高考物理易错题专题三物理带电粒子在复合场中的运动(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、带电粒子在复合场中的运动专项训练
1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和
O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。极板间存在方向向上的匀强电场,两极板间电压为U 。质量为m 、带电量为q 的正离子从O 点由静止开始加
速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。两虚线之间的区域无电场和磁场存在,离子可匀速穿过。忽略相对论效应和离子所受的重力。求:
(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;
(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。 【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =
(2)22nqUm
B =,2(1,2,3,,1)n k =-(3)
22
22(1)t qum k -磁,2
2(1)=k m t h qU
-电 【解析】 【分析】
带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。 【详解】
(1)离子经电场加速,由动能定理:
2
12
qU mv =
可得2qU
v m
=
磁场中做匀速圆周运动:
2
v qvB m r
=
刚好打在P 点,轨迹为半圆,由几何关系可知:
2
kd r =
联立解得B =
; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。设共加速了n 次,有:
212
n nqU mv =
2n
n n
v qv B m r =
且:
2
n kd r =
解得:B =
,
要求离子第一次加速后不能打在板上,有
12
d r >
且:
2112
qU mv =
2
111
v qv B m r =
解得:2n k <,
故加速次数n 为正整数最大取21n k =- 即:
B =
2(1,2,3,
,1)n k =-;
(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。 由匀速圆周运动:
22r m
T v qB
ππ=
=
22(23)=(1)222(1)
T k mkd
t n T qum k π--+=-磁
电场中一共加速n 次,可等效成连续的匀加速直线运动.由运动学公式
221(1)2
k h at -=
电 qU
a mh
=
可得:22(1)=k m
t h qU -电
2.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量
为+q 的粒子由小孔下方
2
d
处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。不计粒子的重力。
(1)求极板间电场强度的大小;
(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、
4mv
qD
,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.
【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)
【答案】(1)2
mv qd
(2)4mv qD 或43mv qD (3)5.5πD
【解析】 【分析】 【详解】
(1)粒子在电场中,根据动能定理2
122
d Eq mv ⋅=,解得2mv E qd =
(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为
/2
E R
由2
1
1
v qvB m r =,解得4mv B qD = 则当外切时,半径为
e R
由2
12
v qvB m r =,解得43mv B qD =
(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为00
10016819U U U ≤≤;Ⅱ
区域的磁感应强度为2012qU mv =,则粒子运动的半径为2
v qvB m r
=;
设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:
1112R T v π=
;03
4
r L =
据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;
60α=
粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间
分别为t 1、t 2,可得:r U ∝;1056
U L
U L
=
设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD