-that play a role in cell division. A pore-perforated sac called the nuclear envelope separates the nucleus and its contents from the cytoplasm. Small molecules can pass through the nuclear envelope, but larger molecules such as mRNA and ribosomes must enter and exit via the pores.真核细胞的细胞核是最大的细胞器,细胞核对染色体组有保护作用(原核细胞的遗传物质存在于拟核中)。
生物医学工程专业英语
III. Product Manual -----Medical Devices Manual
Structur e Information
n
for the User 用户须知 Technical Description and Features Specifications Modes of Operation Operating Instructions Cleaning and Disinfecting 清洗和消毒 Maintenance Warranty
Informative function advertisement
Language feature
Definition
The product manual (commodity specification) is a text description of the commodity structure , performance , specifications , use, repair and maintenance, etc. . Its main content includes an objective description of the safe use of the product , working principle, technical parameters , structure , installation, operation and maintenance. Its main language form is generally explanation, rule, recommendations . commodity [kə’mɔditi] n.商品,货物 specification [,spesifi’keiʃən] n.[ pl.]规范;明 确说明;说明书
生物工程专业英语整理
单词整理a- 不,非aseptic 无菌的;apolar 非极性的;asymmetercal 不对称的ab- 去,离开,脱离abnormal 反常的;abuse 滥用;abduct 外展神经aceto- 乙酰acetolactate 乙酰乳酸;acetyl 乙酰(基);acetyl phosphate 乙酰磷酸actino- 光线,射线,放线菌acrinomycin 放线菌;actinometer 化学光度计acyl- 酰基acyltransferase 转酰基酶aden(o)- 腺adenovirus 腺病毒aer(o)- 空气的aerobic 需氧的;aeration 通气agro- 土壤;农业agrochemical 农用化学品;agronomical 农艺学的amidino- 脒基amidinotransferase 转脒基酶amylo- 淀粉amylopectin 支链淀粉;amylose 直链淀粉;amyloplastid 造粉粒an- 不,非anaerobic 厌氧的;analgesic 止痛的;anapepsia 胃蛋白酶缺乏ane- 烷methane 甲烷anti- 反对,对抗,取消,抑制,解除antagonistic 对抗的;antibody 抗体;antigen 抗原angio- 血管angiogenin 血管生成素;angioma 血管瘤aut(o)- 自己的,自动的autotroptic 自养的;autonomous 自发的;autosensitization 自身致敏bio- 生物的biochemistry 生物化学;bioamine 生物胺;biocatalyst 生物催化剂bromo- 溴的5-bromouracil 5-溴尿嘧啶bis- 双,二bisexualism 雌雄异体;bisphenols 双酚类brady- 缓慢hradycardia 心动过缓;bradykinin 缓激肽carb(o)- 碳的carbodiimide 碳二亚胺;carbohydrate 碳水化合物carboxy(l) 羧基carboxy methylcellulose 羧甲基纤维素carcin(o)- 癌carcinogen 致癌物cardio- 心脏cardiotonic 强心的cent(i)- 一百的,百分之一的,厘century 世纪;centimeter 厘米;centimorgan 厘摩chemo- 化学chemoautotrophy 化能自养;chemosynthesis 化能合成;chemoattractant 化学引诱物chlor- 氯,绿chloramphenicol 氯霉素;chlorobenzene 氯苯;chloroplast 叶绿体chrom(o)- (chromat(o)-) 颜色chromatid 染色单体;chromosome 染色体;chromatography 色谱法cis- 顺cistrion 顺反子;cis regulation 顺式调节;cis-isomer 顺式异构体co- 一起,共同cooperate 合作;coincide 重合;cognate 同源的con- (col-,com-,cor-)连同,一起complexant 络合剂;concentrate 集中;combine 结合contra- 反对,相反contrast 对照;contrary 相反的;contrasuppression 反抑制counter- 反,逆couner-circulation 逆向循环;counter-ecolution 逆进化;counter receptor 反受体cryo- 寒冷,冷冻cryopreservation 冷冻保藏;cryogen 冷冻剂;cryophile 适寒性cyano- 青,蓝,氰cyanobacteria 蓝细菌;cyanocobalamin 氰钴胺素;cyanogen bromide 溴化氰de- 否定,除去,离开,降低,脱debug 排除故障;deceleration 降速;degeneration 退化deca- 十,葵decahedron 十面体;decane 葵烷;decamer 十聚体deoxy- 脱氧deoxycytosine 脱氧胞嘧啶di- 二,二倍,二重diploid 二倍体;dimer 二聚体;divinylbenzene 二乙烯苯dia- 横穿diameter 直径;dialysis 透析;diaphragm 隔膜dis- 否定,分离disintegration 破碎;disagree 不同意;dissemination 散播dodeca- 十二dodecahedron十二面体;dodecane 十二烷;dodecamer 十二聚体eco- 生态,居处,宿主ecogentics 生态遗传学;ecology 生态学;ecomone 生态信息素ectoblast 外胚层;ectohormone 外激素;ectodomain 胞外结构electr(o)- 电electrodialysis 电渗析en-(em-) 使成为,置于……中enable 能够;encode 编码;embed 包埋end(o)- 内endergonic 吸能的;endospore 内生孢子enol 烯醇phosphoenolpyruvate 磷酸烯醇丙酮酸enter(o)- 肠enteroacteria 肠细菌;enterobactin 肠杆菌素;enterocyte 肠细胞epi- 表;变化epichlorohydrin 表氯醇;epimerase 差向异构体酶;epithelial cell 上皮细胞erythr(o)- 红,赤erythrose 赤藓糖;erythromycin 红霉素;erythrocyte 红细胞eu- 真正eukaryote 真核生物;eukaryocyte 真核细胞;eubacteria 真细菌e(x)- 向外,超出,完全,彻底explant 外植体;elongate 拉长;evaluate 评价ex(o)- 外,在外,产生exothermic 放热的;exergonic 放能的;exogenous gene 外源基因extra- 超出extracellular 胞外的;extract 抽提物;extracellular virus 胞外病毒ferri- 高铁ferricytochrome 高铁细胞色素;ferritin 铁蛋白;ferridoxin 铁氧还原蛋白ferro- 亚铁ferrocytochrome 亚铁细胞色素;ferroheme 血红素;ferrochelatase 亚铁螯合酶flavanol 黄烷酮;flavin 黄素;flavone 黄酮fluoro- 氟基,氟代,荧光fluorochrome 荧光染料;fluoroacetate 氟乙酸;fluorometer 荧光剂formyl- 甲酰formyltetrahydrofolate 甲酰四氢叶酸;formyl 甲酰基;formylation 甲酰化geo 土地geographical barrier 地理障碍;geographical isolation 地理隔离;geosmin 土腥味素glyc(o)- 糖glycoprotein 糖蛋白hem(o,a)-,haem(o,a)-,haemat(o)-血的hemoglobin 血红蛋白;haemagglutinin 