天气雷达的基本工作原理和参数知识讲解
雷达技术在天气预测中的应用
雷达技术在天气预测中的应用随着科学技术的不断发展,天气预报的准确性越来越高。
而其中一个重要的技术就是雷达技术。
雷达技术是一种可以探测目标的电磁波技术。
在天气预测中,雷达技术可以利用反射,散射和折射等原理,实现对大气中降水,云,风等天气变化的探测。
下面我们详细介绍雷达技术在天气预测中的应用以及其原理。
一、雷达技术的原理雷达技术通常由发射器,天线,接收器,处理器等主要部件组成。
当雷达设备开始工作时,发射器会向外发送高频电磁波。
然后天线会接收到这些电磁波并将其传输到接收器。
接收器接收到电磁波并解码,从而确定信号的强度和时间。
最后,处理器会将经过处理后的数据转化为可读的图像或数字信息。
在天气预测中,雷达技术主要通过向天空发送电磁波来探测降水情况。
当电磁波穿过大气中的水分子时,其中一部分会反射回雷达设备。
这些反射的电磁波被称为回波,通常被用于确定降水的类型和强度。
回波的强度取决于水滴的大小和数量。
通过对这些回波的处理,我们就可以确定降水的类型和强度。
二、在天气预测中,雷达技术主要用于探测大气中的降水,云和风等情况。
雷达技术通过不断地记录和分析这些数据,可以提供准确的天气预报服务。
下面就让我们来看看雷达技术在上述领域的具体应用。
1. 降水探测在天气预测中,降水的探测是最为重要的一项任务。
雷达技术利用回波来探测降水的类型和强度。
通过不断地记录和分析回波的变化,可以提供准确的降水预测服务。
这种预测在航空,农业和气象等领域都有广泛的应用。
2. 云的探测雷达技术还可以通过探测大气中的云来预测未来的天气状况。
云的探测通常使用“亮带信号”的原理来实现。
当雷达设备向天空发送电磁波时,这些电磁波会被云层反射。
如果云层比较密集,那么反射的电磁波就会比较强,从而形成“亮带信号”。
通过对这些信号的分析,我们就可以确定云层的类型和密度。
3. 风的探测雷达技术还可以通过测量风场的变化来预测未来的天气状况。
这主要是因为风场的变化会对大气中的物质传输和能量转移产生影响。
气象雷达工作原理
气象雷达工作原理气象雷达是一种用于探测和追踪大气中降水现象的重要工具。
它利用雷达的原理来获取有关降水类型、强度和位置等信息,为气象预报和灾害预警提供依据。
本文将介绍气象雷达的工作原理,包括信号发射、雷达波束和数据处理等方面。
1. 信号发射气象雷达利用雷达波段的电磁波来与降水粒子发生相互作用,并通过接收回波信号来获取有关降水的信息。
雷达系统会发射一束脉冲信号,这个脉冲信号会以光速传播到目标区域。
脉冲信号的特点是短暂而高强度,它能够穿透大气并与降水粒子发生散射。
2. 雷达波束当脉冲信号与降水粒子相互作用时,一部分能量会散射回雷达接收器。
为了获得更准确和详细的降水信息,气象雷达会利用雷达波束的特性来探测不同高度和距离上的降水。
雷达波束是通过调整发射天线和接收天线之间的相对位置来实现的。
3. 数据处理接收回波信号后,雷达系统会对信号进行处理,以获取降水粒子的属性和位置等信息。
在信号处理过程中,会使用一些算法和技术来区分不同类型的降水,例如雨滴、雪花、冰雹等。
通过分析回波信号的强度和频率等特征,气象雷达可以确定降水的强度和位置,进而提供更准确的气象预报。
4. 数据显示最后,气象雷达会将处理得到的数据通过显示器或其他设备进行展示。
这些数据可以以图像或数字的形式呈现,以便气象专家和研究人员进行进一步的分析和研究。
通过不同颜色或强度的表示,可以直观地了解降水的类型和强度等信息。
总结:气象雷达的工作原理是基于雷达技术,利用电磁波与降水粒子进行相互作用,通过分析散射的回波信号获取降水的相关信息。
通过调整雷达波束的方向和位置,可以实现对不同高度和距离上的降水进行探测。
信号经过数据处理后,呈现在显示器上,为气象预报和灾害预警等提供重要依据。
气象雷达的应用范围广泛,不仅对气象事业具有重要意义,还对航空、能源、农业等领域产生着积极的影响。
相信随着科技的不断进步,气象雷达将会在未来发挥更加重要的作用,为我们提供更准确的天气预报和灾害预警。
气象雷达工作原理
气象雷达工作原理气象雷达是一种用于探测大气中降水和其他天气现象的仪器。
它通过发射和接收无线电波来探测物体的散射信号,从而获得天气信息。
气象雷达的工作原理如下:一、发射信号气象雷达的首要任务是向大气中发射无线电波。
通常使用的是10公分到1毫米波段的无线电波,这些波段的电波能够穿透云层并与降水粒子进行散射。
雷达通过天线将电能转换成电磁波,并以高频率向外辐射。
二、波与物体相互作用当雷达波遇到大气中的物体,例如云层和降水粒子时,它们会与这些物体发生相互作用。
这种相互作用会导致电波的散射、衰减和反射。
散射:物体的尺寸比电磁波长短时,散射现象就会发生。
散射信号的强度与目标物体的特性以及电磁波的频率有关。
衰减:电磁波穿过介质时会发生衰减,这是由于介质中的颗粒和分子对电磁波的吸收和散射。
反射:当雷达波遇到大气中的物体时,一部分电磁波会被反射回雷达的天线。
接收到的反射信号会被用来分析物体的位置、形状和特征。
三、接收和分析信号雷达天线接收到反射信号后,将其转换为电能并传输到接收机。
接收机会对信号进行放大和滤波,以去除噪声和干扰信号。
接收到的信号会被转换成数字信号,并进行进一步处理、分析和显示。
四、图像生成和显示通过对接收到的信号进行分析,雷达系统可以生成气象图像。
这些图像显示了天空中的降水分布、云层结构、风暴系统等天气现象。
