卡尔曼滤波讲解
一句话讲明白 卡尔曼滤波

一句话讲明白卡尔曼滤波卡尔曼滤波是一种基于状态空间模型的估计算法,通过对系统状态进行预测和更新,从而提高对系统状态的估计精度。
它是一种递归滤波算法,能够有效地处理含有噪声的测量数据,广泛应用于航空航天、导航定位、无线通信等领域。
以下是对卡尔曼滤波的十个要点的介绍:1. 状态空间模型:卡尔曼滤波基于状态空间模型,将系统的状态表示为一个向量,通过状态转移矩阵描述系统状态的演化规律。
2. 预测步骤:卡尔曼滤波首先通过状态转移矩阵和控制输入预测系统的下一时刻状态,得到预测状态向量和预测误差协方差矩阵。
3. 更新步骤:卡尔曼滤波利用测量数据对预测状态进行修正,得到更新后的状态估计向量和更新后的误差协方差矩阵。
4. 估计误差:卡尔曼滤波通过误差协方差矩阵描述状态估计的精度,该矩阵可以通过预测和更新步骤进行递推计算。
5. 测量模型:卡尔曼滤波通过测量模型将系统状态和测量结果联系起来,测量模型可以是线性或非线性的。
6. 噪声模型:卡尔曼滤波假设系统和测量中存在随机噪声,通过噪声协方差矩阵描述噪声的统计特性。
7. 最小均方误差准则:卡尔曼滤波通过最小化均方误差准则,优化状态估计的精度,使得估计结果尽可能接近真实值。
8. 递归计算:卡尔曼滤波是一种递归算法,通过不断迭代更新状态估计,实现对系统状态的连续估计。
9. 初始条件:卡尔曼滤波需要给定初始状态估计和初始误差协方差矩阵,通常通过历史数据或先验知识进行初始化。
10. 优势和应用:卡尔曼滤波具有高效、精确、鲁棒的特点,被广泛应用于导航定位、目标跟踪、机器人定位与导航等领域,在实时性和稳定性要求较高的系统中得到了广泛应用和研究。
卡尔曼滤波是一种基于状态空间模型的递归滤波算法,通过预测和更新步骤对系统状态进行估计,以提高状态估计的精度。
它通过最小化均方误差准则和递归计算的方式,能够有效地处理含有噪声的测量数据,在航空航天、导航定位等领域得到了广泛应用。
卡尔曼滤波通俗理解

卡尔曼滤波通俗理解
卡尔曼滤波通俗理解
卡尔曼滤波(Kalman Filter)是一种用来估计系统状态的算法。
它是一种有效的滤波算法,被用于许多模式拟合场合,如智能位置跟踪或自动控制系统。
卡尔曼滤波的核心思想是,通过先验概率分布来估计状态,而这种先验概率分布是基于观察到的测量值,以及我们对变化过程的知识,形成的。
也就是说,卡尔曼滤波给出了一种融合当前观测值和之前观测值的知识技术,用之来估计状态变量,而不仅仅是根据当前观测值来估计。
它的工作原理是,从先前状态估计,然后反馈新观测的量,根据测量值更新估计状态。
这样就可以得到一个更准确的估计。
简而言之,卡尔曼滤波使得我们可以使用当前测量值和先前观测值的组合,以估计一个可能的状态,而不仅仅是根据当前测量值来估计。
这就是卡尔曼滤波的优势所在。
卡尔曼滤波算法基本原理

卡尔曼滤波算法基本原理一、概述卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,主要用于估计含有噪声的测量数据,并能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章将详细介绍卡尔曼滤波算法的基本原理。
二、基本原理1.状态方程:卡尔曼滤波算法基于线性系统状态空间模型,该模型可以用状态方程来表示。
状态方程通常包含系统的内部状态、输入和输出,可以用数学公式表示为:x(t+1)=Ax(t)+Bu(t)+w(t)。
其中,x(t)表示系统内部状态,u(t)表示输入,w(t)表示测量噪声。
2.测量方程:测量数据通常受到噪声的影响,卡尔曼滤波算法通过建立测量方程来处理噪声数据。
测量方程通常表示为:z(t)=h(x(t))+v(t),其中z(t)表示测量数据,h(x(t))表示系统输出,v(t)表示测量噪声。
3.卡尔曼滤波算法:卡尔曼滤波算法通过递归的方式,根据历史状态和测量数据来估计当前系统的内部状态。
