大数据技术基础第二章:Hadoop平台的安装与配置
《大数据技术》Hadoop安装和HDFS常见的操作实验报告

《大数据技术》Hadoop安装和HDFS常见的操作实验报告
三、实验过程与结论:(经调试正确的源程序(核心部分)和程序的运行结果)
1.熟悉常用的Hadoop操作
(1)使用hadoop用户登录Linux系统,启动Hadoop(Hadoop的安装目录为“/usr/local/hadoop”),为hadoop用户在HDFS中创建用户目录“/user/hadoop”
(2)接着在HDFS的目录“/user/hadoop”下,创建test文件夹,并查看文件列表
(3)将Linux系统本地的“~/.bashrc”文件上传到HDFS的test文件夹中,并查看test
(4)将HDFS文件夹test复制到Linux系统本地文件系统的“/usr/local/hadoop”目录下
2. 编程实现以下功能,并利用Hadoop提供的Shell命令完成相同任务:
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
3.编程实现一个类“MyFSDataInputStream”
四、实验总结:(实验中遇到的问题及解决方法,心得体会等)
通过本次实验的学习,我对什么是大数据,大数据在做什么有了初步的了解,同时也激发起了我对大数据学习的兴趣。
在今后的学习中我会更加努力,本章知识也为我后面章节的学习奠定了基础。
让我有明确的目标去学习这门课程。
Chapter2-大数据技术原理与应用-第二章-大数据处理架构Hadoop-pdf

《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
2.1 概述
• • • • 2.1.1 2.1.2 2.1.3 2.1.4 Hadoop简介 Hadoop发展简史 Hadoop的特性 Hadoop的应用现状
《大数据技术原理与应用》
厦门大学计算机科学系
林子雨
《大数据技术原理与应用》 厦门大学计算机科学系 林子雨 ziyulin@
2.3.4 安装单机Hadoop
Hadoop版本:1.2.1 下载地址:/apache/hadoop/common/hadoop-1.2.1/ 实验步骤: 解压缩hadoop-1.2.1.tar.gz 修改hadoop-env.sh 查看hadoop版本信息:./hadoop version 运行hadoop实例
Hadoop平台上大数据处理的使用教程

Hadoop平台上大数据处理的使用教程大数据处理已经成为当今企业分析和决策制定的关键领域。
Hadoop 作为一个开源的大数据处理平台,提供了一种可靠、可扩展且高效的方式来存储和处理大规模数据。
本教程将为您介绍如何在Hadoop平台上进行大数据处理,并给出详细的操作步骤和示例。
## 第一部分:Hadoop平台的安装和配置1. 下载Hadoop:从Hadoop官方网站获取最新的Hadoop二进制文件,并解压到本地文件夹。
2. 配置Hadoop环境:编辑Hadoop配置文件,设置必要的参数,如文件系统地址、数据节点和任务跟踪器等。
3. 启动Hadoop:通过命令行启动Hadoop集群,可以使用start-all.sh脚本来同时启动所有的Hadoop进程。
## 第二部分:Hadoop中的存储和数据管理1. 分布式文件系统(HDFS):使用Hadoop分布式文件系统来存储大规模数据。
学习如何创建、移动和删除文件,以及如何设置和管理文件的副本。
2. Hadoop YARN:了解Hadoop的资源管理系统,学习如何提交和管理应用程序,并了解如何配置YARN队列来优化任务调度。
3. 数据加载和导入:学习如何将数据加载到Hadoop集群中,可以通过命令行工具或使用Hadoop的数据导入工具,如Sqoop和Flume。
## 第三部分:Hadoop上的数据处理1. MapReduce:学习如何使用MapReduce编写分布式数据处理程序。
使用Java编写Map和Reduce函数,将任务提交到Hadoop集群,并了解如何监视任务的执行。
2. Pig:了解Pig语言,它是一种类似SQL的高级脚本语言,用于高效地进行数据分析和转换。
学习如何编写Pig脚本,并将其提交到Hadoop集群进行执行。
3. Hive:学习如何使用Hive进行数据查询和分析。
了解Hive的数据模型和查询语言(HiveQL),并编写HiveQL脚本来查询和处理数据。
Hadoop的安装与配置