根据图像所显示的信息,气象专家可以预测天气的变化和趋势。
总结:气象雷达通过发射和接收无线电波来探测大气中的降水和其他天气现象。
它的工作原理包括发射信号、波与物体相互作用、接收和分析信号以及图像生成和显示。
通过气象雷达的工作,我们能够了解天气的变化情况,从而提前做好防范和安排。
希望以上内容符合您的要求,如有需要请再次告知。
气象雷达的探测原理
气象雷达的探测原理近年来,随着天气预报技术的不断更新换代,天气预报精度也随之提高。
其中,气象雷达在天气预报中发挥着重要的作用。
那么,什么是气象雷达,它是如何工作的呢?本文将为大家介绍气象雷达的探测原理。
一、气象雷达的概念气象雷达是一种利用物理原理进行气象探测的仪器。
它可以探测大气中的降水、云体、气体等物质,测量它们的位置、形态、速度等信息,从而实现对天气变化的追踪和预报。
二、气象雷达的工作原理气象雷达的工作原理是利用电磁波在空间传播过程中与被探测物体(如水滴、冰晶等)发生相互作用而反射回来的原理。
具体来说,气象雷达发送出的高频电磁波会不断地在空气中传播,当电磁波遇到大气中的微小水滴或冰晶等物体后,会被物体部分吸收,部分反射回来。
这些反射回来的电磁波,也就是雷达回波信号,会被气象雷达接收器接收。
接收器接收到雷达回波信号后,通过对信号的处理和分析,可以得出很多信息,如回波的强度、位置、高度、速度等。
这些信息可以用来绘制出降水、云体的三维空间分布图,进而推断天气变化的可能性。
三、气象雷达的分类根据探测物体的不同,气象雷达可以分为两种,分别是降水雷达和风暴雷达。
1. 降水雷达:以探测降水为主要目的的气象雷达。
它主要探测大气中的水滴、雪花等形成的降水量、强度、范围等信息,并将这些信息反馈给气象预报人员。
因此,降水雷达也称为“降水探测雷达”。
2. 风暴雷达:以探测风暴为主要目的的气象雷达。
它主要探测风暴云体的结构、光学厚度、反射率、垂直分布、雷电等信息,并将这些信息反馈给气象预报人员。
因此,风暴雷达也称为“多普勒雷达”。
四、气象雷达技术的应用气象雷达技术在天气预报中的应用越来越广泛。
除了降水、云体探测外,还可以用来探测风暴、冰雹、沙尘暴等灾害性天气,对天气灾害的预警和预报有着重要的作用。
此外,气象雷达技术还广泛应用于农业、交通、水利、航空等领域,可以为这些领域提供更加精准的信息和服务。
总之,气象雷达技术是当今天气预报中不可或缺的一种探测手段。
第二章多普勒天气雷达原理
§ 在雷达波束中,与天线等距离的粒子同时被探 测脉冲所照射,同时开始产生回波,并同时回 到雷达天线。与天线距离不相等的回波信号, 也有可能同时回到雷达天线。这是因为探测脉 冲具有一定的宽度τ,因而在它通过粒子时产 生的回波信号也有宽度τ。这样,距离较近的 两个粒子虽然它们开始产生回波的时间并不相 同,但是,它们的回波信号仍然有一部分能够 同时回到雷达天线。
§ 可以证明,在径向方向上,粒子的回 波信号能同时返回雷达天线的空间长度
为 h/2,称为雷达的有效照射深度。
有效照射深度
§ 天线开始收到A粒子的回波信号的时间为
t1
2r1 c
§ 开始收到B粒子的回波信号的时间为
t2
2r2 c
§ 最后收到A粒子回波信号的时间为
t3
2r1 c
§ 若天线开始收到B粒子回波的时间恰好是 最后收到A粒子回波的时间
波束截面半径
§r100km=0.87km §r200km=1.745km §r300km=2.618km
与接收机有关的参数
§ 雷达天线所收到的回波信号是非常微弱的。所以, 雷达接收机必须具有接收微弱信号的能力。这种能 力常称为灵敏度,它用接收机的最小可辨功率Pmin来 表示。所谓最小可辨功率,就是回波信号刚刚能从 噪声信号中分辨出来时的回波功率。我国新一代天 气雷达(S波段)接收机的最小可测灵敏度对于短脉 冲(1.57μs)是-107dbm,对于长脉冲(4.71μs)是113dbm。
与发射机有关的参数
§ 发射机触发信号产生器周期性地产生一个触发 脉冲,输送到发射机,使发射机开始工作。
§ 在一个脉冲内信号的高频振荡频率叫工作频率 。
§ 每秒产生的触发脉冲的数目,称为脉冲重复频 率,用PRF表示。
第二章多普勒天气雷达原理
雷达气象方程
Pt G h Pr i 2 2 ln 2 r 单位体积 1024
2 2
假设条件:在波束宽度范围内,雷达的辐射强度是均匀 的;在有效照射体积内降水粒子大小的分布是均匀的。 上式中是对有效照射体积内所有降水粒子后向散射截面 求和而得到的
气象目标强度的雷达度量
气象目标对雷达后向散射能力的强弱通 常称为气象目标强度,参量为反射率和 反射因子
电磁波及其在大气中的传播
•气象目标对电磁波的散射
云和降水粒子散射的能量在各方向上不一致,而向后方(即 向雷达方向)散射的能量(回波功率)是雷达所关心的,因此 引入后向散射截面的概念。 散射截面的概念:假设一个理想的散射体,其截面积为σ,它 能把全部接收射到其上的电磁波能量,并能全部均匀地向四周 散射,若该理想散射体返回雷达天线处的电磁波能流密度恰好 等于同距离上实际散射体返回天线的电磁波能流密度,则该理 想散射体的截面积σ就称为实际散射体的向四周散射截面。
Pt G Pr 3 4 4 r
雷达气象方程(单目标)
2 2
单目标雷达气象方程,与雷达本身参数、气象目标物特性 (后向散射截面)和离开雷达的距离有关
有效照射深度和体积
有效照射深度:在雷达波束径向方向上,粒子的回波信 号能同时返回雷达天线的空间长度,h/2=tc/2; 有效照射体积:在波束宽度为θ和Ф范围内,粒子的回波 信号能同时返回雷达天线的空间体积。
