风工程多媒体(2011)(习题解答)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

wba = w0 (
µz = (
zG 0 2 a0 zGa −2 a ) ( ) zb zba
zG 0 2 a0 zba 2 a z 2 a z z z ) ( ) ( ) = ( G 0 ) 2 a0 ( ) 2 a = c0 ( ) 2 a zb zGa zba zb zGa zGa
zG 0 = 350
7.何谓气动导纳,试推导点状结构顺风向脉动风荷载功率 谱与风谱之间的关系式:
S u ' ( n) Sc F ' (n) = 4C x V2 气动导纳就是将一个被完全空间相关的湍流所包围的物体 的理想状态动态风荷载修正到一个真实物体实际状态的传 递函数。
2 Fx
1 Fx (t ) = ρC Fx A(V + u ' (t )) 2 2
Re = ρL3 a / L2τ ∂V τ ∝µ ∝ µV / L ∂L
ν = µ/ρ
Re = VL
ν
6.何谓基本风压,试推导风压高度变化系数的表达式:
10 z 2α µ z ( z ) = 3.12 z 10 g

3-4
w10,α = 3.12 × (
由平均风荷载公式求得风压,再乘以有效面积即可得到静 力风荷载。有效面积为对应点与上下相邻两点之间的中线 所夹的区域。
w( z ) = µ s ( z ) µ z ( z ) w0
FX=w(z).A
Fx1 Fx2 Fx3 Fx4 Fx5 思考:如何求总风载和基底弯矩?
10.对某建筑物在大气边界层风洞中进行动态风压试验。 已知该建筑物高126.4米,处在D类地貌(Zo=2.0),实验 模型缩比1:300,实验风速比为1:2 , 结构固有频率为 1.0Hz。 (1)确定风洞模拟的梯度风高度; (2)确定风洞模拟的湍流积分尺度; (3)确定风洞实验的数据采样时间和数据采样频率(速 度); (4)简述实验数据处理方法(如何通过测量的动态压力 信号获得该办公楼的动态风荷载)。
10 z 2α µ z ( z ) = 3.12 z 10 g

10 0.32 55 0.32 µ z ( z ) = 3.12 ⋅ ( ) ⋅ ( ) = 1.73 350 10
µ s ( z ) = 0.8 − (−0.5) = 1.3
wz = µ s ( z ) µ z ( z ) w0
最终方向
地转风
P = Fc
f cU geo
1 dp = ρ dn
U geo =
1 dp ρf c dn
大气环流
2. 一测风塔测得某C类地貌12米高处平均风速为15m/s, 换算成标准风速是多少?
α
V gr V12
V gr
z gr = z 12

400 = 15 ⋅ 12
( dC L + C D ) α =0 < 0 dα
9. 截面为正方形的陆上某高耸结构如图1所示,沿高度分 点见图。设第3点以上外形不变,截面外形为3.3m×3.3m, 该地基本风压为0.5kN/m2,建筑物所在地为B类地貌。已知 迎风面和背风面体型系数分别为0.8和-0.5,试求其正面迎 风时第6点的风荷载。
C pi = C pi up − C pi dwon
2 σC = σC
pi piup
2 + σ C pidowon
C pi max = C pi ± k pσ C pi
正负号与 C p 一致
i
最后换算成实际结构各点的风压:
w( z ) = C pi , max µ z w0
11
1
0 .73
0 .48 0 .24 0 .07
0

S F ' (n) = ∫ 4 RF ' (τ ) cos 2πnτdτ
0

2 S F ' (n) = ρ 2V 2 A 2 C Fx S u ' (n) 脉动荷载功率谱 x
1 Fx = ρV 2 C Fx A 2
S F ' (n) =
x
4F S u ' ( n) 2 V
2 x
nS u ' ( z , n)
0.22
= 32.4m / s
V gr V10
z gr = z 10

α
350 V10 = 32.4 ⋅ 10
−0.16
= 18.34m / s
3. 求基本风速和基本风压
年份 年最大风 速(m/s) 年份 年最大风 速(m/s)
1 22.9 11 17.3
H x L u
H = x m Lu p
x ( Lu ) m = 129.95 / 300 = 0.43
Tm Bm Vm / = B V Tp p p