Hadoop的安装与配置建立一个三台电脑的群组,操作系统均为Ubuntu,三个主机名分别为wjs1、wjs2、wjs3。
1、环境准备:所需要的软件及我使用的版本分别为:Hadoop版本为0.19.2,JDK版本为jdk-6u13-linux-i586.bin。
由于Hadoop要求所有机器上hadoop的部署目录结构要相同,并且都有一个相同的用户名的帐户。
所以在三台主机上都设置一个用户名为“wjs”的账户,主目录为/home/wjs。
a、配置三台机器的网络文件分别在三台机器上执行:sudo gedit /etc/network/interfaceswjs1机器上执行:在文件尾添加:auto eth0iface eth0 inet staticaddress 192.168.137.2gateway 192.168.137.1netmask 255.255.255.0wjs2和wjs3机器上分别执行:在文件尾添加:auto eth1iface eth1 inet staticaddress 192.168.137.3(wjs3上是address 192.168.137.4)gateway 192.168.137.1netmask 255.255.255.0b、重启网络:sudo /etc/init.d/networking restart查看ip是否配置成功:ifconfig{注:为了便于“wjs”用户能够修改系统设置访问系统文件,最好把“wjs”用户设为sudoers(有root权限的用户),具体做法:用已有的sudoer登录系统,执行sudo visudo -f /etc/sudoers,并在此文件中添加以下一行:wjsALL=(ALL)ALL,保存并退出。
}c、修改三台机器的/etc/hosts,让彼此的主机名称和ip都能顺利解析,在/etc/hosts中添加:192.168.137.2 wjs1192.168.137.3 wjs2192.168.137.4 wjs3d、由于Hadoop需要通过ssh服务在各个节点之间登陆并运行服务,因此必须确保安装Hadoop的各个节点之间网络的畅通,网络畅通的标准是每台机器的主机名和IP地址能够被所有机器正确解析(包括它自己)。
Hadoop大数据技术基础智慧树知到答案2024年河北软件职业技术学院

Hadoop大数据技术基础河北软件职业技术学院智慧树知到答案2024年第一章测试1.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上。
()A:对 B:错答案:A2.Hadoop既适合超大数据集存储,也适合小数据集的存储。
()A:错 B:对答案:A3.HDFS为海量的数据提供了存储,而MapReduce为海量的数据提供了计算。
()A:错 B:对答案:B4.Hadoop起始于以下哪个阶段?()A:2003年,Google发布了GFS论文。
B:2004年,Nutch的开发者开发了NDFS。
C:2004年,Google发表了关于MapReduce的论文。
D:2002年,Apach项目的Nutch。
答案:D5.Hadoop集群具有以下哪个优点?()A:高可靠性 B:高成本性 C:高扩展性 D:高容错性答案:ACD第二章测试1.在本次课程里,Linux发行版本我们选择()。
A:ubuntu B:RedHat C:Centos7 D:Centos8答案:C2.从哪一个Hadoop历史版本引入了yarn()。
A:1.x版本系列 B:3.x版本系列 C:4.x版本系列 D:2.x版本系列答案:B3.Hadoop部署方式分三种()。
A:伪集群模式 B:伪分布式模式 C:单机模式 D:分布式模式答案:BCD4.商业版Hadoop是指由第三方商业公司在社区版Hadoop基础上进行了一些修改、整合以及各个服务组件兼容性测试而发行的版本。
()A:对 B:错答案:A5.Hadoop一般是安装在Windows服务器上的。
()A:错 B:对答案:A第三章测试1.Hadoop 的安装部署的模式属于伪分布模式()。
A:Hadoop守护进程运行在由多台主机搭建的集群上,是真正的生产环境。
B:默认的模式,无需运行任何守护进程(daemon),所有程序都在单个JVM 上执行。
C:全分布式模式的一个特例,Hadoop的守护进程运行在一个节点上。
大数据分析技术基础教学课件3-大数据处理平台Hadoop

mapred-site.xml <configuration>
伪分布式模式 • Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件
分布式模式 • 多个节点构成集群环境来运行Hadoop
Hadoop的安装
Hadoop基本安装配置主要包括以下几个步骤:
第一代Hadoop包含三个大版本,分别是0.20.x,0.21.x和0.22.x,其中,0.20.x最 后演化成1.0.x,变成了稳定版,而0.21.x和0.22.x则增加了NameNode HA等新的 重大特性
第二代Hadoop包含两个版本,分别是0.23.x和2.x,它们完全不同于Hadoop 1.0, 是一套全新的架构,均包含HDFS Federation和YARN两个系统,相比于0.23.x,2.x 增加了NameNode HA和Wire-compatibility两个重大特性
Pig是一个用于大数据分析的工具,包括了一个数据分析语言和其运行环 境。Pig的特点是其结构设计支持真正的并行化处理,因此适合应用于大数 据处理环境。
Ambari是一个用于安装、管理、监控hadoop集群的web界面工具。目前已 支持包括MapReduce、HDFS、HBase在内的几乎所有hadoop组件的管理。
◦ 10年后,摩尔在IEEE国际电子组件大会上将他的语言修正为半导体芯片上集成的晶体管和电阻的 数量将每两年增加1倍。
《Hadoop大数据开发实战》教学教案(全)