第二章 多普勒天气雷达原理
第二章 多普勒天气雷达原理
电磁波及其在大气中的传播
电磁波在大气中的衰减
电磁波在大气中的折射
雷达气象方程
一、电磁波及其在大气中的传播
电磁波及其在大气中的传播
•气象目标对电磁波的散射
天气雷达探测基础知识
天气雷达探测基础知识
天气雷达是一种用于探测大气中降水、冰雹等天气现象的仪器,被广泛应用于气象预报、灾害预警等领域。
以下是天气雷达探测基础知识:
1. 天气雷达的原理:利用雷达发射器发射的微波信号,通过空气中的反射、散射等作用,接收回来的信号来探测大气中的云层、降水等天气现象。
2. 天气雷达的组成:包括发射机、天线、接收机、信号处理器等部分。
3. 天气雷达的参数:雷达反射率、雷达速度、雷达谱宽等。
4. 天气雷达的应用:气象预报、灾害预警、农业生产、航空等领域。
5. 天气雷达的局限性:受到地形、气象条件等因素的影响,有一定的盲区和误差。
了解天气雷达探测基础知识,有助于我们更好地理解气象预报和灾害预警等信息,提高应对天气灾害的能力。
- 1 -。
气象雷达测绘技术的基本原理与操作流程
气象雷达测绘技术的基本原理与操作流程气象雷达是一种用来探测大气中降水过程和其他天气现象的仪器。
它通过发射一束电磁波向大气中发射并接收返回的信号,从而感知大气中的物理参数,并绘制出降水图像。
气象雷达的基本原理是利用雷达波在气象目标上的相互作用,通过探测大气中的反射信号来分析和判断天气状况。
雷达发射的电磁波一般是以微波频段为主,具有较高的频率和短波长。
当这些电磁波遇到大气中的物理目标时,如水滴、冰晶、雨滴等,它们就会发生散射、反射或吸收,从而使雷达接收到相应的回波信号。
在气象雷达中,最常用的是降水雷达,它主要用于探测和测量云中的降水。
当雷达发射出的电磁波遇到云中的水滴或雨滴时,这些水滴或雨滴就会散射部分微波能量并将其返回到雷达接收机,形成一个回波信号。
通过分析这些回波信号的强度、反射能力和颜色等特征,我们就能判断出降水的类型、强度和分布等信息。
对于降水雷达来说,它的操作流程主要包括以下几个步骤:首先,需要选择一个适当的位置来安装雷达设备。
一般来说,为了获得准确的测量结果,需要选择在地势平坦、无大障碍物遮挡且不受干扰的地方。
同时,为了覆盖更广泛的区域,多个雷达可以组成一个雷达网络,相互之间进行数据共享和校正。
其次,需要进行雷达设备的校验和校正。
雷达设备需要经过严格的校验和检测,以确保其发射和接收信号的准确性和一致性。
此外,还需要进行周期性的校正,以消除因环境变化和设备老化而引起的误差。
接下来,需要进行雷达观测和数据采集。
一旦设备安装和校准完成,雷达就可以开始进行观测。
它通过发射电磁波并接收回波信号来感知大气中的物理参数。
这些回波信号会被转换为数字信号,并以一定的时间间隔存储下来。
之后,需要对原始数据进行预处理。
原始数据通常包括回波信号的强度、反射能力和速度等信息。
为了提取有用的气象信息,需要对这些数据进行去噪、滤波和校正等处理,以消除噪声和误差。
预处理后的数据将作为后续分析和绘图的基础。
最后,需要对预处理后的数据进行分析和绘图。
天气雷达的基本工作原理和参数-168页文档资料
常规天气雷达仅能提供反射率 因子资料。多普勒天气雷达将提供 两种附加的基本资料,径向速度和 速度谱宽,它们将增强对强风暴的 探测能力,也能改进对中尺度和天 气尺度系统的预报。
体扫模式 (VCP:Volume Cover Pattern) 扫描方式确定一次体积扫中使用多少个仰角,
而具体是哪些仰角则由体扫模式来规定。WSR-88D 可有20个不同的VCP,目前只定义了其中的4个: VCP11 -- VCP11(scan strategy #1,version 1) 规定5分钟内对14个具体仰角的扫描方式。 VCP21 -- VCP21(scan strategy #2,version 1) 规定6分钟内对9个具体仰角的扫描方式。 VCP31 --- VCP31 (scan strategy #3,version 1)规定10分钟内对5个具体仰角的扫描方式。 VCP32 --- VCP32(scan strategy #3,version 2)确定的10分钟完成的5个具体仰角与VCP31相同。 不同之处在于VCP31使用长雷达脉冲而VCP32使用 短脉冲。 WSR-98D未定义VCP32。
自相干多普勒天气雷达结构框图
全相干多普勒天气雷达结构框图
fo 发射脉冲的载频 fd 多普勒频率
发射频率 Vs 多普勒频移
发射频率 多普勒频移
中国新一代天气雷达系统简介
• 1、雷达数据采集系统(RDA) • 2、雷达产品生成子系统(RPG) • 3、主用户处理器子系统(PUP)
雷达气象学之第三章(多普勒天气雷达探测原理和方法)
2、脉冲对处理法(PPP)
在一定假设条件下对每一个距离库内的连 续两个取样值作成对处理.从而获得平均 多普勒频率和频谱宽度。此法优点在于能 实时处理.并且有一定精度,但它不能得 到频率谱。
3、相干记忆滤波器(CMF)处理法
此法只需要一个线路,在不设置距离库的 情况下同时对雷达探测范围内各个距离上 作粗略的谱分析,并能用如PSI(平面切变 线是其)等直接显示出来。但它精度不高;
垂 直 风 廓 线
补充风符号
1.风向杆 表示风的 来向。 2.风羽每 条代表风 速4米/秒, 半条代表2 米/秒,三 角旗代表 20米/秒。
