数据挖掘聚类分析
聚类分析数据
聚类分析数据聚类分析是一种数据挖掘方法,用于将相似的数据点分组成簇。
它能够匡助我们发现数据中的潜在模式和结构,从而提供洞察力和指导性的决策支持。
在本文中,我们将探讨聚类分析的基本概念、常用的聚类算法以及应用案例。
一、聚类分析的基本概念聚类分析是一种无监督学习方法,它不依赖于预先标记的训练数据。
其主要目标是通过将相似的数据点分组成簇,使得簇内的数据点相似度较高,而簇间的数据点相似度较低。
聚类分析通常用于探索性数据分析和数据预处理阶段,以匡助我们理解数据的内在结构和特征。
在聚类分析中,我们需要考虑以下几个关键概念:1. 数据相似度度量:聚类算法需要一种度量方法来衡量数据点之间的相似度或者距离。
常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。
2. 聚类算法:聚类算法是用于将数据点分组成簇的数学模型或者算法。
常见的聚类算法包括K均值聚类、层次聚类、DBSCAN等。
3. 聚类评估指标:为了评估聚类结果的质量,我们需要一些指标来衡量聚类的密切度和分离度。
常用的评估指标有轮廓系数、Davies-Bouldin指数、Calinski-Harabasz指数等。
二、常用的聚类算法1. K均值聚类算法:K均值聚类是一种基于距离的聚类算法,它将数据点分配到K个簇中,使得簇内的数据点与簇中心的距离最小化。
它的基本思想是通过迭代优化来不断更新簇中心和数据点的分配,直到达到收敛条件。
2. 层次聚类算法:层次聚类是一种基于距离或者相似度的聚类算法,它通过逐步合并或者分割簇来构建聚类层次结构。
层次聚类可以分为凝结型层次聚类和分裂型层次聚类两种方法。
3. DBSCAN算法:DBSCAN是一种基于密度的聚类算法,它将数据点分为核心点、边界点和噪声点三类。
DBSCAN通过计算数据点的密度来确定核心点,并将密度可达的数据点分配到同一个簇中。
三、聚类分析的应用案例聚类分析在各个领域都有广泛的应用,下面是几个常见的应用案例:1. 市场细分:聚类分析可以匡助企业将客户细分为不同的市场群体,从而针对不同的群体制定个性化的营销策略。
聚类分析的类型与选择
聚类分析的类型与选择聚类分析是一种常用的数据挖掘技术,可以将数据按照某种相似性进行分组。
通过聚类分析,我们可以发现数据中的潜在规律和结构,帮助我们更好地理解数据,并做出相应的决策。
本文将介绍聚类分析的常见类型,并讨论如何选择适合的聚类方法。
1.聚类分析的类型聚类分析有多种类型,常见的包括层次聚类分析和k均值聚类分析。
下面将分别介绍这两种聚类方法。
1.1层次聚类分析层次聚类分析是一种自下而上的聚类方法,它通过计算数据之间的相似度或距离,将相似的数据逐步合并成簇。
这种方法对数据的层次结构有较好的表示,能够发现不同层次的聚类结构。
层次聚类分析的优点之一是不需要预先指定聚类的个数,但计算复杂度较高,对大规模数据处理存在困难。
另外,它对异常值敏感,若存在异常值可能影响聚类结果。
1.2k均值聚类分析k均值聚类分析是一种基于划分的聚类方法,它将数据划分成k个互不重叠的簇,使得簇内的数据相似度较高,簇间的数据相似度较低。
该方法通过迭代计算簇的中心和重新分配数据来实现聚类。
k均值聚类分析的优点在于计算简单、效果较好,适用于大规模数据集。
但该方法对初始簇中心的选择较为敏感,容易收敛于局部最优解。
2.选择合适的聚类方法在选择聚类方法时,应根据数据的特点和目标进行判断。
下面列举几个常见的选择因素,供参考:2.1数据特点需要考虑数据的特点,如数据的维度、规模、密度等。
对于高维度数据,层次聚类分析可能更适用;而对于大规模数据,k均值聚类分析常常更为合适。
2.2聚类目标需要考虑聚类的目标。
如果希望发现层次结构、发现数据的内在关联性,层次聚类分析是一个不错的选择。
而如果目标是将数据划分成互不重叠的簇,并且希望聚类结果能较好地解释数据的差异性,k均值聚类分析更为合适。
2.3数据质量数据质量也是选择聚类方法的重要因素。
层次聚类分析对异常值比较敏感,如果数据中存在异常值,使用k均值聚类分析可能更好。
选择合适的聚类方法需要综合考虑数据特点、聚类目标和数据质量等因素。
完整版数据挖掘中的聚类分析方法
完整版数据挖掘中的聚类分析方法聚类分析方法是数据挖掘领域中常用的一种数据分析方法,它通过将数据样本分组成具有相似特征的子集,并将相似的样本归为一类,从而揭示数据中隐藏的模式和结构信息。
下面将从聚类分析的基本原理、常用算法以及应用领域等方面进行详细介绍。
聚类分析的基本原理聚类分析的基本原理是将数据样本分为多个类别或群组,使得同一类别内的样本具有相似的特征,而不同类别之间的样本具有较大的差异性。
基本原理可以总结为以下三个步骤:1.相似性度量:通过定义距离度量或相似性度量来计算数据样本之间的距离或相似度。
2.类别划分:根据相似性度量,将样本分组成不同的类别,使得同一类别内的样本之间的距离较小,不同类别之间的距离较大。