血凝素;haem 血红素hemi- 半hemicellulase 半纤维素;hemizygote 半合子;hemiacetal 半缩醛heter(o)- 异,杂,异种heterogeneous 异质的,不均一的;heterotrophic 异养的;heteroantigen 异种抗原hepato- 肝hepatocarcinoma 肝癌;hepatocyte 肝细胞;hepatotoxin 肝脏毒素homeo- 同源,同祖homeotic gene 同源异形基因hom(o)- 相同homogeneous 同质的,均一的;homologous 同源的;homoeosis 同源异形hydr(o)- 水,液体,氢hydrocarbon 烃;hydrocolloid 水胶体;hydrobios 水生生物hydroxy(l) 羟基hydroxyapatite 羟磷灰石;hydroxylase 羟化酶hyper- 超出,过度hyperfiltration 反渗透;hypertension 高血压hypo- 低,(过)少sodium hypochlorite 次氯酸钠;hypoblast 下胚层;hypoimmunity 低免疫性imino- 亚胺基iminodiacetic acid 亚胺基二乙酸immuno- 免疫immunogenic 致免疫的;immunoassay 免疫分析in-(il-,im-,ir-)不,无;在内,入内insoluble 不能溶解的;insuperable 不能克服的;impermeable 不能渗透的infra- 下面,内部infrastructure 基础结构;infrared 红外线的inter- 相互,在……之间interact 相互作用;intergeneric 属间的;inter-particle 颗粒间的intra- 在内,向内intraspecific 种内的;intra-particle 颗粒内的;intravenous 进入静脉的iodo- 碘基,碘代iodometry 碘量法;iodouracil 碘尿嘧啶;iodoacetic acid 碘乙酸iso- 同,等,异isomer 同分异构体;isomerase 异构酶;isobutyl 异丁基kary(o)- 核,细胞核karyology 胞核学keto- 酮基ketohexulose 酮己酮糖;keto acid 酮酸;ketoamin 酮胺lacto- 乳lactobacillus 乳杆菌属;lactogen 催乳素;lactoglobulin 乳球蛋白leuco- 白,无色的leucocyte 白细胞lipo- 脂lipoprotein 脂蛋白;lipoxygenase 脂氧合酶lympho- 淋巴lymphocyte 淋巴细胞macro- 大的,宏观的macromolecule 大分子;macroporous 大孔的mal- 不当,不良malabsorption 吸收不良;malassimulation 同化不全;malnutrition 营养不良megal(o)- 巨大cytomegalovirus 巨细胞病毒mercapto- 巯基β-mercaptoethylamine β-巯基乙胺meso- 内消旋;中(间)meso inositol 内消旋肌醇;mesophilic 嗜温的meth- 甲基methacrylate 甲基丙烯酸methyl 甲基methyltroph 甲基营养菌micro- 微,微小的microscope 显微镜;microcarrier 微载体;microbe 微生物mono- 一,单,单一monoclonal 单克隆的;monolayer 单层multi- 多,多方面multistage 多级;multicellularity 多细胞性;myco- 真菌mycolytic 溶真菌的;mycotoxin 真菌毒素;mycoprotein 真菌蛋白myelo- 髓鞘,髓myeloblast 成髓细胞;myelocyte 髓细胞;myeloma 骨髓瘤myo- 肌myoalbumin 肌白蛋白;myoblast 成肌细胞;myocyte 肌细胞nano- 纳nanobacteria 微小细菌;nanosecond 纳秒;nanotechnology 纳米技术neo- 新neocarcinostatin 新制癌菌素;neocerebellum 新小脑;neomycin 新霉素neur(o)- 神经neural 神经的;neurotoxin 神经毒素nitro- 硝基nitrofuran 硝基呋喃;nitroalkane 硝基烷;nitrobacteria 硝化细菌nucle(o)- 核nucleoside 核苷;nucleophilic 亲核的non- 非,无,不non-newtonian fluid 非牛顿型流体;non-aqueous solution 非水溶液nor- 去甲,正noradrenalin 去甲肾上腺素;normal 正常,正交;normocyte 正红细胞over- 在上面,超过,过overshooting 过调节;overview 简明概述;overcooled 过冷的oligo- 寡oligosaccharide 寡糖,低聚糖onco- 肿瘤oncogene 致癌基因ovo- 卵ovocenter 卵中心体;ovorubin 卵红蛋白;ovum 卵细胞oxalo- 草酰,乙二酸-酰基oxalo acetate 草酰乙酸oxy- 氧;羟基deoxyguanosine 脱氧鸟苷;oxytetracycline 土霉素;oxyproline 羟脯氨酸path(o)- 病pathogen 病原菌para- 旁(位),对(位),副parabronchus 复支气管;parathyroid gland 甲状旁腺;paraoxon 对氧磷peri- 周,周围perimeter 周长;periplasmic space 周质间隙;periblast 胚周区per- 过peroxisome 过氧化质体phenyl 苯基phenylalanine 苯丙氨酸phospho- 磷酸基phosphofructokinase 磷酸果糖激酶phosphoryl- 磷酰基phosphorylation 磷酸化作用phyto- 植物phytoalexin 植物抗毒素;phytology 植物学;phytoplankton 浮游植物plasm(o)- 原生质,血浆plasmolemma 质膜pleio- 多pleiotropic 多效的;pleioxeny 多主寄生;pleiotropy 多效性poly- 多,聚polysaccharide 多糖;polystyrene 聚苯乙烯;polyacid 多酸post- 后post-transcriptional modification 转录后修饰作用;post-exponential growth phase 后对数生长期pre- 前,在前premature 过早的;precursor 前体;premise 前提pro- 原,前prokaryote 原核生物;prostate 前列腺proteo- 蛋白proteolipid 蛋白脂质;proteome 蛋白质组;proteolysis 蛋白酶解proto- 原始,初prototype 原型;protoplast 原生质体pseud(o)- 假的pseudo-plastic fluid 假塑性流体;psudodominance 假显性;pseudohypha 假菌丝pyro- 焦,火,热pyrophosphorylase 焦磷酸化酶;pyrogen 热源;progenic exotoxin 热源性外毒素quasi- 类似,准quasi-homogeneous 准均匀的radio- 辐射,放射autoradiography 放射自显影;radiotracer 放射性示踪物;radiology 放射学re- 再,重新,反复recirculation 循环;reversion 回复;reactivity 反应性retro- 后,向后,回复retrovirus 逆转录病毒ribo- 核糖riboflavin 核黄素;ribonucleic acid 核糖核酸;ribonucleotide 核糖核苷酸self- 自身的self-fertilization 自体受精semi- 半,部分semi-permeable membrane 半透膜;semi-synthetic 半合成的;semiconservative replication 半保留复制sero- 血清serological 血清学;seroconversion 血清转变soma- 体soma 体质,胞体;somatic cell 体细胞;somatization 体部分化somato- 生长somatocrinin 生长素释放肽;somatotroph 促生长素细胞;somatotropin 促生长素,生长激素sub- 下面,次于,近于subcellular 亚细胞的;subunit 亚基;subdivide 再分super- 上,上面,超,超级superior 上面的;supernatant 上清液的syn-(sym-) 共同,合synchronize 同步;symbiosis 共生现象;synergistic 协同作用的techn(o)- 技术,工艺technology 技术(学),工艺学;technique 技术therm(o)- 热thermistor 热敏电阻;themometer 温度计thi(o)- 硫,硫代thiamine 硫胺素;thioacylation 硫代酰化;thiokinase 硫激酶thym(o)- 胸腺thymosin 胸腺素toti- 全,全部,整个totipotency 全能性trans- 横穿,通过,转移transformation 转化;transcribe 转录;transposen 转位子tri- 三,三次,三级triplet 三联体;triangle 