谱 宽
反 射 率
三、影响速度谱宽的气象因子
• 多普勒速度谱宽表征着有效照射体内不同 大小的多普勒速度偏离其平均值的程度, 实际上它是由散射粒子具有不同的径向速 度所引起的。对气象目标物而言,影响速 度谱宽的主要因子有四个:
• 显然,雷达有效照射体中粒子直径的差别 越大,由此造成的多普勒速度谱越宽。
• 因此速度的谱宽实际上也取决于降水粒子 的谱分布。
• 当雷达水平探测时,粒子的下落末速度在 雷达波轴上的径向分量为零,所以它对多 普勒速度谱宽没有任何影响。
• 而当雷达垂直指向探测时,粒子下落末速 度即为径向速度,故由此造成的谱曾宽作 用最大。
• 在实际工作中需要了解的是有效照射体内
平均的多普勒速度和速度谱宽度,根据以
上关系式,并注意到 f 2v 关系式,则平均
多普勒速度
v
,和速度谱方差
2 v
分别为:
v 1 v v dv
Pr
2 v
1 Pr
vv
2
v dv
径向速度谱密度、平均径向速度、径向速度 谱宽三者的关系示意图
C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析
C波段双偏振多普勒天气雷达原理及主要偏振参量应用分析C波段双偏振多普勒天气雷达原理及主要偏振参数应用分析一、引言雷达技术是现代气象学中非常重要的观测手段之一,可以提供大气中降水、风场以及悬浮颗粒物等信息。
而C波段双偏振多普勒天气雷达作为目前气象雷达中应用较多的类型之一,具备了高分辨率、高灵敏度等优势。
本文将详细介绍C波段双偏振多普勒天气雷达的原理及其主要偏振参数的应用分析。
二、C波段双偏振多普勒天气雷达原理C波段双偏振多普勒天气雷达是基于双偏振技术的,通过观测目标散射的双向偏振特性,来获得降水和颗粒物的物理参数。
其基本工作原理可以分为以下几个步骤:1. 天线发射和接收信号C波段双偏振多普勒天气雷达的天线首先发送一个具有一定频率和极化状态的微波波束,这个波束会与大气中的目标相互作用,然后被目标散射回来。
2. 接收信号的极化分离雷达接收到回波信号后,首先需要进行极化分离,将水平极化和垂直极化信号分离出来,以获得目标的双向极化特性。
3. 目标退偏振比计算在完成极化分离后,可以利用修正的双偏振天线系数,计算目标的退偏振比。
这个参数可以描述目标相对于水平和垂直方向的散射强度差别。
4. 目标的径向速度估计利用多普勒频移原理,可以根据接收到的回波信号的频率偏移,计算出目标在雷达天线方向上的径向速度。
通过多普勒频移,我们可以判断目标是否在向雷达靠近或远离。
5. 目标的径向散射强度估计利用雷达接收到的信号,可以计算出目标的径向散射强度。
这个参数可以反映目标散射微波的能力,从而进一步了解目标的强度和大小。
三、主要偏振参数应用分析C波段双偏振多普勒天气雷达的主要偏振参数包括退偏振比和线性偏振比。
这些参数在气象研究中有着广泛的应用。
1. 退偏振比的应用退偏振比是衡量目标散射极化特性的重要参数。
在气象雷达中,退偏振比常用于识别和区分不同种类的降水。
例如,在雷达图像中,雪花和冰雹的退偏振比可以有较大的差异,利用退偏振比可以准确区分这两种降水类型。
多普勒天气雷达产品的识别与分析(天气雷达基础知识)
3.2 强对流天气发生的背景环境
• 大气垂直稳定度 • 水汽条件 • 抬升 • 垂直风切变
3.3 垂直风廓线及其对对流风暴的作用
• 普通单体风暴的风向随高度的分布杂乱无章,基本上是一 种无序分布,而且风速随高度的变化也较小;
• 多单体强风暴和超级单体风暴的风向风速随高度变化分布 是有序的,风向随高度朝一致方向偏转,而且风速随高度 的变化值也比普通单体风暴的大。
• 影响速度谱宽的主要因子有四个: 1. 垂直方向上的风切变; 2. 大气的湍流运动; 3. 不同直径的降水粒子产生的下落末速度的不均匀分布; 4. 由波束宽度引起的横向风效应。
1.8 标准大气雷达测高公式 • H=h0+R*sinθ+R2/17000,单位:千米
1.9 PPI图上距离与高度
1.10 天气雷达的局限性
衰减的暂时的解决办法
• 结合S波段雷达使用 波长:10cm, 强天气的衰减不明显
衰减的暂时的解决办法
课间休 息
3、多普勒天气雷达识别对流风暴及其强烈天气
单元重难点: • 1、风暴的运动 • 2、对流风暴的模型 • 3、个例分析
3.1 对流风暴的分类
普通单体风暴 多单体风暴 超级单体风暴 线风暴(飑线)
• 多普勒频移与目标物在雷达径向方向上的速度分量v有关,满足如下 关系: fd= 2v∕λ (式中λ是雷达波长,fd是多普勒频移)
• 多谱勒速度是径向速度,垂直于雷达波束的速度分量(切向速度)不 能直接测量。
1.7 多谱勒速度谱宽W
• 多谱勒速度谱宽 表征着雷达有效照射体积内不同大小的多谱勒速度偏离其平均值的 程度,实际上它是由散射粒子具有不同的径向速度所引起的。
1.1 天气雷达基本结构
天气雷达原理
天气雷达原理天气雷达主要是利用雷达的原理来探测大气中的天气情况,包括降水、气象云、风向、风速、雷暴等。
它可以通过扫描大气中的物理量来确定大气中是否存在降水、风等天气现象。
雷达的工作原理是利用电磁波在媒介中的传播原理,通过向媒介中发射一定频率、一定方向的电磁波信号,当波在与媒介相反方向移动的物体直接或反射回来时,就能够通过接收器接收到反射回来的波,进而分析处理反射波信息,得到被探测物体的信息。
而电磁波的传播是以光速进行的,雷达利用电磁波的传播速度,可测出被观测物体与雷达距离的变化。