《Hadoop大数据开发实战》教学教案(第一部分)一、教学目标1. 理解Hadoop的基本概念和架构2. 掌握Hadoop的安装和配置3. 掌握Hadoop的核心组件及其作用4. 能够搭建简单的Hadoop集群并进行基本的操作二、教学内容1. Hadoop简介1.1 Hadoop的定义1.2 Hadoop的发展历程1.3 Hadoop的应用场景2. Hadoop架构2.1 Hadoop的组成部分2.2 Hadoop的分布式文件系统HDFS2.3 Hadoop的计算框架MapReduce3. Hadoop的安装和配置3.1 Hadoop的版本选择3.2 Hadoop的安装步骤3.3 Hadoop的配置文件解读4. Hadoop的核心组件4.1 NameNode和DataNode4.2 JobTracker和TaskTracker4.3 HDFS和MapReduce的运行原理三、教学方法1. 讲授法:讲解Hadoop的基本概念、架构和组件2. 实践法:引导学生动手实践,安装和配置Hadoop,了解其运行原理3. 讨论法:鼓励学生提问、发表观点,共同探讨Hadoop的应用场景和优缺点四、教学准备1. 教师准备:熟悉Hadoop的安装和配置,了解其运行原理2. 学生准备:具备一定的Linux操作基础,了解Java编程五、教学评价1. 课堂参与度:学生提问、回答问题的积极性2. 实践操作:学生动手实践的能力,如能够独立完成Hadoop的安装和配置3. 课后作业:学生完成课后练习的情况,如编写简单的MapReduce程序4. 综合评价:结合学生的课堂表现、实践操作和课后作业,综合评价学生的学习效果《Hadoop大数据开发实战》教学教案(第二部分)六、教学目标1. 掌握Hadoop生态系统中的常用组件2. 理解Hadoop数据存储和处理的高级特性3. 学会使用Hadoop进行大数据处理和分析4. 能够运用Hadoop解决实际的大数据问题七、教学内容1. Hadoop生态系统组件7.1 YARN的概念和架构7.2 HBase的概念和架构7.3 Hive的概念和架构7.4 Sqoop的概念和架构7.5 Flink的概念和架构(可选)2. Hadoop高级特性8.1 HDFS的高可用性8.2 HDFS的存储策略8.3 MapReduce的高级特性8.4 YARN的资源管理3. 大数据处理和分析9.1 Hadoop在数据处理中的应用案例9.2 Hadoop在数据分析中的应用案例9.3 Hadoop在机器学习中的应用案例4. Hadoop解决实际问题10.1 Hadoop在日志分析中的应用10.2 Hadoop在网络爬虫中的应用10.3 Hadoop在图像处理中的应用八、教学方法1. 讲授法:讲解Hadoop生态系统组件的原理和应用2. 实践法:引导学生动手实践,使用Hadoop进行数据处理和分析3. 案例教学法:分析实际应用案例,让学生了解Hadoop在不同领域的应用九、教学准备1. 教师准备:熟悉Hadoop生态系统组件的原理和应用,具备实际操作经验2. 学生准备:掌握Hadoop的基本操作,了解Hadoop的核心组件十、教学评价1. 课堂参与度:学生提问、回答问题的积极性2. 实践操作:学生动手实践的能力,如能够独立完成数据处理和分析任务3. 案例分析:学生分析实际应用案例的能力,如能够理解Hadoop在不同领域的应用4. 课后作业:学生完成课后练习的情况,如编写复杂的MapReduce程序或使用Hadoop生态系统组件进行数据处理5. 综合评价:结合学生的课堂表现、实践操作、案例分析和课后作业,综合评价学生的学习效果重点和难点解析一、Hadoop的基本概念和架构二、Hadoop的安装和配置三、Hadoop的核心组件四、Hadoop生态系统组件五、Hadoop数据存储和处理的高级特性六、大数据处理和分析七、Hadoop解决实际问题本教案涵盖了Hadoop的基本概念、安装配置、核心组件、生态系统组件、数据存储和处理的高级特性,以及大数据处理和分析的实际应用。
Hadoop完全分布式详细安装过程

Hadoop详细安装过程一、本文思路1、安装虚拟化PC工具VMware,用于支撑Linux系统。
2、在VMware上安装Ubuntu系统。
3、安装Hadoop前的准备工作:安装JDK和SSH服务。
4、配置Hadoop。
5、为了方便开发过程,需安装eclipse。
6、运行一个简单的Hadoop程序:WordCount.java注:在win7系统上,利用虚拟工具VMware建立若干个Linux系统,每个系统为一个节点,构建Hadoop集群。
先在一个虚拟机上将所有需要配置的东西全部完成,然后再利用VMware 的克隆功能,直接生成其他虚拟机,这样做的目的是简单。
二、所需软件1、VMware:VMware Workstation,直接百度下载(在百度软件中心下载即可)。
2、Ubuntu系统:ubuntu-15.04-desktop-amd64.iso,百度网盘:/s/1qWxfxso注:使用15.04版本的Ubuntu(其他版本也可以),是64位系统。
3、jdk:jdk-8u60-linux-x64.tar.gz,网址:/technetwork/java/javase/downloads/jdk8-downloads-2133151.html注:下载64位的Linux版本的jdk。
4、Hadoop:hadoop-1.2.1-bin.tar.gz,网址:/apache/hadoop/common/hadoop-1.2.1/注:选择1.2.1版本的Hadoop。
5、eclipse:eclipse-java-mars-1-linux-gtk-x86_64.tar.gz,网址:/downloads/?osType=linux注:要选择Linux版本的,64位,如下:6、hadoop-eclipse-plugin-1.2.1.jar,这是eclipse的一个插件,用于Hadoop的开发,直接百度下载即可。
三、安装过程1、安装VMware。
hadoop安装以及配置启动命令