算法的核心是利用过去的估计误差和测量误差来预测当前的状态,并不断更新估计值,以达到最优估计的效果。
卡尔曼滤波算法主要包括预测和更新两个步骤。
预测步骤根据状态方程和上一步的估计值,预测当前的状态;更新步骤则根据当前的测量数据和预测值,以及系统协方差矩阵,来更新当前状态的估计值和系统协方差矩阵。
4.滤波器的选择:在实际应用中,需要根据系统的特性和噪声的性质来选择合适的卡尔曼滤波器。
常见的滤波器有标准卡尔曼滤波器、扩展卡尔曼滤波器等。
选择合适的滤波器可以提高估计精度,降低误差。
三、应用场景卡尔曼滤波算法在许多领域都有应用,如航空航天、自动驾驶、机器人控制等。
在上述领域中,由于系统复杂、噪声干扰大,使用卡尔曼滤波算法可以有效地提高系统的估计精度和控制效果。
四、总结卡尔曼滤波算法是一种基于线性系统状态空间模型的递归滤波算法,通过预测和更新的方式,能够有效地消除噪声对估计的影响,提高估计精度。
本篇文章详细介绍了卡尔曼滤波算法的基本原理和应用场景,希望能对大家有所帮助。
卡尔曼滤波器原理详解课件

VS
机器人避障
通过卡尔曼滤波器对机器人进行避障控制, 实现机器人在复杂环境中的安全导航。
06
卡尔曼滤词
详细描述
无迹卡尔曼滤波器
总结词 详细描述
自适应卡尔曼滤波器
缺点分析
假设限制
01
初值问题
02
计算复杂度
03
改进方向
扩展到非线性系统 优化算法 融合其他方法
05
卡尔曼滤波器的应用实例
无人机定位与控制
无人机定位
无人机控制
通过卡尔曼滤波器对无人机进行控制, 实现无人机的稳定飞行和精确控制。
航天器轨道确定
航天器轨道估计
航天器导航
机器人导航与避障
机器人路径规划
状态方程和观测方程
状态方程 观测方程
卡尔曼滤波器的递推算法
预测步骤
根据当前状态和输入预测下一个状态。
更新步骤
根据观测值和预测值更新状态估计。
递推算法
通过重复执行预测步骤和更新步骤,逐步更新状态估计。
卡尔曼滤波器的最优估计
最优估计
在给定观测数据和模型的情况下,使用某种准则(如最小方差)找到的最佳估计。
卡尔曼滤波器的基本原理
01
02
数学模型
递归估计
03 最优估计
02
卡尔曼滤波器的数学模型
线性动态系统
线性系统
如果系统的状态变量可以表示为输入和输出的 线性组合,则该系统是线性的。
动态系统
如果系统的状态随时间变化,则该系统是动态的。
线性动态系统
如果一个系统既是线性的又是动态的,则该系统被称为线性动态系统。
卡尔曼滤波原理详解及系统模型建立

卡尔曼滤波原理详解及系统模型建立卡尔曼滤波是一种常见的信号处理方法,它通过利用测量数据和预测模型,在存在不确定性的情况下对系统状态进行估计和修正。
本文将详细介绍卡尔曼滤波的原理,并讨论系统模型的建立。
一、卡尔曼滤波原理卡尔曼滤波是一种递归滤波算法,其基本思想是通过利用当前时刻的测量值和上一时刻的状态估计值,结合系统的动力学模型,对当前时刻的状态进行估计和修正。
卡尔曼滤波的核心是在状态估计过程中考虑了测量误差和系统动态误差,从而有效地抑制了噪声的影响。
卡尔曼滤波的基本过程可以分为两个步骤:预测和修正。
首先,根据系统的动力学模型和上一时刻的状态估计值,通过状态方程对当前时刻的状态进行预测。
然后,根据当前时刻的测量值和预测的状态值,利用观测方程对状态进行修正。
通过不断地迭代这两个步骤,可以逐步逼近真实的系统状态。
在卡尔曼滤波中,状态估计值由两部分组成:先验估计和后验估计。
先验估计是在没有测量信息的情况下,根据系统的动力学模型对状态进行预测得到的估计值。
后验估计是在有测量信息的情况下,根据测量值对状态进行修正得到的估计值。
卡尔曼滤波通过融合这两个估计值,得到最优的状态估计。
二、系统模型建立在进行卡尔曼滤波之前,需要建立系统的数学模型。
系统模型包括状态方程和观测方程两部分。
1. 状态方程:描述系统状态的动态演化规律。