天气雷达通常使用的电磁波频率是S波段和C波段,其中S波段频率是2-4GHZ,波长是10-15CM;C波段频率是4-8GHZ,波长是5-10CM。
电磁波发射器作用下,电磁波穿过天空被云层、降水颗粒反射回来,经过收集和处理后,就可以获得云、雾、雪、雨、霜冻、雷电等天气数据。
不同的天气现象,其反射信号的极化、频率、强度等都有所不同,因此,雷达反射回来的电磁波信号就可以告诉我们天气状况。
雷达接收到反射信号后,需要经过一段时间的处理才能得到有关降水、风速、风向等的数据,主要分为以下几个步骤:1. 预处理:预处理是指将接收到的多普勒雷达信号(Doppler Radar)转化为物理量,并进行噪声抑制、探测算法等。
2. 数据解码:将预处理后的雷达数据解析成相应数据库的格式,并存储到指定路径下。
这个步骤主要是将雷达接收到的回波信号转为具体的数据量。
3. 数据处理:将解码的雷达数据转换为气象学参数,经过网格处理、平滑化、去除杂散点等处理后得到雷达反演的大气物理量。
4. 数据可视化:将数据可视化为图像或动画,以便让用户更加直观地了解天气状况。
总的来说,天气雷达是一种不错的探测天气的方法,可以快速准确地监测到大气中的各种天气现象。
它的原理是利用雷达发射电磁波,通过接收回波反射数据来确定天气情况,是一种高效、灵敏且精确度高的解决方案。
雷达气象学复习重点
1、天气雷达工作原理天气雷达工作原理:定向地向空中发射电磁波列(探测脉冲),然后接收被气象目标散射回来的电磁波列(回波信号),并在荧光屏上显示出来,从而确定气象目标物的位置和特性雷达的测距原理:雷达根据从开始发射无线电波到接收到目标物回波的时间间隔,来测定目标与雷达之间的距离3、雷达主要组成:RDA:雷达数据采集系统、RPG:雷达产品生成子系统、PUP:主用户处理系统①定时器:定时器是雷达的“指挥中心”它实际上是一个频率稳定的脉冲信号发生器。
定时器每隔一定的时间间隔发出一个脉冲信号,它触发发射机,使发射机定时地产生强大的高频振荡脉冲并使阴极射线管同时开始作时间扫描②发射机:在定时器的控制下,发射机每隔一定的时间产生一个很强的高频脉冲,通过天线发射出去③天线传动装置: 天线传动装置主要包括两个部分,一部分是天线的转动系统,一部分是同步系统。
天线转动系统的作用是:(1)使天线绕垂直轴转动,以便探测平面上的降水分布,或漏斗面上降水、云的分布;(2)使天线在某一方位上作上下俯仰,以便探测云和降水的垂直结构和演变。
天线同步系统(也叫伺服系统)的作用是:使阴极射线管上不同时刻时间扫描基线的方位、仰角和相应时间天线所指的方位、仰角一致(即同步),从而使雷达荧光屏上出现的目标标志(用亮点或垂直偏移表示)的方位、仰角就是目标相对于雷达的实际方位、仰角④天线转换开关: 因为雷达发射和接受的都是持续时间极短(微秒量级)、间歇时间很长(千微秒量级)的高频脉冲波,这就有可能使发射和接收共用一根天线。
天线转换开关的作用是:在发射机工作时,天线只和发射机接通,使发射机产生的巨大能量不能直接进入接收机,从而避免损坏接收机;当发射机停止工作时,天线立即和接收机接通,微弱的回波信号只进入接收机⑤接收机:雷达接收机的作用是将天线接收回来的微弱回波信号放大并变换成足够强的视频信号送往显示器产生回波标志⑥雷达天线:雷达天线的作用是定向地辐射高频脉冲波和接收来自该方向的回波。
天气雷达的基本工作原理
天气雷达的基本工作原理
天气雷达是一种利用雷达原理探测大气中降水云的设备。
通过利用反射的电磁波信号,可以实现对大气中云的细节探测,能够预测天气变化、检测风暴和气象灾害等。
天气雷达的工作原理是利用雷达波的特性进行探测。
当雷达波射向大气中的云层时,
会与云中的水滴反射,形成回波信号。
这种信号会被天气雷达的接收天线接收并形成电信号,然后由计算机进行处理和分析。
在雷达信号中,可以获得反射信号的回波强度,和回波垂直距离。
反射信号的回波强
度与云层中水滴的浓度、大小、形状以及位置等因素有关。
垂直距离则取决于雷达波传播
的方向和速度。
在天气雷达系统中,还设置了天线旋转机构,可以将天线按照一定的角度旋转。
这样
可以使得雷达波的扫描范围更广,能够探测到更多的天气信息。
天气雷达的探测范围受到雷达波的传播距离、干扰和大气折射等因素的影响。
一般来说,雷达波的传播距离越远,信号受到干扰、衰减和扩散的程度越大,因此探测范围也就
越小。
为了提高天气雷达的探测范围和准确度,还需要进行天线校准、数据校正等工作。
在
使用天气雷达数据时,还需要进行数据解析、插值、描绘等处理,绘制出相应的气象图像,为气象预报和科学研究提供数据支持。
总的来说,天气雷达的基本工作原理是利用雷达波的特性对大气中的云层进行探测,
通过反射的信号进行分析和处理,最终生成相应的气象数据和图像,为人们提供准确的气
象信息和预警服务。
天气雷达的基本工作原理和参数
天气雷达的基本工作原理和参数1. 天气雷达的简介你有没有想过,咱们在家喝着茶、看着电视的时候,外面那乌云密布、闪电交加的场景是怎么被提前知道的?其实,这一切都要归功于天气雷达。
没错,它就像个高科技的“天气侦探”,帮助我们预测天气变化,避免被突如其来的大雨淋得湿透。
那它到底是怎么工作的呢?今天咱们就来聊聊这个话题,保证你看完之后能对天气雷达有个全面的了解,顺便也能在聚会中引起别人的注意,绝对不是白白浪费你的时间!2. 工作原理2.1 雷达的基本原理说到天气雷达,咱们得先从它的基本原理聊起。
雷达的全名是“无线电探测与测距”,其实就是通过发射无线电波,来探测周围的物体。