hadoop安装以及配置启动命令本次安装使⽤的Hadoop⽂件是badou学院的Hadoop1.2.1.tar.gz,以下步骤都是在此版本上进⾏。
1、安装,通过下载tar.gz⽂件安装到指定⽬录2、安装好后需要配置Hadoop集群配置信息: 在hadoop的conf路径中的masters中添加master(集群机器主的hostname)在slaves中添加集群的slave的hostname名称名称对应的是各⾃机器的hostname这样通过hosts⽂件中配置的域名地址映射可以直接找到对应的机器 a、core-site.xml 在xml⽂件中添加<property><name>hadoop.tmp.dir</name><value>/usr/local/src/hadoop.1.2.1/tmp</value></property> <property><name></name><value>hdfs://192.168.79.10:9000</value></property> c、hdfs-site.xml 在⽂件中添加<property><name>dfs.replication</name><value>3</value></property><!-- 复制节点数 --> d、hadoop-env.xml 在⽂件中添加export JAVA_HOME=/usr/local/src/jdk1.6.0_45 步骤2配置好后将当前hadoop⽂件夹复制到集群中其他机器上,只需要在对应机器上修改其对应的ip、port、jdk路径等信息即可搭建集群3、配置好Hadoop环境后需要测试环境是否可⽤: a、⾸先进⼊Hadoop的安装⽬录,进⼊bin⽬录下,先将Hadoop环境初始化,命令:./hadoop namenode -format b、初始化之后启动Hadoop,命令:./start_all.sh c、查看Hadoop根⽬录下的⽂件,命令:./hadoop fs -ls/ d、上传⽂件,命令:./hadoop fs -put ⽂件路径 e、查看⽂件内容,命令:./hadoopo fs -cat hadoop⽂件地址注意:在安装Hadoop环境时先安装好机器集群,使得⾄少3台以上(含3台)机器之间可以免密互相登录(可以查看上⼀篇的linux的ssh免密登录)执⾏Python⽂件时的部分配置/usr/local/src/hadoop-1.2.1/bin/hadoop/usr/local/src/hadoop-1.2.1/contrib/streaming/hadoop-streaming-1.2.1.jar。
Hadoop集群的搭建方法与步骤

Hadoop集群的搭建方法与步骤随着大数据时代的到来,Hadoop作为一种分布式计算框架,被广泛应用于数据处理和分析领域。
搭建一个高效稳定的Hadoop集群对于数据科学家和工程师来说至关重要。
本文将介绍Hadoop集群的搭建方法与步骤。
一、硬件准备在搭建Hadoop集群之前,首先要准备好适合的硬件设备。
Hadoop集群通常需要至少三台服务器,一台用于NameNode,两台用于DataNode。
每台服务器的配置应该具备足够的内存和存储空间,以及稳定的网络连接。
二、操作系统安装在选择操作系统时,通常推荐使用Linux发行版,如Ubuntu、CentOS等。
这些操作系统具有良好的稳定性和兼容性,并且有大量的Hadoop安装和配置文档可供参考。
安装操作系统后,确保所有服务器上的软件包都是最新的。
三、Java环境配置Hadoop是基于Java开发的,因此在搭建Hadoop集群之前,需要在所有服务器上配置Java环境。
下载最新版本的Java Development Kit(JDK),并按照官方文档的指引进行安装和配置。
确保JAVA_HOME环境变量已正确设置,并且可以在所有服务器上运行Java命令。
四、Hadoop安装与配置1. 下载Hadoop从Hadoop官方网站上下载最新的稳定版本,并将其解压到一个合适的目录下,例如/opt/hadoop。
2. 编辑配置文件进入Hadoop的安装目录,编辑conf目录下的hadoop-env.sh文件,设置JAVA_HOME环境变量为Java的安装路径。
然后,编辑core-site.xml文件,配置Hadoop的核心参数,如文件系统的默认URI和临时目录。
接下来,编辑hdfs-site.xml文件,配置Hadoop分布式文件系统(HDFS)的相关参数,如副本数量和数据块大小。
最后,编辑mapred-site.xml文件,配置MapReduce框架的相关参数,如任务调度器和本地任务运行模式。
hadoop 操作手册