三角形;triacylglycerol 三酰甘油ultra- 超,极端,过分ultrasonic 超声波;ultracentrifugation 超离心un- 不,相反,出去unfold 展开under- 下面,低于,不足undergraduate 大学本科生;underpin 加固……的基础uni- 单,一,同一uninucleate 单核的;unique 独一无二的up- 向上,在上upstream 上游;upright 直立的uro- 尿urokinase 尿激酶vinyl- 乙烯基polyvinylchloride 聚氯乙烯后缀:-able(-ible) 可能的practicable 可行的;responsible 负责的-ability 能力acceptability 可接受性;permeability 渗透性-age 表示动作过程、量spillage 溢出;percentage 百分比-al 接在名词后形成形容词,接在动词后形成名词personal 个人的;exceptional 例外的;refusal 拒绝-aldehyde 醛glutaraldehyde 戊二醛-amin 胺methylamine 甲胺-ane 烷methane 甲烷-ant 动作者inactivant 失活剂;bioprotectant 生物保护剂-ase 酶protease 蛋白酶;polymerase 聚合酶-ate 盐,酯phosphate 磷酸盐;sebacate 奎二酸酯-cide 杀害,消灭suicide 自杀;bactericide 杀菌剂;amoebicide 抗阿米巴药-cyte 细胞leucocyte 白细胞-derm 皮,皮层blastoderm 胚层;dermadrone 内病性皮疹-ene 烯ethylene 乙烯-(e)ry 场所;一类事物bakery 面包房;circuitry 电路系统;poultry 家禽-fold 倍twofold 两倍-(i)fy 接名词或形容词后构成动词solidify 固化;simplify 简化-gen 原,剂antigen 抗原;mutagen 诱变剂;carcinogenic 致癌的-gram 图形;记录的东西chromatogram 色谱图;polarograph 极谱图-graphy 描绘、记录的方式、学科chromatography 色层分离法;autoradiography 放射自显影术-ic anhydride 酸酐sodium chloride 氯化钠-imine 亚胺iminodiacetic acid 亚胺基二乙胺-ish 略带一点的greyish 浅灰色的-ist ……的实行者,……专业人员(专家)scientist 科学家;geneticist 遗传学家-itis 炎,发炎hepatitis 肝炎;encephalitis 脑炎-ize(-ise) 使成为atomize 雾化;oxidize 使氧化-lactone 内酯β-propiolactone β-丙醇酸内酯-lemma 皮,壳,鞘膜basilemma 基底膜;lemmatoxin 鞘毒素-less 无,不,不能stainless 不锈的-like 如……样的sponge-like 海绵状的-(o)logy(-ological,形容词)学科biology 生物学;technology 技术学,工艺学;toxicology 毒理学的-lysis 分解作用,过程glycolysis 糖酵解作用;hydrolysis 水解作用;analysis 分析-lytic(形容词,分解的)-lyze(-lise)(动词,分解)-lysate(名词,分解液)hydrolytic 水解的;hydrolyze 水解;hydro-lysate 水解液-ment 在动词后构成名词development 发展;entrainment 夹带-meter 计,表spectormeter 发光剂;viscometer 粘度计-metric 测量的gravimetric (测定)重量的;volumetric (测定)体积的;potentiometric (测量)电位的-mycete 霉菌streptomycete 链霉菌-mycin 霉素,菌素mitomycin 丝裂霉素;actinomycin 放线菌素-nema 丝,线amphinema 偶线;chromonema 染色体;nemacicide 杀线虫剂-oid 类,似,……样、状的acidoid 似酸的;amyloid 淀粉样的;carotenoid 类胡萝卜素-ol 醇butanol 丁醇;inositol 肌醇-oma 瘤myeloma 骨髓瘤;hybridoma 杂交瘤-one 酮phenoxazinone 吩噁嗪酮-ory 构成形容词transitory 短暂的;respiratory 呼吸的;构成名词,表场所depository 储藏所-ose 糖heptose 庚糖;lactose 乳糖-oside 糖苷galactoside 半乳糖苷;cardiac glycoside 强心苷-osis 病,症;acalcicosis 缺钙症;hepatitis 肝炎-ous 构成形容词extraneous 外来的;rigorous 严格的-philic 亲……的lipophilic 亲脂性的;hydrophilic 亲水的-phobic 疏……的hydrophobic 疏水的-phoresis 移动electrophoresis 电泳-phil 亲,嗜,喜acidopil 嗜酸的;aerophil 好气的-plasm 血浆,原生质protoplasm 原生质-plast 原始细胞,(质)体,血浆centroplast 中心质体;hematoplast 成血细胞;plasmolemma 质膜-proof 耐……的flame-proof 耐火的;explosion-proof 防爆的-side 苷nucleside 核苷;glycoside 糖苷-sis 构成名词,表示作用,过程mutagenesis 诱变作用;mitosis 有丝分裂;meiosis 减速分裂-some 体,粒chromosome 染色体;idiosome 核旁体;ribosome 核糖体-stat 稳定装置chemostat 恒化器-taxis,tropism 趋向性aerotaxis 趋氧性;chemiotaxis 趋化性;lipotropism 亲脂性-tion(-ation,-ition,-sion) 构成名词instrumentation 仪表化;trypsinization 胰蛋白消化酶;adhesion 粘着-tide 甘酸,肽deoxyribotide 脱氧核苷酸;propeptide 前肽-troph ……营养生物,……营养型(-trophic 构成形容词)methanotroph 甲烷营养型;autotroph 自养生物;autotrophic 自养的-wise 接名词或形容词后构成副词batchwise 分批的;likewise 同样的。
生物工程专业英语单词
胆固醇
chloesterol
双倍体
diploid
质粒
plasmid
白灵药
panacea
常染色体
autosomal chromosomes
性染色体
sex chromosome
红细胞
red blood cell
生殖细胞
germ cell
端粒
telomere
转化 transformation 插入
adding
脂质
lipid
葡萄糖
glucose
消化液
digestive fluids
上皮的
epithelial
折叠
fold
核苷,核苷酸 nucleotide
核糖 酶
细胞核 小分子 大分子 细胞学 亲水的 疏水的 聚合物
分子 功能 二糖 半乳糖 分泌
转换 多肽 围绕
ribose
糖
sugar
enzyme
溶酶体
lysosome
capsid
合成,混 合
compound
耕种
tillage
成熟
maturation
标识,标 签
label
造假
adulteration
基因差异表达 differential gene expression
副作用
adverse/side effect
计划生育
birth control
水土流失
soil erosion
Adenine
氨基酸
amino acid
杂种
mule
Thymine
简并性
degenerate
小麦
生物医学工程专业英语词汇
百度文库- 让每个人平等地提升自我1. electronic 电的(与电有关的)2. engineering 工程,工程学3. circuit 电路4. common-base 共基极5. common-emitter 共发射极6. common-collector 共集电极7. transistor 晶体管,三极管8. impedance阻抗9. ohm 欧姆10. megohm 兆欧11. voltage 电压12. rectifier 整流器13. diode 二极管14. current 电流15. cycle 周期16. pulsate 博动,波动17. amplitude幅度18. frequency 频率19. in series 串联20. in parallel 并联21. pulse 波,脉冲22. positive正的23. negative 负的24. baseline 基线25. waveform 波形26. rectangular 矩形的,直角的27. sawtooth 锯齿28. capacitance 电容值,容抗29. electric 电的(靠电工作的)30. condenser 电容器,电容31. capacitor 电容器32. metallic 金属的33. dielectric 电介质34. terminal 电极,终端,套管35. accumulate 蓄电,储电,积累36. electron 电子37. potential 电势38. charge 充电,电荷39. discharge 