Vm 1 = Vp 2
Bm 1 = B p 300
σ
2 u'
=
x nLu 4 Vz x nLu 1 + 70.8 V z

2

5/6
4F S F ' ( n) = 2 χ 2 ( n) S u ' ( n) x V
2 x
V
S u ' ( n) F max
S F ' ( n)
σ = ∫ S F ' ( n) dn
风工程-11
风工程
(习题解答 习题解答) 习题解答
1. 何谓地转风?何谓梯度风?试推导由压力梯度和科里 奥利参数表示的地转风风速表达式。 当等高面上的等压线是直线的情况下,如果气压梯度力与 科里奥利力平衡,则空气将沿等高面上的等压线方向作等 速直线运动,这时形成的风为地转风 当等高面上的等压线是曲线的情况下,如果气压梯度力、 科里奥利力和惯性离心力平衡,则空气将沿等高面上的等 压线的切线方向作等速曲线运动,这时形成的风为梯度风
计算程序框图
开始
输入已知数据 w0 , α , H , Lx , M , T1 , ζ
z µ f ( z ) = 0.5 × 351.8(α −0.16 ) 10
ρ ( z1 , z2 ) = exp(−
z1 − z 2 60 )
−α
分段并求任一点的振型值
求脉动系数、风压高度变化系数、空 间相关性系数 求脉动增大系数
1 w0 = ρV 2 = 0.5 ×1.25 × 25.52 2 = 0.407 kN / m 2 2
全国基本风速分布图
4.
脉动风的统计特性主要有:湍流强度、湍流尺度、相 关函数和湍流功率谱密度。 1 ∞ x Lu ' = 2 ∫ Ru ' ( x)dx
σ u'
1
0
Ru ' ( x) = E[u ' ( x1 , y1 , z1 ) ⋅ u ' ( x1 + x, y1 , z1 )]
因为迎风面和背风面面积相同,所以对结构的总效果为:
µs = µsw + µsl = 1.3
风压高度系数可以由以下公式求得:
µ
µ
z1
=
=
z2
µ
µ µ
z3z5
1 0 0 .3 2 ( ) = 1 .0 0 10 2 0 0 .3 2 ( ) = 1 .2 5 10 3 0 0 .3 2 ( ) = 1 .4 2 10 4 0 0 .3 2 ( ) = 1 .5 6 10 5 0 0 .3 2 ( ) = 1 .6 7 10
( z g ) p = 450 m
H z g
=H m zg p
( z g ) m = 450 m / 300 = 1.5m
0 z ' = 1000 z 0 .18 = 1000 × (2.0) 0.18 = 1132.9
x ( Lu ) p = 280( z / z ' ) 0.35 = 280 × (126.4 / 1132.9) 0.35 = 129.95
1 20 σx = ⋅ ∑ ( xi − 19.065) 2 = 2.493 19 i =1
P = 1 − 1 / N = 1 − 1 / 50 = 0.98
µ=−
6
π
[0.5772 + ln(− ln 0.98)] = 2.59
Vd = x + µσ x = 19.065 + 2.59 ⋅ 2.493 = 25.52m / s
10 2α ) w0 zG
wz = µ z ( z ) ⋅ w0
v( z ) z a =( ) zb vb
wa ( z ) = wba (
z 2a ) zba
zGa 2 a z ) = w0 ( G 0 ) 2 a0 zba zb z wba ( ) 2 a wa ( z ) zba µz = = w0 w0 wba (
L =
x u'
σ
2 u'


0
E[u ' ( x1 , y1 , z1 ) ⋅ u ' ( x1 + x, y1 , z1 )]dx
L =
y u'
1
σ
2 u'


0
E[u ' ( x1 , y1 , z1 ) ⋅ u ' ( x1 , y1 + y, z1 )]dy
L =
z u'
1
σ
2 u'


0
E[u ' ( x1 , y1 , z1 ) ⋅ u ' ( x1 , y1 , z1 + z )]dz
wz = 1.3 ×1.73 × 0.5 = 1.125(kN / m 2 )
F = wz × Az = 1.125 × (3.3 ×10) = 37.125(kN )
例 3-3
一个空心边长为b(m)的正方形截面的钢筋混凝土高耸结 构,高50m,B类地形,基本风压为0.5kN/m2。求其静力风荷 载分布。
(V + u' (t ))
2
= V 2 + 2Vu' (t ) + u '2 (t )
1 Fx (t ) = ρV 2C Fx A + ρVu ' (t ) AC Fx 2
Fx' (t ) = ρVu ' (t ) AC Fx
脉动风荷载
F (t ) = ρVu ' (t ) AC Fx
' x
S X (ω ) = lim
T p = 3600 s
Tm = 24s
数据采样时间
nB nB = V m V P
ne = 1Hz
数据采样频率
n = 150Hz
根据测量结果计算出各测点的 C p 和 σ C
i
pi
对于封闭结构: C p 对于敞开结构:
i max
= C pi + k pσ C pi
1 2 E{ Fx (ω , T ) T → ∞ 2T
}
2 RF ' (τ ) = Fx' (t ) ⋅ Fx' (t + τ ) = ρ 2V 2 A 2 C Fx u ' (t ) ⋅ u ' (t + τ )
x
2 RF ' (τ ) = ρ 2V 2 A2C Fx Ru ' (τ )
x
S u ' (n) = ∫ 4 Ru ' (τ ) cos 2πnτdτ
2 F' 0 ∞
σ F'
Fmax = Fx + k pσ F '
8.何谓涡激振动?何谓横风向驰振?产生横风向驰振的必 要条件是什么? 涡激振动(p318) 横风向驰振:对于非圆形的钝体结构及构件,由于升力曲 线的负斜率效应,微幅振动的结构能够从气流中不断吸取 能量,当达到临界风速时,结构吸收的能量将克服结构阻 尼所消耗的能量,形成一种发散的横风向单自由度弯曲自 激振动。 产生横风向驰振的必要条件:
5.何谓雷诺数?何谓弗劳德数?试用量纲分析的方法推导出 雷诺数和弗劳德数的具体表达式? 斯特劳哈尔数? nB
St =
雷诺数表示作用在流体上的惯性力与粘性力之比; 弗劳德数表示气流的惯性力作用与结构的重力之比。
Fr = ρL3 .a / ρ s L3 .g
V
a ∝V 2 /L
Fr = V / Lg
2
2 17.3 12 16.0
3
4
5 23.0 15 19.3
6 18.0 16 19.6
7 16.7 17 16.2
8 16.3 18 18.6
9 20.3 19 21.5
10 20.0 20 18.0
19.7 23.8 13 14
21.3 15.5
1 20 x= ∑ xi = 19.065m / s 20 i =1
4/3
ξ1 = 1 +
150π ζ 1w0T12 900 1 + w T2 0 1
∑∑ µ
u1 =
i i'
fi
µ zi hiφ1i ρ ii ' µ fi ' µ zi ' hi 'φ1i '
∑h φ
i i
2 1i
×
µ sl x
m
=ν1 ×
µ slx
m
求脉动影响系数 求各点计算位置系数 求每点的风振系数 求底部总剪力、总弯矩 求各点位移或其他参数
mφ1i r1i = µ s µ zi l x
相关文档
最新文档