想象一下,你在夜晚对着朋友大喊,他们如果回应你,那就能把你们的距离算出来。
天气雷达也是如此,它发射出无线电波,遇到雨滴、雪花等气象现象时,波会被反射回来。
通过测量反射回来的时间,雷达就能计算出这些天气现象离我们有多远,甚至还能判断出它们的强度和运动方向。
2.2 数据处理不过,发射和接收可不是全部。
收到数据后,雷达还要经过一番“加工”,才能给我们提供准确的信息。
就像做饭一样,食材不够新鲜,做出来的菜可就没味儿了!雷达的数据处理系统会将这些信号转换成图像,显示在显示屏上。
你会看到一幅幅五颜六色的图,绿的代表小雨,黄的代表中雨,红的则是大雨,简直是一幅“天气艺术画”!而且,这些图像还会动态更新,让你能随时掌握天气变化,真的是科技的力量啊!3. 雷达的参数3.1 重要参数当然,天气雷达还有一堆技术参数,这些可都是关键的“秘笈”哦。
首先是“探测范围”,也就是雷达能探测多远的距离。
一般来说,大多数天气雷达的探测范围在几百公里到几千公里之间,够让你提前做好准备,不至于被突如其来的暴风雨打个措手不及。
接下来是“空间分辨率”,这个听起来很高大上,其实就是雷达能分辨出多小的天气现象。
好的雷达可以把雨滴的分布清晰地显示出来,让你一目了然。
3.2 效率与精度再说说“探测时间”,这个可是个好玩意儿。
(整理)多普勒雷达复习提要.
多普勒天气雷达复习提要一、多普勒天气雷达探测基本原理(一)多普勒天气雷达主要参数天气雷达发射脉冲形式的电磁波,当电磁脉冲遇到降水物质(雨滴、雪花和冰雹等)时,大部分能量继续前进,而少部分能量被降水物质向四面八方散射,其中向后散射的能量回到雷达天线,被雷达所接收。
根据雷达接收的降水系统回波特征可以判别降水系统的特性(降水强弱、有无冰雹、龙卷和大风等)。
多普勒天气雷达除了测量雷达的回波强度外,还测量降水目标物沿雷达径向的运动速度和速度脉动程度。
1、波长:是雷达发射的电磁波波长。
天气雷达的波长通常为10公分、5公分、3公分三种,分别称为S波段、C波段、X波段。
2、脉冲重复频率PRF天气雷达间歇地发射脉冲形式的电磁波,每秒钟发射脉冲的个数称为脉冲重复频率(PRF)。
两个相继脉冲之间的时间间隔称为脉冲重复周期(PRT),他等于脉冲重复频率的倒数。
3、脉冲持续时间和脉冲长度天气雷达脉冲持续时间一般为一到几个微米左右。
假设某部天气雷达的相继脉冲之间的间隔为1000微秒,其脉冲持续时间为2微秒左右,则剩余的998微秒是雷达接收来自目标物回波的时间。
发射脉冲的持续时间确定了脉冲在空间的长度。
例如CINRAD-SA型多普雷天气雷达的窄脉冲持续时间为1.57微秒,脉冲在空间的长度约为500m。
4、波束宽度雷达发射的能量主要集中在主瓣内(图2.8a),其中主瓣内两个半功率点(及该处功率为最大的一半)之间角度大小称为波束宽度。
在垂直方向的波束宽度用θ表示,在水平方向的波束宽度用φ表示。
我国多普勒天气雷达的波束宽度大多为1°左右。
5、有效照射深度和有效照射体积雷达发出的脉冲具有一定的持续时间τ,在空间的电磁波列就有一定的长度h=τc 。
位于波束宽度和波束长度范围内的所有粒子都可以同时被雷达波束所照射。
但是其中所有粒子产生的回波并不是都能同时回到雷达天线。
在径向方向上,粒子的回波信号能同时返回雷达天线的空间长度为h/2,称为雷达的有效照射深度。
1多普勒天气雷达原理与应用
第六部分多普勒天气雷达原理与应用(周长青)我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品第一章我国新一代天气雷达原理一、了解新一代天气雷达的三个组成部分和功能新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。
二、了解电磁波的散射、衰减、折射散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。
衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。
折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。
三、了解雷达气象方程在瑞利散射条件下,雷达气象方程为:其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。
Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。
四、了解距离折叠最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。
距离折叠是指雷达对雷达回波位置的一种辨认错误。
当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。
当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。
换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。
五、理解雷达探测原理。
反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。
天气雷达的工作原理ppt课件
从而使雷达荧光屏上出现的目标标志(用亮点或垂
直偏移表示)的方位、仰角就是目标相对于雷达的
实际方位、仰角。
.