放电40. farad 法拉41. volt 伏特42. ampere安培43. microfarad 微法44. gravitation 重力,引力,万有引力45. mass 质量46. matter 物质47. resistance 电阻48. cathode 负极49. anode 正极50. short circuit 短路51. open circuit 断路52. germanium 锗53. crystal 晶体⏹LED ( Light Emitting Diode ) 发光二极管⏹probe 探针⏹mains 电源,干线⏹buffer 缓冲器⏹ultrasound 超声⏹ultrasonography 超声波检查法⏹tissue 组织⏹bone 骨⏹organ 器官⏹dimensional 维的⏹transducer 传感器keyboard 键盘⏹cursor 光标⏹piezoelectric 压电的⏹quartz 石英⏹acoustic lens 声学透镜⏹microprocessor 微处理器⏹memory 存储器⏹power supplies 电源⏹amplifier 放大器⏹archive 存档⏹fetus 胎,胎儿⏹cancerous 癌的,恶性肿瘤的⏹benign tumors 良性肿瘤⏹prostate 前列腺⏹gland腺⏹colon 结肠⏹rectum 直肠⏹breast 胸⏹breast lesions 乳腺病变⏹biopsies 活组织检查⏹limb 肢⏹blood 血⏹artery 动脉⏹radiation(辐射,放射).radiographic (放射照相的)⏹Obstetrics (产科学)and gynecology (妇科学)breech(臀部)⏹Checking the position o the placenta(胎盘)⏹uterus(子宫)⏹Seeing tumors of the ovary (卵巢)and breast⏹Cardiology 心脏病学blood vessels (血管)⏹Urology (泌尿学)⏹Measuring blood flow through the kidney (肾)pregnancy(怀孕).⏹multifunctional⏹多功能的⏹portable⏹便于携带的,可移动的⏹electrocardiogram (ECG)⏹心电图⏹monitor⏹监护仪Study and Design of a Multifunctional Portable Electrocardiogram (ECG) Monitor Based on SPCE061A基于SPCE061A多功能便携式心电监护仪的研究与设计⏹wireless 无线的fetal 胎儿的Design of a Wireless Fetal Electrocar-diogram Monitoring System Based on S3C2410 基于S3C2410的无线胎儿心电监护仪的设计⏹microcontroller 单片机⏹instrument 仪器The Development of Embedded ECG Monitor Instrument Using C8051F040 Microcontroller基于C8051F040单片机的便携式心电监护仪的低功耗设计R & D (Research and Development ) 研究与开发,简称研发On R & D of an ECG Bedside Monitor心电床边监护仪的研制cardiac 心脏(病)的Performance Test for Cardiac Monitor心电监护仪的性能测试⏹liquid crystal display (LCD) 液晶显示器Development of a Portable ECG Monitor with Liquid Crystal Display便携式液晶显示心电监护仪的研制⏹maintenance 维护,维修⏹equipment 设备The Research of Remote Intelligent Monitoring, Diagnosis and Maintenance System for Complicated Equipment 复杂装备远程智能监测、诊断与维护系统研究⏹oxygen saturation 血氧饱和度⏹non-invasively 无创地This paper describes the measuring principle and instrument structure characteristic of the Multi-parameter Patient Monitor which is able to ECG, heart rate, blood pressure, breath rate, body temperature and oxygen saturation non-invasively.介绍了能测量心电图、心率、脉搏、无创血氧、无创血压、体温、呼吸等多参数监护仪的测量原理和仪表结构特点resolution 分辨率acquisition 采集conversion card 转换卡The resolution of the system has reached % and the real-time display has been realized by the data acquisition and processing with A/D/A conversion card controlled by the software.用软件控制A/D/A转换卡进行数据采集与处理,系统分辨率达%,实现了实时显示。
生物医学工程专业英语词汇
navigate ['næviɡeit] vt. 驾驶,操纵;使通过;航行于high-pitched ['hai'pitʃt] adj. 声调高的;声音尖锐的;紧张的;陡的echoes n. 回声;共鸣;反响(echo的复数)Submarine n. 潜水艇;海底生物sonar ['səunɑ:] n. 声纳;声波定位仪(等于asdic)chirp 唧唧声;喳喳声;[通信] 啁啾声divided by 除以element n. 元素;要素;原理;成分;自然环境detect 探测probe 探针scan 扫描foetus 胎儿rendering . 翻译;表现;表演;描写;打底;(建筑物等)透视图atrium 中庭,心房(atria )heart values 心脏瓣膜ventricle 室,心室wave 波wavelength 波长Doppler shift 多普勒频移stationary 固定的静止的artery 动脉blood flow 血流,血流量trace 踪迹carotid 颈动脉turbulent 混乱的,骚乱的rapid 急流deposit 在···处储存cavitation 空化physiological 生理的direct correlation 直接相关dyslexia 阅读障碍Reliable data 可靠数据ongoing 前进,不间断的misdiagnosis 误诊echo sounding 回声探测characterize vt. 描绘…的特性;具有…的特征submerged 水下的,在水中的diagnostic 诊断法,诊断的gallstones 胆结石breast masses 乳房包块tumors 肿瘤innovations 创新,改革gray scale 灰度,灰阶static 静态的internal organs 内脏spectral 光谱的hand-held 手提式,便携式scanner 扫描仪clinical 临床的,诊断的Sonography 超声波扫描术platform 平台superior 优秀的resolution 分辨率clarity 清晰度initially 最初地therapy 治疗法chemotherapy 化学疗法Ultrasonic waves 超声波disruptive 破坏的malignant 恶性的,有害的transducer 传感器pulse 脉冲Disk Storage 磁盘储存器Piezoelectric Effect 压电效应electric currents 电流crystals 晶体propagate 传播,传送Receipt 接收electrical signals 电信号Insertions 插入obstetrics 产科学gynecology 妇科学,妇科医学extensively 广阔地non-invasive 非侵入性的,非侵入的pregnancy 怀孕exclude 排除,排异ectopic 异位的molar 磨碎的cardiac pulsation 心脏搏动congenital 先天性的malformations 畸形multiple pregnancies 多胎妊娠placental position 胎位abdomen 下腹gel 胶体uterus ['ju:tərəs] n. [解剖] 子宫beams 光线thin slices 薄片recompose [,ri:kəm'pəuz] vt. 改组;重写;重新安排;使恢复镇静intrauterine 子宫内的implantation 移植missed abortion 过期流产gestation age 怀孕年龄gestation [dʒes'teiʃən] n. 酝酿;怀孕;妊娠期due date 到期日multiple embryos 多重胚胎embryos [‘embriəuz] n. 胚胎;晶胚abnormalities 畸形,异样情况Down syndrome 唐氏症Hydrops 积水first trimester早期妊娠chromosomal [‘krəuməsəuməl] adj. 