一般形式为:x(k) = A * x(k-1) + B * u(k) + w(k)其中,x(k)表示系统的状态向量,A表示状态转移矩阵,B表示输入控制矩阵,u(k)表示外部输入,w(k)表示系统的过程噪声。
2. 观测方程:描述系统状态与测量值之间的关系。
一般形式为:z(k) = H * x(k) + v(k)其中,z(k)表示测量向量,H表示观测矩阵,v(k)表示测量噪声。
在建立系统模型时,需要考虑系统的特性和实际应用场景。
对于线性系统,状态方程和观测方程可以直接通过物理方程或系统特性方程建立。
卡尔曼滤波原理及应用

卡尔曼滤波原理及应用
一、卡尔曼滤波原理
卡尔曼滤波(Kalman filter)是一种后验最优估计方法。
它以四个步骤:预测、更新、测量、改善,不断地调整估计量来达到观测的最优估计的目的。
卡尔曼滤波的基本思想,是每次观测到某一位置来更新位置的参数,并用更新结果来预测下一次的位置参数,再由预测时产生的误差来改善当前位置参数。
从而可以达到滤波的效果,提高估计精度。
二、卡尔曼滤波应用
1、导航系统。
卡尔曼滤波可以提供准确的位置信息,把最近获得的各种定位信息和测量信息,如GPS、ISL利用卡尔曼滤波进行定位信息融合,可以提供较准确的空中、地面导航服务。
2、智能机器人跟踪。
在编队技术的应用中,智能机器人往往面临着各种复杂环境,很难提供精确的定位信息,而卡尔曼滤波正是能解决这一问题,将持续不断的测量信息放在卡尔曼滤波器中,使机器人能够在范围内定位,跟踪更新准确可靠。
3、移动机器人自主避障。
对于移动机器人来说,很多时候在前传感器检测不到
人或障碍物的时候,一般将使用卡尔曼滤波来进行自主避障。
卡尔曼滤波的定位精度很高,相对于静止定位而言,移动定位有更多的参数要考虑,所以能提供更准确的定位数据来辅助自主避障,准确的定位信息就可以让我们很好的实现自主避障。
4、安防监控。
与其他传统的安防场景比,安防场景如果需要运动物体位置估计或物体检测,就必须使用卡尔曼滤波技术来实现,这是一种行为检测和行为识别的先进技术。
(注:安防监控可用于感知移动物体的位置,并在设定的范围内监测到超出范围的物体,以达到安全防护的目的。
)。
控制系统卡尔曼滤波

控制系统卡尔曼滤波卡尔曼滤波(Kalman filter)是一种经典的状态估计技术,在控制系统中拥有广泛应用。
本文将介绍控制系统中卡尔曼滤波的基本原理、算法流程以及应用实例。
一、卡尔曼滤波的基本原理卡尔曼滤波是基于系统状态和测量数据之间的线性关系,通过递推的方式对系统的状态进行估计。
其基本原理包括两个方面:状态预测和测量更新。
1. 状态预测状态预测是指根据系统的状态方程和上一时刻的状态估计值,通过数学模型预测当前时刻的系统状态。
状态方程通常用线性动力学方程表示,可以描述系统在无外界干扰下的状态演化规律。
2. 测量更新测量更新是指根据系统的测量方程和当前时刻的测量数据,对系统的状态进行修正和更新。
测量方程通常用线性观测方程表示,可以将系统的状态转化为可观测的输出。
二、卡尔曼滤波的算法流程卡尔曼滤波的算法流程主要包括两个步骤:预测步骤和更新步骤。
1. 预测步骤在预测步骤中,通过系统状态方程和控制输入预测系统的状态。
预测的过程包括两个关键的计算:(1)状态预测:根据上一时刻的状态估计值和状态方程,计算当前时刻的状态预测值。
(2)状态协方差预测:根据上一时刻的状态协方差估计值、过程噪声协方差以及状态转移矩阵,计算当前时刻的状态协方差预测值。
2. 更新步骤在更新步骤中,通过测量方程和测量数据来修正和更新系统的状态。
更新的过程包括两个关键的计算:(1)卡尔曼增益计算:根据状态协方差预测值、测量噪声协方差以及测量矩阵,计算卡尔曼增益。
(2)状态估计更新:根据卡尔曼增益、状态预测值和测量残差,计算当前时刻的状态估计值和状态协方差估计值。
三、卡尔曼滤波的应用实例卡尔曼滤波在控制系统中具有广泛的应用,下面将通过一个实际的应用实例来说明其效果。