16
5、天线转换开关
因为雷达发射和接受的都是持续时间极短(微秒量 级)、间歇时间很长(千微秒量级)的高频脉冲波,这 就有可能使发射和接收共用一根天线。天线转换开关的 作用是:在发射机工作时,天线只和发射机接通,使发 射机产生的巨大能量不能直接进入接收机,从而避免损 坏接收机;当发射机停止工作时,天线立即和接收机接 通,微弱的回波信号只进入接收机。
距离仰角显示器是显示云 和降水的垂直结构的显示器。 由于距离高度显示器只能在低 仰角下使用,如711雷达和7l3 雷达在作距离仰角显示时,天 线的最大仰角只分别为320和 290,这样的仰角看不到近距 离天顶附近的云雨情况,为了 解近距离天顶附近的云雨情况 和结构,某些天气雷达(国产 713雷达)可以作“距离仰角显 示”,这种显示器简称为REI
线的转动系统,一部分是同步系统。天线转动系统
的作用是:(1)使天线绕垂直轴转动,以便探测
平面上的降水分布,或漏斗面上降水、云的分布;
(2)使天线在某一方位上作上下俯仰,以便探测
云和降水的垂直结构和演变。
天线同步系统(也叫伺服系统)的作用是:使
阴极射线管上不同时刻时间扫描基线的方位、仰角
和相应时间天线所指的方位、仰角一致(即同步),
(Rang Elevation Indicator) .
横坐标为距离,纵坐 标为高度,垂直坐标尺度 和水平坐标尺度一样,因 此它没有距离高度显示器 那样出于两个坐标尺度不 一样而引起的失真。 23
等高平面位置显示器(CAPPl)
平面位置显示器只是在仰角为0时得到降水目标 的平面分布,仰角大于0时得到的是一个远处高近 处低的漏斗面上的云雨分布。为了解不同高度上的 云和降水分布,了解降水发生发展的三度空间情况, 人们使用了 “等高平面位置显示器”,简称 CAPPI(Constant Altitude PPl)。等高平面位置显 示器能够显示不同高度平面上的云雨分布
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性
风暴跟踪信息文本产品(上海)
风暴结构产品(SS)
冰雹指数产品(HI)
回波顶高产品(ET)
回波顶高等值线产品(ETC)
垂直液态水含量产品(VIL)
强天气概率产品(SWP)
一小时降水量产品(OHP)
三小时降水量产品(THP )
风暴总降水量产品(STP)
多普勒频率fd与目标物径向 速度Vr的关系
多普勒频率fd 定义: 目标物相对于雷达作径向运动
引起回波信号的频率变化,称 多普勒频移,亦称多普勒频率, 单位:赫兹(Hz)。
多普勒频率fd与目标物径向速度Vr 的关系(证明见P211-212)
fd
2Vr
其中: f d为多普勒频率
Vr 为目标物的径向速度
(单位 Hz )
(也称多普勒速度 , 单位 m / s)
这类产品主要有:
• 平面位置显示(PPI)
• 垂直最大回波强度显示 (CR)
• 等高平面位置显示(CAPPI)
• 距离高度显示(RHI)、
• 任意垂直剖面显示(VCS)
WSR-88D产品生成器根据用户要求生成的基本产 品有:基本反射率产品6种,平均径向速度产品6 种,速度谱宽产品3种,共计3类15种气象产品, 如下表
组合反射率因子 平均值产品图 (LRA)
2001年8月7日 15:26
中层(上图12~33 千英尺)和低层 (下图从地面到 12千英尺)
2010年8月7日15:02弱回波区产品图也 称为反射率因子多层透视图(上海)
风暴跟踪信息产品(STI)
表
示 产 生 冰 雹 的 可 能
图 中 绿 色 三 角 形
多普勒效应是奥地利 多普勒效应
物理学家 J.Doppler1842年 首先从运动着的发声 源中发现的现象,定 义为“当接收者或接 收器与能量源处于相 对运动状态时,能量 到达接收者(器)时 频率的变化”。
一个例子是:当一辆紧急的火车(汽车)鸣着喇叭以 相当高的速度向着你驶来时,声音的音调(频率)由 于波的压缩(较短波长)而增加。当火车(汽车)远 离你而去时,这声音的音调(频率)由于波的膨胀 (较长波长)而减低。
气象台值班室
RDA
RPG
PUP
雷达数据采集系统(RDA)
采用脉冲多普勒体制的全相干系统 • 速调管放大、高功率全相干发射机 • 窄波束低旁瓣的天线 • 低噪声宽动态范围的相干接收机 • 多参数的信号处理器 • 主要参数的自动检测
发射机
取得雷达数据的第一步是发射一个射频f0信号。 这主要由速调管放大器(相当于老式雷达中的的磁 控管)来完成。该放大器产生一个高功率(峰值功 率750kw)非常稳定的10厘米的射频(f0)脉冲。
在这里稳定是非常重要的,产生的每个脉冲 必须具有相同的初位相以保证回波信号中的多普勒 信息能够被提取。一旦fd脉冲被产生,就被送到天 线。
全相干发射机
天线
天线是RDA的一个部件,它将发射机产 生的RF信号以波束的形式发射到大气并接受 返回的能量(粒子的后向散射能量)。
WSR-88D雷达的天线仰角范围:-10~600。天 线仰角的设置取决于天线的扫描策略(scan strategy 共 有 三 种 ) 、 体 扫 模 式 ( volume coverage pattern : VCP ) 和 工 作 模 式 (operational mode 分为晴空和降水两种模 式)。 雷达操作员不能手动调节天线仰角, 天线仰角只能通过上述三要素预设。
第一章
天气雷达基本工作原理及 主要设备、参数
第一章 天气雷达的基本工作原理
和主要设备、主要参数
重点掌握:多普勒天气雷达最大不模糊速度及距离、多普勒频率 参数:PRF、PRT、h、θ、Vr、Vrmax、Rmax、τ、fD 及各计算公 式