染色体的hydrocephalus [,haidrəu‘sefələs] n. [内科] 脑积水anencephaly [æn,ensə'feiliə, ,ænen'sefəli] n. 先天无脑畸形sac 囊,液囊visualized 直观的,直视的yolk sac卵黄囊diameter 直径femur ['fi:mə] n. [解剖] 股骨;大腿骨embryo 胚胎polydactyl 多指畸形dysmorphia 畸形clubbing of feet 脚部联合cleft lipn. [口腔] 唇裂;[胚][口腔] 兔唇palate ['pælit] n. 味觉;上颚;趣味spina bifida [,spainə'baifidə, -'bi-] 脊柱裂Transvaginal 经阴道的calculations 计算amplitude 振幅duration 持续Amplification 放大Scan Converter 扫描变换器Vibrate 振动anatomical 解剖的,结构上的conventional 常见的vibrations 振动共鸣amplifier 放大器compensation 补偿sequence 序列,顺序format 格式,版式matrix 矩阵matrix 格式修改storage 存储trackball 轨迹球floppy disk 软磁碟thermal printers 热感性印刷机therapeutic 治疗的blood clots 血栓kidney stones 肾结石Portability 可移植的Veterinary 兽医的Joint 关节mysterious [mi'stiəriəs] adj. 神秘的;不可思议的;难解的laureate ['lɔ:riət] adj. 戴桂冠的;荣誉的rotating anode 旋转阳极fluoroscopic 荧光静的image intensifier 图像增强器fluoroscopy 荧光镜检查radiography 放射线照相术mammography 乳房x线照相术electromagnetic [i,lektrəumæɡ‘netik] adj. 电磁的radiation [reidi'eiʃən] n. 辐射;发光;放射物Emitted v. 排放(emit的过去分词);发散charged particles带电粒子photons ['fəu,təns] n. 光子;光量. penetrate ['penitreit] vt.洞察;穿透charge [tʃɑ:dʒ] n. 费用;电荷;掌管decelerate 减速collision 冲突target 目标,靶子braking radiation 制动辐射bombarding 急袭的,爆炸的vacancy 空缺,空位electron [i'lektrɔn] n. 电子material [mə'tiəriəl] adj. 重要的;物质的accelerated 加速的Bremsstrahlung 轫致辐射electromagnetic radiation 电磁辐射region 地区electromagnetic spectrum 电磁谱elastically [i'læstikli] adv. 有弹性地;伸缩自如地Rebounding 弹回Photoelectric 光电的Compton Scattering 康普顿散射Pair Production 电子偶的产生Rayleigh scattering 瑞利散射coherent [kəu'hiərənt] adj. 连贯的,一致的dominant ['dɔminənt] adj. 显性的;占优势的;支配的,统治的interaction processes 互动过程relevant 有关的cross-sections 横截面Photoelectric absorption 光电吸收linear attenuation coefficient 线性衰减系数probability of ···的概率Avogadro [avɔ'gadrɔ] n. 阿佛加德罗radiation intensity 辐射强度traversing 穿过,通过thickness 厚度molecule 分子Ionisation 电离作用release 释放free radicals 自由基,游离基hydrogen ['haidrədʒən] n. [化学] 氢peroxide [pə'rɔksaid] n. 过氧化氢;过氧化物excited molecules 受激分子Barium meal钡餐Flat Panel 扁平面板Formation 形成,构造incident 附带的Subject contrast 受照者对比度Sharpness 清晰度shortened form 简称absorption 吸收anatomical structure 解剖结构density 密度contrast medium 放射照影剂kilovoltage 千伏电压filtration 过滤predominate 支配,主宰,在···中占优势Hence 因此,今后Primary beam 初级束流signal to noise ratio 信噪比collimate 校准,瞄准proportion 比例tray 托盘receptor 受体,接收器air gap 气隙oblique 倾斜的geometry 几何学image formation 成像,图像形成Point source 点声源Infinite 无限的finite 有限的Penumbra 半影Focal spot 电子焦点,焦斑Penetration 参透,突破target angle 目标夹角loading capacity 负荷容量gradient 梯度,坡度,倾斜度inherent 固有的,内在的Quantum noise 量子噪声Grainy 粒状的exposure factors 曝光系数at this stage 眼下scope 视野Cine 电影;电影院Spot 地点,现场spot film 【放射学】缩影片;点片Curtain 幕;窗帘Slot n. 位置;狭槽。
生物工程生物技术)专业英语翻译
Lesson One(4学时)Inside the Living Cell: Structure andFunction of Internal Cell Parts教学目的:使学生掌握细胞的组成结构(各种细胞器以及它们在细胞中的位置),Cytoplasm: The Dynamic, Mobile Factory细胞质:动力工厂Most of the properties we associate with life are properties of the cytoplasm. Much of the mass of a cell consists of this semifluid substance, which is bounded on the outside by the plasma membrane. Organelles are suspended within it, supported by the filamentous network of the cytoskeleton. Dissolved in the cytoplasmic fluid are nutrients, ions, soluble proteins, and other materials needed for cell functioning.生命的大部分特征表现在细胞质的特征上。
细胞质大部分由半流体物质组成,并由细胞膜(原生质膜)包被。
细胞器悬浮在其中,并由丝状的细胞骨架支撑。
细胞质中溶解了大量的营养物质,离子,可溶蛋白以及维持细胞生理需求的其它物质。
The Nucleus: Information Central(细胞核:信息中心)The eukaryotic cell nucleus is the largest organelle and houses the genetic material (DNA) on chromosomes. (In prokaryotes the hereditary material is found in the nucleoid.) The nucleus also contains one or two organelles-the nucleoli-that play a role in cell division. A pore-perforated sac called the nuclear envelope separates the nucleus and its contents from the cytoplasm. Small molecules can pass through the nuclear envelope, but larger molecules such as mRNA and ribosomes must enter and exit via the pores.真核细胞的细胞核是最大的细胞器,细胞核对染色体组有保护作用(原核细胞的遗传物质存在于拟核中)。
生物医学工程专业英语 Unit02[73页]
Bioinformatics represents a new field at the interface of the ongoing revolutions in molecular biology and computers. Bioinformatics is defined as the use of computer databases and computer algorithms to analyze proteins, genes, and the complete collection of deoxyribonucleic acid (DNA) that comprises an organism (the genome).