hadoop 操作手册Hadoop 是一个分布式计算框架,它使用 HDFS(Hadoop Distributed File System)存储大量数据,并通过 MapReduce 进行数据处理。
以下是一份简单的 Hadoop 操作手册,介绍了如何安装、配置和使用 Hadoop。
一、安装 Hadoop1. 下载 Hadoop 安装包,并解压到本地目录。
2. 配置 Hadoop 环境变量,将 Hadoop 安装目录添加到 PATH 中。
3. 配置 Hadoop 集群,包括 NameNode、DataNode 和 JobTracker 等节点的配置。
二、配置 Hadoop1. 配置 HDFS,包括 NameNode 和 DataNode 的配置。
2. 配置 MapReduce,包括 JobTracker 和 TaskTracker 的配置。
3. 配置 Hadoop 安全模式,如果需要的话。
三、使用 Hadoop1. 上传文件到 HDFS,使用命令 `hadoop fs -put local_file_path/hdfs_directory`。
2. 查看 HDFS 中的文件和目录信息,使用命令 `hadoop fs -ls /`。
3. 运行 MapReduce 作业,编写 MapReduce 程序,然后使用命令`hadoop jar my_` 运行程序。
4. 查看 MapReduce 作业的运行结果,使用命令 `hadoop fs -cat/output_directory/part-r-00000`。
5. 从 HDFS 中下载文件到本地,使用命令 `hadoop fs -get/hdfs_directory local_directory`。
6. 在 Web 控制台中查看 HDFS 集群信息,在浏览器中打开7. 在 Web 控制台中查看 MapReduce 作业运行情况,在浏览器中打开四、管理 Hadoop1. 启动和停止 Hadoop 集群,使用命令 `` 和 ``。
hadoop安装配置指南

Hadoop安装、配置指南一、环境1、软件版本Hadoop:hadoop-0.20.2.Hive:hive-0.5.0JDK:jdk1.6以上版本2、配置的机器:主机[服务器master]:192.168.10.121 hadoop13从机[服务器slaves]:192.168.10.68 hadoop4在本文中,在命令或二、先决条件1、配置host:打开/etc/host文件,添加如下映射192.168.10.121 hadoop13 hadoop13192.168.10.68 hadoop4 hadoop42、配置SSH自动登陆1)以ROOT用户,登陆到[服务器master]上执行,如下操作:ssh-keygen -t rsa //一路回车cd ~/.sshcat id_rsa.pub >> authorized_keysscp -r ~/.ssh [服务器slaves]:~/2)以ROOT用户,登陆到[服务器slaves]上执行,如下操作:scp -r ~/.ssh [服务器master]:~/3)测试SSH是否配置成功在主服务器中执行如下命令:ssh [服务器master]ssh 192.168.10.68成功显示结果:Last login: Thu Aug 26 14:11:27 2010 from 在从服务器中执行如下命令:ssh [服务器slaves]ssh 192.168.10.121成功显示结果Last login: Thu Aug 26 18:23:58 2010 from 三、安装hadoop1、JDK安装,解压到/usr/local/jdk1.6.0_17,并配置/etc/profile环境export JAVA_HOME=/usr/local/jdk/jdk1.7.0export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre:$PATHexport CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/lib/tools.jarJDK路径:/usr/local/jdk/jdk1.7.0export JAVA_HOME=/usr/local/jdk/jdk1.7.0export PATH=$JAVA_HOME/bin:$JAVA_HOME/jre:$PATHexport CLASSPATH=$JAVA_HOME/lib:$JAVA_HOME/lib/tools.jar/usr/local/jdk/jdk1.7.02、下载Hadoop 并解压到[服务器master]的/root/zwmhadoop目录下tar zxvf hadoop-0.20.2.tar.gz四、配置hadoop1.配置主机[服务器master]到zwm hadoop/hadoop-0.20.2/ hadoop 目录下,修改以下文件:1)配置conf/hadoop-env.sh文件,在文件中添加环境变量,增加以下内容:export JAVA_HOME=/usr/local/jdk1.6.0_17export HADOOP_HOME=/root/zwmhadoop/hadoop-0.20.2/2)配置conf/core-site.xml文件,增加以下内容<?xml version="1.0"?><?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!-- Put site-specific property overrides in this file. --><configuration><property><name></name><value>hdfs://192.168.10.121:9000</value>//你的namenode的配置,机器名加端口<description>The nam e of the default file system. Either the literal string "local" o r a host:port for DFS.</description></property></configuration>3)配置conf/hdfs-site.xml文件,增加以下内容<?xml version="1.0"?><?xml-stylesheet type="text/xsl" href="configuration.xsl"?><!-- Put site-specific property overrides in this file. --><configuration><property><name>hadoop.t m p.dir</name><value>/root/zwmhadoop/t m p</value>//Hadoop的默认临时路径,这个最好配置,然后在新增节点或者其他情况下莫名其妙的DataNode启动不了,就删除此文件中的t mp目录即可。
《Hadoop权威指南:大数据的存储与分析》笔记