一、天气雷达的基本工作原理 二、天气雷达的组成和主要技术参数 1、天气雷达的组成 2、主要技术参数 三、多普勒天气雷达工作原理 1、多普勒天气雷达概述 2、多普勒雷达探测原理 1)、多普勒效应 2)、多普勒频率 3)、多普勒频率与目标物径向速度的关系 4)、多普勒天气雷达原理方框图 3、回波信号的多普勒频谱分析 4、多普勒天气雷达的最大不模糊速度与最大不模糊距离(包括: Vr、VT互求) 5、速度模糊现象的主观识别 6、速度退模糊方法
它有助于用户直接和某些天气现象联系起来 进行分析和应用。
这类产品主要有: 1. 回波顶高(ET) 2. 垂直累积液态含水量(VIL) 3. 风切系列产品(径向、方位、径向方位) 4. 分层湍流组合(CAT) 5. 雷达定量测量降水(1小时、3小时累积
降水、风暴总降水)
3、风场反演产品
风场反演产品: 多普勒雷达系统获取的径向速度分
自相干多普勒天气雷达结构框图
全相干多普勒天气雷达结构框图
fo 发射脉冲的载频 fd 多普勒频率
发射频率 Vs 多普勒频移
发射频率 多普勒频移
中国新一代天气雷达系统简介
• 1、雷达数据采集系统(RDA) • 2、雷达产品生成子系统(RPG) • 3、主用户处理器子系统(PUP)
雷达的三部分
雷达站
剖面产品
•谱宽剖面(SCS) •速度剖面(VCS) •反射率剖面(RCS)
长沙 2004年4月23日11:44时实测的强度剖面图
2、物理量产品
物理量产品:是指雷达以各种探测方式获取 的回波强度、径向速度和速度谱宽数据, 经过一定的计算和处理。转化为有明显气 象意义的物理量,进而把这些物理量的分 布显示出来的图像和图形产品。
一、天气雷达工作原理
天气雷达原理示意图
天气雷达组成框图
天气雷达主要技术参数
1、波束宽度θ 2、天线增益G 3、天线有效面积Ac 4、脉冲长度h、脉冲宽度τ 5、脉冲重复周期T(PRT) 6、脉冲重复频率PRF 7、最大探测距离Rmax、
天气雷达波段、频率、波长关系表
波段 K
X C S
• 相干波:两束振幅、频率和相位完全相同的电 磁波称为相干波。
• 相干发射:发射出振幅、频率和相位完全一样 的脉冲波,所以各个脉冲之间是相干的。
• 全相干多普勒天气雷达:它的发射主控信号频 率由稳定的晶体振荡器产生,保证发射的高频 相干。它的相干性能好,地物消除能力强。
• 半相干(伪相干)多普勒天气雷达:它是通过 对发生信号采样,与本振混频以及锁相技术, 以保证中频相干,达到测量频率变化,它的发 射部分采用同轴磁控管。它的相干性能差,消 除地物的能力较全相干多普勒天气雷达差。
WSR- D
88 基 本 数 据 产 品
相对于风暴的 平均径向速度产品图(SRM)
与基本速度产品类似,只不过减去了由风暴 跟踪信息(STI)识别的所有风暴的平均运动速 度, 或减去由操作员选定的风暴运动速度。
(a)
(b)
(a)3.4度仰角
(b)14.9度仰角
2004年4月23日 长沙12:37时风暴相对径向速度 图 (基本速度减去风暴的平均移动速度后得到的)
体扫模式 (VCP:Volume Cover Pattern) 扫描方式确定一次体积扫中使用多少个仰角,
而具体是哪些仰角则由体扫模式来规定。WSR-88D 可有20个不同的VCP,目前只定义了其中的4个: VCP11 -- VCP11(scan strategy #1,version 1) 规定5分钟内对14个具体仰角的扫描方式。 VCP21 -- VCP21(scan strategy #2,version 1) 规定6分钟内对9个具体仰角的扫描方式。 VCP31 --- VCP31 (scan strategy #3,version 1)规定10分钟内对5个具体仰角的扫描方式。 VCP32 --- VCP32(scan strategy #3,version 2)确定的10分钟完成的5个具体仰角与VCP31相同。 不同之处在于VCP31使用长雷达脉冲而VCP32使用 短脉冲。 WSR-98D未定义VCP32。
多普勒天气雷达除常规天气雷达功能 之外,还可利用降水回波频率与发射频率 之间变化的信息来测定降水粒子的径向速 度,并通过此推断风速分布,垂直气流速 度,大气湍流,降水粒子谱分布,降水中 特别是强对流降水中风场结构特征。
常规天气雷达仅能提供反射率 因子资料。多普勒天气雷达将提供 两种附加的基本资料,径向速度和 速度谱宽,它们将增强对强风暴的 探测能力,也能改进对中尺度和天 气尺度系统的预报。
窄波束低旁瓣的天线
相干接收机
信号处理 监控系统
雷达产品生成子系统(RPG)
具有雷达产品生成、运行监控、数据库管理、 系统内通信等多种功能 气象应用产品:类似于美国NexRad导出产品 • 运行监控:运行模式、系统的自动标校、自动 报警等功能 • 数据库管理:基数据、产品数据的存贮、分发 等功能 • 通信管理:RDA、RPG、PUP间的窄带和宽 带通信等
: 雷达波长 (单位 m )
回波信号的多普勒频谱分析 见书P212-216
多普勒频率与回波功率波动频率
某一雨滴后向散射电场为:
E (t) RE e (t)i[ ex ip 0 t)(]
其中:Ei为后向散射电场振幅值,
0 2f0
雷达角频率, f0为雷达载波频率
为讨论方便,设初相位为零
若某一个雨滴以径向速度V1运动,产 生多普勒频率f1,则该雨滴后向散射 电场为:
WSR-98D 主要产品
1、基本数据产品
基本数据产品:是多普勒天气系统的 基础,它主要将雷达以各种探测方式获 取的数据,在不改变属性的前提下,在 多种不同的坐标上显示出它们的分布情 况。
利用这些产品可以直接识别和分析出 一些重要的的天气现象,如钩状回波、 带状回波、中尺度气旋、锋面、下击暴 流、大尺度的风向风速和冷暖平流。