bioinformatics
n. 生物信息学
molecular biology 分子生物学
computer algorithm 计算机算法
genome
n. 基因组
computer database 计算机数据库
deoxyribonucleic acid 脱氧核糖核酸
Text: Genomics and Bioinformatics
序列数据
structural data
biochemical pathway 生化途径
disease process
genome-sequencing projects
基因组测序计划
结构化数据 疾病过程
Text: Genomics and Bioinformatics
While the discipline of bioinformatics focuses on the analysis of molecular sequences, genomics and functional genomics are two closely related disciplines. The goal of genomics is to determine and analyze the complete DNA sequence of an organism, that is, its genome. The DNA encoding genes can be expressed as ribonucleic acid (RNA) transcripts and then, in many cases, further translated into protein.
生物医学工程专业英语
生物医学工程专业英语Unit 1 Biomedical Engineering (1)Lesson 1 A History of Biomedical Engineering (1)Lesson 2 What is a Biomedical Engineer? (7)Unit 2 Biomedical Instrumentation (15)Lesson 3 Basic Instrumentation Systems (15)Lesson 4 The Electrocardiogram (ECG) (26)Lesson 5 Measuring the Blood Pressure (31)Lesson 6 Heart Pacemaker (35)Unit 3 Medical Imaging (38)Lesson 7 An Introduction (38)Lesson 8 Basic Knowledge on X-rays in Medical Radiology (42)Part 1 X-RAYS (42)Part 2 The production of X-rays: X-ray spectra (46)Part 3 The interaction of X-rays with matters (52)Lesson 9 CT Scan (56)Lesson 10 Magnetic Resonance Imaging (60)Lesson 11 Ultrasonic Sensor (64)Lesson 12 Positron Emission Tomography (69)Unit 4 Hospital Management (76)Lesson 13 Hospital Information Systems (76)Lesson 14 Picture archiving and communication system (87)Unit 5 Biomaterial and Tissue Engineering (93)Lesson 15 Biomaterial (93)Lesson 16 Tissue Engineering (97)Unit 6 Rehabilitation Engineering and Biomechanics (110)Lesson 17 Rehabilitation (110)Lesson 18 Assistive Technology (114)Lesson 19 Biomechanics (122)Unit 1 Biomedical EngineeringLesson 1 A History of Biomedical EngineeringIn its broadest sense, biomedical engineering has been with us for centuries, perhaps even thousands of years. In 2000, German archeologists uncover a 3,000-year-old mummy from Thebes with a wooden prosthetic tied to its foot to serve as a big toe. Researchers said the wear on the bottom surface suggests that it could be the oldest known limb prosthesis. Egyptians also used hollow reeds to look and listen to the internal goings on of the human anatomy. In 1816, modesty prevented French physician Rene Laennec from placing his ear next to a young woman’s bare chest, so he rolled up a newspaper and listened through it, triggering the idea for his invention that led to today’s ubiquitous stethoscope.No matter what the date, biomedical engineering has provided advances in medical technology to improve human health. Biomedical engineering achievements range from early devices, such as crutches, platform shoes, wooden teeth, and the ever-changing cache of instruments in a doctor’s black bag, to more modern marvels, including pacemakers, the heart-lung machine, dialysis machines, diagnostic equipment, imaging technologies of every kind, and artificial organs, implants and advanced prosthetics. The National Academy of Engineering estimates that there are currently about 32,000 bioengineers working in various areas of health technology.As an academic endeavor, the roots of biomedical engineering reach back to early developments in electrophysiology, which originated about 200 years ago. An early landmark in electrophysiology occurred in 1848 when DuBois Reymond published the widely recognized Ueber die tierische Elektrizitaet. Raymond’s contemporary, Hermann von Helmholtz, is credited with applying engineering principles to a problem in physiology and identifying the resistance of muscle and nervous tissues to direct current.In 1895, Wilhelm Roentgen accidentally discovered that a cathode-ray tube could make a sheet of paper coated with barium platinocyanide glow, even when the tube and the paper were in separate rooms. Roentgen decided the tube must be emitting some kind of penetrating rays, which he called “X”rays for unknown. This set off a flurry of research into the tissue-penetrating and tissue-destroying properties of X-rays, a line of research that ultimately produced the modern array of medical imaging technologies and virtually eliminated the need for exploratory surgery.Biomedical engineering’s unique mix of engineering, medicine and science emergedalongside biophysics and medical physics early this century. At the outset, the three were virtually indistinguishable and none had formal training programs.Between World War I and World War II a number of laboratories undertook research in biophysics and biomedical engineering. Only one offered formal training: the Oswalt Institute for Physics in Medicine, established in 1921 in Frankfurt, Germany, forerunner of the Max Planck Institute for Biophysics.The Institute’s founder, Friedrich Dessauer, pioneered research into the biological effects of ionizing radiation. The Oswalt Institute and the University in Frankfurt soon established formal ties that led to a Ph.D. program in biophysics by 1940. Research topics included the effects of X-rays on tissues and the electrical properties of tissues. The staff of 20 included university lecturers, research fellows, assistants and technicians.Following the Second World War, administrative committees began forming around the combined areas of engineering, medicine and biology. A biophysical society was formed in Germany in 1943. Five years later, the first conference of engineering in medicine and biology convened in the United States, under the auspices of the Institute of Radio Engineers (forerunner of the Institute of Electrical and Electronics Engineers), the American Institute for Electrical Engineering, and the Instrument Society of America. It was a small meeting. About 20 papers were delivered to an audience of fewer than 100. The first 10 annual conferences paid most of their attention to ionizing radiation and its implications. As conference topics broadened, so did attendance. The topic of the 1958 conference, Computers in Medicine and Biology, drew 70 papers and more than 300 attendees. By 1961, conference attendance swelled to nearly 3,000.The 1951 IRE convention generated enough interest in medical electronics that the IRE formed a Professional Group on Medical Electronics. An early action of this group was to collaborate on the Annual Conference on Electronic Instrumentation and Nucleonics in Medicine, which the AIEE[1]began about 1948. In 1954, the AIEE, the IRE and the ISA formed the Joint Executive Committee on Medicine and Biology, which began organizing the annual conferences.In 1963, the AIEE and the IRE merged to form the Institute of Electrical and Electronics Engineering. Contributing forces for the merger were the members of the AIEE and IRE technical committees for biomedical engineering. Most members favored it and had been collaborating with their counterparts in the other society for years.At the merger it was decided to carry over to the IRE system of Professional Groups. The IRE Professional Group on Medical Electronics became the IEEE Professional Group onBio-Medical Engineering (PGBME), the name change reflecting the fact that many members, particularly former AIEE members, were concerned with non-electronic topics.Also in the early 1960s the NIH[2]took three significant steps to support biomedical engineering. First, it created a program-project committee under the General Medical Sciences Institute to evaluate program-project applications, many of which served biophysics and biomedical engineering. Then it set up a biomedical engineering training study section to evaluate training-grant applications, and it established two biophysics study sections. A special “floating”study section processed applications in bioacoustics and biomedical engineering. Many applications did not make it to the biomedical