假设有一个飞行器,通过激光雷达测量距离来估计飞行器与目标之间的距离。
然而,由于环境噪声和测量误差的存在,测量数据会受到一定程度的扰动。
在这个实例中,我们可以使用卡尔曼滤波来对飞行器与目标之间的距离进行估计。
卡尔曼滤波器原理详解

卡尔曼滤波器原理详解卡尔曼滤波器是一种用于估计系统状态的滤波算法,其原理基于状态空间模型和观测模型,并结合最小均方误差准则。
它通过使用系统动态方程和观测值,对系统的状态进行估计和预测,实现对噪声和偏差的最优抑制,从而提高状态估计的精度和稳定性。
1.预测步骤:预测步骤是基于系统的动态方程,利用上一时刻的状态估计和控制输入,预测系统的状态。
预测步骤中,通过状态转移矩阵A将上一时刻的状态估计值x(k-1)预测到当前时刻的状态估计值的先验估计值x'(k):x'(k)=A*x(k-1)+B*u(k-1)其中,x(k-1)为上一时刻的状态估计值,u(k-1)为控制输入。
预测步骤还要对状态估计值的协方差矩阵P(k-1)进行更新,通过状态转移矩阵A和系统的过程噪声协方差矩阵Q的关系:P'(k)=A*P(k-1)*A'+Q2.更新步骤:更新步骤是基于观测模型,利用当前时刻的观测值和预测的状态估计值,对状态进行校正和更新。
更新步骤中,首先计算观测残差z(k):z(k)=y(k)-H*x'(k)其中,y(k)为当前时刻的观测值,H为观测模型矩阵。
然后基于观测模型矩阵H、预测的状态估计值x'(k)和状态估计值的协方差矩阵P'(k),计算卡尔曼增益K(k):K(k)=P'(k)*H'*(H*P'(k)*H'+R)^(-1)其中,R为观测噪声协方差矩阵。
最后,利用卡尔曼增益对状态估计值进行校正和更新:x(k)=x'(k)+K(k)*z(k)更新步骤还要对状态估计值的协方差矩阵P'(k)进行更新,通过卡尔曼增益K(k)和观测噪声协方差矩阵R的关系:P(k)=(I-K(k)*H)*P'(k)其中,I为单位矩阵。
卡尔曼滤波器的主要优点在于可以根据系统的动态方程和观测模型进行状态估计,对于动态系统和噪声的建模具有一定的灵活性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波器的简介
卡尔曼全名Rudolf Emil Kalman,匈牙利数学家, 1930年出生于匈牙利首都布达佩斯。1953, 1954年于麻省理工学院分别获得电机工程学士 及硕士学位。1957年于哥伦比亚大学获得博士 学位。我们现在要学习的卡尔曼滤波器,正是 源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。
y(k)是k时刻的测量值,
H是测量系统的参数,对于多测量系 统,H为矩阵。
系统噪声和测量噪声都是高斯分布的, q(k)和r(k)分别表示过程和测量的噪声。
协方差矩阵分别为Qk-1和Rk
他们被假设成高斯白噪声(White
Gaussian Noise),他们的covariance分
别是Q,R(这里我们假设他们不随
扩展Kalman滤波算法(EKF)
假定定位跟踪问题的非线性状态方程和测量方程如下:
X f (X ) W ...............(1)
k 1
k
k
Y h(X ) V ...................(.2)
k
k
k
在最近一次状态估计的时刻,对以上两式进行线性化处理,首先构造如 下2个矩阵:
卡尔曼滤波
(kalman filtering)
卡尔曼滤波
一·、卡尔曼滤波器的简介 二、卡尔曼滤波器的应用 三、卡尔曼滤波器(Kalman Filter)基本原理 四、扩展Kalman滤波算法(EKF) 五、无迹卡尔曼滤波算法(UKF) 六、卡尔曼滤波器(Kalman Filter)应用实例(温度)
无迹卡尔曼滤波算法(UKF)