《Hadoop权威指南:大数据的存储与分析》阅读随笔目录一、Hadoop简介 (3)1.1 Hadoop的发展历程 (4)1.2 Hadoop的核心组件 (6)1.2.1 Hadoop分布式文件系统 (6)1.2.2 MapReduce编程模型 (8)1.2.3 YARN资源管理器 (9)二、Hadoop的安装与配置 (11)2.1 安装前的准备 (13)2.2 安装步骤 (14)2.3 验证安装 (16)三、Hadoop的数据存储 (17)3.1 HDFS的工作原理 (17)3.2 HDFS的高级特性 (19)3.2.1 数据副本机制 (21)3.2.2 数据块大小调整 (22)3.3 HDFS的使用和管理 (23)3.3.1 文件的上传和下载 (24)3.3.2 集群管理和维护 (25)四、Hadoop的数据分析 (27)4.1 MapReduce的工作流程 (29)4.2 MapReduce的应用案例 (30)4.3 Hive和Pig的使用 (31)4.3.1 Hive的使用 (32)4.3.2 Pig的使用 (33)五、Hadoop的性能优化 (34)5.1 网络优化 (36)5.2 内存优化 (37)5.3 磁盘优化 (39)六、Hadoop的安全管理 (39)6.1 用户和权限管理 (41)6.2 数据加密 (42)6.3 安全审计 (44)七、Hadoop的实践与应用 (45)7.1 电商网站数据存储与分析 (47)7.2 金融数据分析 (49)7.3 医疗健康数据存储与分析 (51)八、总结与展望 (52)8.1 Hadoop的优势与挑战 (54)8.2 未来发展趋势 (56)一、Hadoop简介Hadoop是一个开源的分布式存储和计算框架,它的核心思想是将大规模数据分散到多个计算节点上进行处理,从而实现对大数据的有效管理和分析。
Hadoop的出现极大地推动了大数据处理技术的发展,使得企业能够更有效地利用存储在海量数据中的有价值的信息。
hadoop安装与配置总结与心得

hadoop安装与配置总结与心得安装与配置Hadoop是一个相对复杂的任务,但如果按照正确的步骤进行,可以顺利完成。
以下是我在安装与配置Hadoop 过程中的总结与心得:1. 首先,确保你已经满足Hadoop的系统要求,并且已经安装了Java环境和SSH。
2. 下载Hadoop的压缩包,并解压到你想要安装的目录下。
例如,解压到/opt/hadoop目录下。
3. 配置Hadoop的环境变量。
打开你的.bashrc文件(或者.bash_profile文件),并添加以下内容:```shellexport HADOOP_HOME=/opt/hadoopexport PATH=$PATH:$HADOOP_HOME/bin```保存文件后,执行source命令使其生效。
4. 配置Hadoop的核心文件。
打开Hadoop的配置文件core-site.xml,并添加以下内容:```xml<configuration><property><name>fs.defaultFS</name><value>hdfs://localhost:9000</value></property></configuration>```5. 配置Hadoop的HDFS文件系统。
打开Hadoop的配置文件hdfs-site.xml,并添加以下内容:```xml<configuration><property><name>dfs.replication</name><value>1</value></property></configuration>```这里的dfs.replication属性指定了数据块的副本数量,可以根据实际情况进行调整。
6. 配置Hadoop的MapReduce框架。
大数据Hadoop学习之搭建Hadoop平台(2.1)

⼤数据Hadoop学习之搭建Hadoop平台(2.1) 关于⼤数据,⼀看就懂,⼀懂就懵。
⼀、简介 Hadoop的平台搭建,设置为三种搭建⽅式,第⼀种是“单节点安装”,这种安装⽅式最为简单,但是并没有展⽰出Hadoop的技术优势,适合初学者快速搭建;第⼆种是“伪分布式安装”,这种安装⽅式安装了Hadoop的核⼼组件,但是并没有真正展⽰出Hadoop的技术优势,不适⽤于开发,适合学习;第三种是“全分布式安装”,也叫做“分布式安装”,这种安装⽅式安装了Hadoop的所有功能,适⽤于开发,提供了Hadoop的所有功能。
⼆、介绍Apache Hadoop 2.7.3 该系列⽂章使⽤Hadoop 2.7.3搭建的⼤数据平台,所以先简单介绍⼀下Hadoop 2.7.3。
既然是2.7.3版本,那就代表该版本是⼀个2.x.y发⾏版本中的⼀个次要版本,是基于2.7.2稳定版的⼀个维护版本,开发中不建议使⽤该版本,可以使⽤稳定版2.7.2或者稳定版2.7.4版本。
相较于以前的版本,2.7.3主要功能和改进如下: 1、common: ①、使⽤HTTP代理服务器时的⾝份验证改进。
当使⽤代理服务器访问WebHDFS时,能发挥很好的作⽤。
②、⼀个新的Hadoop指标接收器,允许直接写⼊Graphite。
③、与Hadoop兼容⽂件系统(HCFS)相关的规范⼯作。
2、HDFS: ①、⽀持POSIX风格的⽂件系统扩展属性。
②、使⽤OfflineImageViewer,客户端现在可以通过WebHDFS API浏览fsimage。
③、NFS⽹关接收到⼀些可⽀持性改进和错误修复。
Hadoop端⼝映射程序不再需要运⾏⽹关,⽹关现在可以拒绝来⾃⾮特权端⼝的连接。
④、SecondaryNameNode,JournalNode和DataNode Web UI已经通过HTML5和Javascript进⾏了现代化改造。
3、yarn: ①、YARN的REST API现在⽀持写/修改操作。
Hadoop大数据开发基础教案Hadoop集群的搭建及配置教案