engineering study section and ended up in radiology, physiology or other panels.The diversity of work in biomedical engineering and the diversity of background of the people contributing to this field made it difficult for a single organization to represent everyone[3]. In the 1960s there were efforts by some leaders of the PGBME, which became the IEEE Engineering in Medicine and Biology Society, to achieve greater autonomy within the IEEE in order to accommodate a more diverse membership. Because there were quite a few professional groups, several umbrella organizations were established to facilitate cooperation. In the late 1960s the Alliance for Engineering in Medicine and Biology was formed. In 1968, the Biomedical Engineering Society was formed to give "equal status to representatives of both biomedical and engineering interests and promote the increase of biomedical engineering knowledge and its utilization". Initially, the membership of the society consisted of 171 founding members and 89 charter members. Membership now numbers nearly 1,200 professional biomedical engineers, with another 1,600 student members.The society awarded the Alza Distinguished Lectureship from 1971 to 1993 to encourage the theory and practice of biomedical engineering. The BMES Distinguished Lectureship Award was founded in 1991 to recognize outstanding achievements in biomedical engineering. Other honors include a young investigator award, the BMES Distinguished Service Award, and the Presidential Award, established in 1999 to enable BMES presidents to recognize extraordinary leadership within the society.In addition to the professional societies, the field of biomedical engineering received a large ally when The Whitaker Foundation was created in 1975, upon the death of U.A. Whitaker. As an engineer and philanthropist, Whitaker recognized that major contributions to improving human health would come from the merging of medicine and engineering. Since its inception, the foundation has primarily supported interdisciplinary medical research andeducation, with the principal focus being on biomedical engineering. The foundation has become the nation’s largest private benefactor of biomedical engineering. By 2002, it had contributed more than $615 million to universities and medical schools to support faculty research, graduate students, program development, and construction of facilities.In 1990 the National Science Foundation and The Whitaker Foundation observed that in spite of the numerous academic programs calling themselves "bioengineering" or "biomedical engineering", there was no structure for this widely diversified field. Because many advances in biomedical engineering were generated through the collaboration of engineers and clinical scientists in a number of different fields, the evolution of biomedical engineering as a profession in the 1970s and 1980s was characterized by the emergence of separate professional societies with a focus on applications within their own field.As a step toward unification, the American Institute for Medical and Biological Engineering was created in 1992. AIMBE was born from the realization that an umbrella organization was needed to address the issues of public policy and public and professional education that comprise these engineering sciences. Ten societies saw the virtue of this approach and formed the original members of AIMBE. Today, its 17 society members work to "establish a clear and comprehensive identity for the field of medical and biological engineering, and improve intersociety relations and cooperation within the field of medical and biological engineering".The earliest academic programs began to take shape in the 1950s. Their establishment was aided by Sam Talbot of Johns Hopkins University, who petitioned the National Institutes of Health for funding to support a group discussion of approaches to teaching biomedical engineering. Ultimately three universities were represented in these discussions: The Johns Hopkins University, the University of Pennsylvania and the University of Rochester. These three institutions, along with Drexel University, were among the first to win important training grants for biomedical engineering from the National Institutes of Health.In 1973, discussions started about broadening the base of Pennsylvania’s graduate Department of Biomedical Electronic Engineering by including other activities and adopting and undergraduate curriculum. Its present graduate program is an extension of the earlier one.During the late 1960s and early 1970s, development at other institutions followed similar paths, but occurred more rapidly in most cases due to the growing opportunities of the field and in response to the important NIH initiative to support the development of the field. The earlier institutions were soon followed by a second generation of biomedical engineering programs and departments. These included: Boston University in 1966; Case WesternReserve University in 1968; Northwestern University in 1969; Carnegie Mellon, Duke University, Renssselaer and a joint program between Harvard and MIT[4] in 1970; Ohio State University and University of Texas, Austin, in 1971; Louisiana Tech, Texas A&M and the Milwaukee School of Engineering in 1972; and the University of Illinois, Chicago in 1973.The number of departments and programs continued to rise slowly but steadily in the 1980s and early 1990s. In 1992, The Whitaker Foundation initiated large grant programs designed to help institutions establish or develop biomedical engineering departments or programs. Since then, the numbers of departments and programs have risen to more than 90. Some of the largest and most prominent engineering institutions in the country, such as the Georgia Institute of Technology, have established programs and emerged as leaders in the field. Many other new and existing programs have benefited from the foundation’s support.A major development took place in late 2000 when President Clinton signed a bill creating the National Institute of Biomedical Imaging and Bioengineering at the NIH. According to NIBIB’s website, its mission is to "improve health by promoting fundamental discoveries, design and development, and translation and assessment of technological capabilities". The Institute coordinates with biomedical imaging and bioengineering programs of other agencies and NIH institutes to support imaging and engineering research with potential medical applications and facilitates the transfer of such technologies to medical applications.The newest of the NIH institutes, NIBIB spent much of 2001 building program and administrative staff, preparing a budget request, setting up office space, determining funding and grant identification codes and procedures, and identifying program (research, training, and communication) focus areas and opportunities. NIBIB assumed administration of the NIH's Bioengineering Consortium (BECON) in September 2001, and awarded its first research grant in April 2002.New Words and Expressionsmummy [ ] n. 木乃伊Thebes [ ] n. [史]底比斯(古希腊的主要城邦)ubiquitous [ ] adj. 到处存在的, (同时)普遍存在的prosthesis [ ] n. 弥补stethoscope [ ] n. 听诊器dialysis [ ] n.[化] 透析, 分离electrophysiology [ ] n. [物]电生理学barium [ ] n. 钡platinocyanide [ ] n. [化]铂氰化物,氰亚铂酸盐ionizing radiation 电离放射线cathode-ray 阴极射线instrumentation [ ] n. 使用仪器nucleonics [ ] n. [核]核子学, 原子核物理学bioacoustics [ ] n. [生]生物声学radiology [ ] n. X光线学, 放射线学, 放射医学, X光线科philanthropist [ ] n. 慈善家interdisciplinary [ ] adj. 各学科间的clinical [ ] adj. 临床的, 病房用的Notes[1]AIEE美国电机工程学会[2]NIH美国全国卫生研究所[3]生物医学工程领域工作的多样性以及工作在该领域人们的背景差异使得很难用单一的组织来代表每一个人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Punnett square:庞纳特方格
A method used to determine the probabilities of combination in a zygote(受精卵)
Text 1. Early theories of inheritance early ideas of inheritance included Hippocrates’ theory of pangenesis and August Weismann’s germ plasm theory.