由于近似非线性函数的概率密度分布比近 似非线性函数更容易,使用采样方法近似非线 性分布来解决非线性问题的途径在最近得到了 人们的广泛关注。和EKF一样,UKF也是一种递 归式贝叶斯估计方法,但是UKF不必线性化非 线性状态方程和观测方程,他利用 UT(Unscented transform)方法,用一组确定的采 样点来近似后验概率。
(1)根据输入变量x的统计量x和Px,选择一种sigma点采样策略, 得到输入变量的sigma点集{xi},i=1,…,L,(其中L=2n+1),以及对应 的权值Wmi和Wci。其中:L为所采用的采样策略的采样sigma点 个数, Wmi为均值加权所用权值, Wmi为协方差加权所用权值。 若不采用比例修正,则Wmi= Wci=Wi。
卡尔曼滤波器的简介
卡尔曼滤波的一个典型实例是从一组有限的,包含噪 声的,对物体位置的观察序列(可能有偏差)预测出 物体的位置的坐标及速度。在很多工程应用(如雷达、 计算机视觉)中都可以找到它的身影。同时,卡尔曼滤 波也是控制理论以及控制系统工程中的一个重要课题。 例如,对于雷达来说,人们感兴趣的是其能够跟踪目标。 但目标的位置、速度、加速度的测量值往往在任何时 候都有噪声。卡尔曼滤波利用目标的动态信息,设法 去掉噪声的影响,得到一个关于目标位置的好的估计。 这个估计可以是对当前目标位置的估计(滤波),也可以 是对于将来位置的估计(预测),也可以是对过去位置的 估计(插值或平滑)。
F (k 1k) f ( X k ) X
X X (k k)
.......(3)
H (K ) h( X k ) X
X X (k k 1)
...........(4)
扩展Kalman滤波算法(EKF)
将线性化后的状态转移矩阵和观测矩阵代入到标准卡尔曼滤波框 架中,即得到扩展卡尔曼滤波。
因为EKF忽略了非线性函数泰勒展开的高阶项,仅仅用了一阶项, 是非线性函数在局部线性化的结果,这就给估计带来了很大误差, 所以只有当系统的状态方程和观测方程都接近线性且连续时,EKF 的滤波结果才有可能接近真实值。EKF滤波结果的好坏还与状态噪 声和观测噪声的统计特性有关,在EKF的递推滤波过程中,状态噪 声和观测噪声的协方差矩阵保持不变,如果这两个噪声协方差矩 阵估计的不够准确,那就容易产生误差累计,导致滤波器发散。 EKF的另外一个缺点是初始状态不太好确定,如果假设的初始状态 和初始协方差误差较大,也容易导致滤波器发散。
卡尔曼滤波器的应用
卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解 决很大部分的问题,他是最优,效率最高甚至是最有 用的。
他的广泛应用已经超过30年,包括机器人导航,控制, 传感器数据融合甚至在军事方面的雷达系统以及导弹 追踪等等。近年来更被应用于计算机图像处理,例如 头脸识别,图像分割,图像边缘检测等等。
系统状态变化而变化)。
卡尔曼滤波器——时间更新和状态更新
时间更新
xˆ xˆ u A B
k
k 1
k 1
P p A A
T Q
k
k 1
状态更新
K P H P H
k
k
TH k
ቤተ መጻሕፍቲ ባይዱ
T R 1
xˆk xˆk K k
y k
H
xˆk
Pk
1
K
k
H
P
k
扩展Kalman滤波算法(EKF)
无迹卡尔曼滤波算法(UKF)——UT变换
UT变换是UKF算法的核心和基础。UT变换的思想是: 在确保采样均值和协方差为X和Px的前提下,选择一组 点集(sigma点集),将非线性变换应用于采样的每个 sigma点,得到非线性转换后的点集y和Py是变换后 sigma点集的统计量。
无迹卡尔曼滤波算法(UKF)——UT变换
卡尔曼滤波器(Kalman Filter)基本原理
基本假设:
x(k)是k时刻的系统状态
后验概率分布p(xk-1/yk-1) 为高斯分布 动态系统是线性的
x x u q A B
k
k 1
k 1 k 1
y k
H
xk
rk
u(k)是k时刻对系统的控制量。
A和B是系统参数,对于多模型系统, 他们为矩阵。