Hadoop大数据开发基础教案-Hadoop集群的搭建及配置教案教案章节一:Hadoop简介1.1 课程目标:了解Hadoop的发展历程及其在大数据领域的应用理解Hadoop的核心组件及其工作原理1.2 教学内容:Hadoop的发展历程Hadoop的核心组件(HDFS、MapReduce、YARN)Hadoop的应用场景1.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节二:Hadoop环境搭建2.1 课程目标:学会使用VMware搭建Hadoop虚拟集群掌握Hadoop各节点的配置方法2.2 教学内容:VMware的安装与使用Hadoop节点的规划与创建Hadoop配置文件(hdfs-site.xml、core-site.xml、yarn-site.xml)的编写与配置2.3 教学方法:演示与实践相结合手把手教学,确保学生掌握每个步骤教案章节三:HDFS文件系统3.1 课程目标:理解HDFS的设计理念及其优势掌握HDFS的搭建与配置方法3.2 教学内容:HDFS的设计理念及其优势HDFS的架构与工作原理HDFS的搭建与配置方法3.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节四:MapReduce编程模型4.1 课程目标:理解MapReduce的设计理念及其优势学会使用MapReduce解决大数据问题4.2 教学内容:MapReduce的设计理念及其优势MapReduce的编程模型(Map、Shuffle、Reduce)MapReduce的实例分析4.3 教学方法:互动提问,巩固知识点教案章节五:YARN资源管理器5.1 课程目标:理解YARN的设计理念及其优势掌握YARN的搭建与配置方法5.2 教学内容:YARN的设计理念及其优势YARN的架构与工作原理YARN的搭建与配置方法5.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节六:Hadoop生态系统组件6.1 课程目标:理解Hadoop生态系统的概念及其重要性熟悉Hadoop生态系统中的常用组件6.2 教学内容:Hadoop生态系统的概念及其重要性Hadoop生态系统中的常用组件(如Hive, HBase, ZooKeeper等)各组件的作用及相互之间的关系6.3 教学方法:互动提问,巩固知识点教案章节七:Hadoop集群的调优与优化7.1 课程目标:学会对Hadoop集群进行调优与优化掌握Hadoop集群性能监控的方法7.2 教学内容:Hadoop集群调优与优化原则参数调整与优化方法(如内存、CPU、磁盘I/O等)Hadoop集群性能监控工具(如JMX、Nagios等)7.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点教案章节八:Hadoop安全与权限管理8.1 课程目标:理解Hadoop安全的重要性学会对Hadoop集群进行安全配置与权限管理8.2 教学内容:Hadoop安全概述Hadoop的认证与授权机制Hadoop安全配置与权限管理方法8.3 教学方法:互动提问,巩固知识点教案章节九:Hadoop实战项目案例分析9.1 课程目标:学会运用Hadoop解决实际问题掌握Hadoop项目开发流程与技巧9.2 教学内容:真实Hadoop项目案例介绍与分析Hadoop项目开发流程(需求分析、设计、开发、测试、部署等)Hadoop项目开发技巧与最佳实践9.3 教学方法:案例分析与讨论团队协作,完成项目任务教案章节十:Hadoop的未来与发展趋势10.1 课程目标:了解Hadoop的发展现状及其在行业中的应用掌握Hadoop的未来发展趋势10.2 教学内容:Hadoop的发展现状及其在行业中的应用Hadoop的未来发展趋势(如Big Data生态系统的演进、与大数据的结合等)10.3 教学方法:讲解与案例分析相结合互动提问,巩固知识点重点和难点解析:一、Hadoop生态系统的概念及其重要性重点:理解Hadoop生态系统的概念,掌握生态系统的组成及相互之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 Hadoop开发平台的安装
• Hadoop的核心是HDFS和MapReduce。其中,HDFS提 供了数据分布式存储的解决方案,MapReduce提供了分 布式存储的数据的并行处理框架。Hadoop虽然是用 Java语言实现的,但是开放的。目前,Hadoop的集成 开发工具IDE常用的有Eclipse、MyEclipse、Hadoop Studio等,支持开发语言有Java、Python、Perl、C++ 等。本节将以Eclipse为例,介绍搭建Hadoop开发平台 的操作方法。
• Hadoop有以下三种运行模式。 • 1. Local (Standalone) Mode(即本地模式,Hadoop 的默认运行模式):在该模式下,所有程序都运行在同一 个JVM里,无需任何守护进程。MapReduce直接使用 Linux的本地文件系统存储数据,而不使用HDFS文件系统。 该模式主要用于测试和调试MapReduce程序,因此比较 适合开发阶段使用。