3.Mendel’s classic experiments
Mendel studied genetics through plantbreeding experiments with the garden pea, a plant species that is self-fertilizing(自受精) and breeds true(each offspring is identical to the parent in the trait of interest). 孟德尔通过豌豆实验研究遗传学,豌豆是 自花授粉植物和纯品系。
Breed true(to type):生出后代酷似其双亲 breed in and in: 近亲交配繁殖
breed out and out: (动物的)异种繁殖
breed out:在人工繁殖过程中消除(品种的特
Having been exposed to theories of the particulate nature of matter while a university student and having a background in mathematics, Mendel carried out a series of carefully planned experiments that demonstrated the particulate nature of heredity. 当他还是大学生时就提出了物质的粒子 属性理论,同时他学习数学。孟德尔进 行了一系列周密安排的实验来证实遗传 的颗粒性。
遗传学的早期理论包括Hippocrates的泛 生说和A.Weismann的种质学说。
希波克拉底(希腊文Ἱπποκράτης 英文Hippocrates of Cos II 或者
Hippokrates of Kos,约前460——前377)
被西方尊为“医学之父”的古希腊著名医生,欧洲医学奠基人,古希 腊医师,西方医学奠基人。提出“体液(humours)学说”,认为人体由血
Incomplete dominance:不完全显性 The condition in which two allelic genes have a different effect when they are together as a heterozygote in a diploid cell than either of them have in the homozygous state. Codominance:共显性 杂合体中一对等位基因的作用都表现
基于小鼠实验,维丝曼提出遗传信息储存 在配子中并将遗传信息传递给后代。
Both of these views incorporated the blending theory: they held that heritable traits of the two parents blend, so that the distinct characteristics of each are lost in offspring.
Law of independent assortment: 独立分配定律 Members of one gene pair will separate from each other independently of the members of other gene pairs.
Law of segregation:分离定律 When gametes are formed by a diploid organism, the alleles that control a trait(特征) separate from one another into different gametes, retaining their individuality(个性,个 体状态)
Pangenesis:泛生论,泛生说 The theory of heredity postulating(假设) that germs, humours(体液), or essences migrate from individual body cells to the sex organs and contribute to the gametes.
这两个早期观点合起来形成融合理论: 子代拥有父母本混合的遗传特征,而不 完全象亲代。
2. Gregor Mendel and the birth of Genetics
Gregor Mendel, an Augustinian monk in the monastery at Brunn, Austria, is known as the “father of genetics”. 孟德尔(公元1822~公元1884 ),一名奥 地利修道士,众所周知的遗传学之父.
His revolutionary ideas were neither understood nor accepted until many years after Mendel died. 直到他去世后,他的创新性理论才被理 解和接受。
孟德尔于1822年出生在海因珍多弗镇,1843年他进入奥地利布鲁 恩一家奥古斯都修道院。1847年他被任命为牧师。从1851年到1853年 在维也纳大学学习数学和自然科学。从1854年到1868年在布鲁恩现代学
和进化问题的理论探讨。他讲授达尔文进化论多年 ,直至1912年退休。
Based on experiments with mice, Weismann proposed that hereditary information in gametes transmitted traits to progeny.
Nondisjunction:不分离 The failure of separation of paired chromosomes at metaphase, resulting in one daughter receiving both and the other daughter cell none of the chromosomes in question. Nondisjunction can occur during a meiotic or mitotic division.
dihybrid cross: 双因子杂种杂交 AaBb*AaBb test cross:测交 F1*aa 确定F1是纯合 子还是杂合子 A cross between a heterozygote(异质 结合体) of unknown genotype and an individual homozygous(同型的) for the recessive genes in question.
液(blood)、粘液(phlegm)、黄胆(yellow bile)和黑胆(black bile)四种体液
组成,这四种体液的不同配合使人们有不同的体质。他把疾病看作是发展 着的现象,认为医师所应医治的不仅是病而是病人;从而改变了当时医学 中以巫术和宗教为根据的观念。主张在治疗上注意病人的个性特征、环境 因素和生活方式对患病的影响。重视卫生饮食疗法,但也不忽视药物治疗, 尤其注意对症治疗和预后。他对骨骼、关节、肌肉等都很有研究。他的医 学观点对以后西方医学的发展有巨大影响。
Homozygous:纯合的 A diploid organism that has two identical alleles for particular characteristic.
heterozygous:杂合的 A diploid organism that has two different allelic forms of a particular gene.
校担任自然科学代课教师。
与此同时,孟德尔从1856年起开始进行他的著名的植物育种实验。 1865年他推导出了著名的遗传学定律,他将定律用一篇论文表述出来, 并将论文呈交给布鲁恩自然历史学会。1866年他的成果被发表在该学会 学报上,题目是“植物杂交实验”。三年后又在同一杂志上发表了第二 篇论文。 1868年孟德尔被任命为牧师会会长,专职行政事务。 1900年,孟德尔的研究成果被发现。
Germ(种子,胚) plasm theory:种质学说 A substance thought to be transmitted in the gametes 配子(germ cells) in an unchanged form from generation to generation. The germ plasm was believed to be unaffected by the environment and to give rise to the body cells.
Lesson Four Foundations of Genetics (遗传学的建立)
Allele:等位基因 Alternative forms of a gene for a particular characteristic (e.g. attached earlobe(耳垂) genes and free earlobe genes are alternative alleles for ear shape) nonallelic genes:非等位基因