2.2.6 Hadoop的测试
详细配置过程见教材第2.2.6小节。
• • • • • • • 1.传送Hadoop到各从节点 2. 格式化文件系统 3工作状况 6. 用Web UI查看Hadoop集群的工作状态 7. 关闭Hadoop集群
2.2.4 Hadoop的安装
详细配置过程见教材第2.2.4小节。
• • • • 1. 下载Hadoop2.7.2 2. 解压安装 3. 为运行Hadoop创建目录 4. 设置环境变量
2.2.5 Hadoop的配置
详细配置过程见教材第2.2.5小节。
• • • • 1. 配置Hadoop守护进程的运行环境 2. 配置Hadoop守护进程的运行参数 3. 设置从节点 4. 配置Hadoop的日志
由3台VMware虚拟主机组成Hadoop集群
2.2.2 Linux系统设置
详细配置过程见教材第2.2.2小节。 • 1. 网络配置 • 2. 修改主机名 • 3. 修改主机IP解析表 • 4. 配置时钟同步服务 • 5. 关闭防火墙
2.2.3 SSH的安装
详细配置过程见教材第2.2.3小节。 • 1. 安装SSH服务 • 2. 检查SSH服务是否启动 • 3. 生成RSA密钥(包括私钥和公钥) • 4. 将公钥文件复制为Hadoop能识别的免密码登录的授权 文件。 • 5. 将主节点上的包含公钥的授权文件复制到各从节点 • 6. 验证SSH
2.1.2 安装Linux
• 1. 创建Linux虚拟主机 • 2. 安装Ubuntu操作系统
2.1.3 安装Java
• • • • • 1. 下载JDK 1.8 2.解压并安装JDK 3. 添加JDK的环境变量 4. 配置默认JDK版本 5. 测试JDK
2.2 Hadoop的集群安装
2.2.1 Hadoop的运行模式
ip:192.168.228.201 gateway:192.168.228.2 netmask:255.255.255.0 dns:61.139.2.69
ip:192.168.228.202 gateway:192.168.228.2 netmask:255.255.255.0 dns:61.139.2.69
2.2.1 Hadoop的运行模式
• 【注意】Hadoop并不严格区分伪分布模式和完全分布模 式。在Hadoop环境中,所有服务器节点仅划分为两种不 同角色:master(主节点,1个)和slaves(从节点,多 个)。因此,伪分布模式是完全分布模式的特例,只是将 主节点和从节点合二为一罢了。
2.2.1 Hadoop的运行模式
第2章 大数据技术概Hadoop平台的 安装与配置
• • • • 主要内容: 2.1 安装准备 2.2 Hadoop的集群安装 2.3 Hadoop开发平台的安装
2.1 安装准备
2.1.1 硬件要求
Tom White(Hadoop项目管理委员会的成员之一)在 “Hadoop的权威指南”中以2010年典型应用为例,建议商 业运行的Hadoop的机器使用以下规格的刀片式服务器。 • • • • (1) 处理器:2颗4核2.0GHz(或更高)的CPU; (2) 内存:16GB(或更高)的RAM; (3) 硬盘:4×1TB(或更大)的SATA硬盘; (4) 网卡:千兆(或更高)的以太网适配器。
使用虚拟网络:VMnet8 子网:192.168.228.0/24 switch NAT 模式 外网
eth0
master
eth0
slave1 slave2
eth0
ip:192.168.228.200 gateway:192.168.228.2 netmask:255.255.255.0 dns:61.139.2.69
2.1.1 硬件要求
实验用的Hadoop硬件规格要低得多。笔者建议使用 VMware的虚拟主机来搭建Hadoop的实验环境,用以下规 格的笔记本电脑或台式主机即可满足实验需要。 • (1) 处理器:1颗4核的Intel Core i7(或更高)的CPU; • (2) 内存:8GB(或更高)的DDR 3内存; • (3) 硬盘:1个120GB(或更大)的SSD硬盘和1个500GB (或更大)SATA硬盘; • (4) 网卡:千兆的以太网适配器。
2.2.1 Hadoop的运行模式
• 2. Pseudo-Distributed Mode(即伪分布模式):在该 模式下,Hadoop的守护进程运行在本地机器上。该模式 模拟一个分布式集群,数据存储于分布式文件系统HDFS, 而不保存于Linux的本地文件系统。同时,通过创建不同 的JVM实例来实现程序的分布式运行。这种模式主要是考 虑用户没有足够的机器去部署一台完全分布式的环境。 • 3. Fully-Distributed Mode(即完全分布模式):在该模 式下,Hadoop在集群中的每个节点上启动一个守护进程, 系统依靠HDFS实现数据的分布式存储,MapReduce程 序中的Map任务和Reduce任务通过调度机制并发地运行 于不同的节点之中,实现数据的就近处理。