3.聚类评估:评估聚类结果的好坏,常用的评估指标包括紧密度、分离度和一致性等。
常用的聚类算法聚类算法有很多种,下面将介绍常用的几种聚类算法:1. K-means算法:是一种基于划分的聚类算法,首先通过用户指定的k值确定聚类的类别数,然后随机选择k个样本作为初始聚类中心,通过迭代计算样本到各个聚类中心的距离,然后将样本划分到距离最近的聚类中心对应的类别中,最后更新聚类中心,直至达到收敛条件。
2.层次聚类算法:是一种基于树状结构的聚类算法,将样本逐步合并到一个大的类别中,直至所有样本都属于同一个类别。
层次聚类算法可分为凝聚式(自底向上)和分裂式(自顶向下)两种。
凝聚式算法首先将每个样本作为一个初始的类别,然后通过计算样本之间的距离来逐步合并最近的两个类别,直至达到停止准则。
分裂式算法则是从一个包含所有样本的初始类别开始,然后逐步将类别分裂成更小的子类别,直至达到停止准则。
3. 密度聚类算法:是一种基于样本密度的聚类算法,通过在数据空间中寻找具有足够高密度的区域,并将其作为一个聚类。
DBSCAN (Density-Based Spatial Clustering of Applications with Noise)算法是密度聚类算法的代表,它通过定义距离和邻域半径来确定样本的核心点、边界点和噪声点,并通过将核心点连接起来形成聚类。
数据挖掘第七章__聚类分析
Chapter 7. 聚类分析
• 聚类分析概述 • 聚类分析的数据类型
• 主要聚类分析方法分类
划分方法(Partitioning Methods)
分层方法
基于密度的方法
基于网格的方法
基于模型(Model-Based)的聚类方法
火龙果 整理
• 差异度矩阵
– (one mode)
0 d(2,1) 0 d(3,1 ) d ( 3, 2 ) : : d ( n,1) d ( n,2)
0 : ... ... 0
火龙果 整理
1.数据矩阵 数据矩阵是一个对象—属性结构。它是n个对象组
6.3 聚类分析中的数据类型
假设一个要进行聚类分析的数据集包含 n
个对象,这些对象可以是人、房屋、文件等。
聚类算法通常都采用以下两种数据结构:
火龙果 整理
两种数据结构
• 数据矩阵
– (two modes)
x11 ... x i1 ... x n1 ... x1f ... ... ... xif ... ... ... xnf ... x1p ... ... ... xip ... ... ... xnp
• 保险: 对购买了汽车保险的客户,标识那些有较高平均赔偿 成本的客户;
• 城市规划: 根据类型、价格、地理位置等来划分不同类型的 住宅; • 地震研究: 根据地质断层的特点把已观察到的地震中心分成 不同的类;
火龙果 整理
生物方面,聚类分析可以用来对动物或植物分类,或 根据基因功能对其进行分类以获得对人群中所固有的
(6.2)
火龙果 整理
数据挖掘中的聚类分析与异常检测方法综合比较
数据挖掘中的聚类分析与异常检测方法综合比较数据挖掘是一种从大量数据中提取有用信息的技术。
其中,聚类分析和异常检测是两种常用的数据挖掘方法。
聚类分析是将相似的数据对象归为一类,从而识别数据中的内在结构。
而异常检测是识别数据中的异常点或异常模式。
本文将对这两种方法进行综合比较。
首先,我们来看聚类分析。
聚类分析通过计算数据对象之间的相似度或距离,将相似的数据对象归为一类。
常用的聚类算法包括K均值聚类、层次聚类、密度聚类等。
聚类分析可以帮助我们发现数据中的群组结构,并提供对这些群组的理解和描述。
相较于异常检测,聚类分析更侧重于寻找数据中的相似性和内在结构。
聚类分析的优点之一是可以自动化地进行数据分析。
它不需要预先定义分类标准,而是根据数据本身的特征进行分类。
聚类分析也适用于多种数据类型,如数值型、文本型和图像型数据。
此外,聚类分析还可以用于数据预处理,例如去除重复数据、数据降维等。
然而,聚类分析也存在一些限制。
首先,聚类的结果依赖于选择的聚类算法和距离度量方法。
不同的算法和度量方法可能会得到不同的结果。
其次,聚类结果的解释和解释可能并不直观。
当数据集较大或维度较高时,聚类结果也较难解释。
最后,聚类分析可能受到异常值的影响。
异常值可能会导致聚类结果出现偏差,从而影响数据的准确性。
接下来,我们来看异常检测。
异常检测是识别数据集中的异常点或模式。
异常点是指与其他数据对象明显不同的数据点,而异常模式是指与大多数数据对象显著不同的模式。
异常检测可以帮助我们发现潜在的问题或异常情况,并采取相应的措施。
常用的异常检测方法包括统计学方法、基于距离的方法、基于密度的方法等。
异常检测的一个优点是可以快速发现数据中的异常情况。
与聚类分析不同,异常检测更关注数据中的离群值或异常点。
异常检测也可以应用于多种领域,如金融、网络安全、工业制造等。
此外,异常检测还可以帮助我们识别数据中的缺陷和瑕疵。
然而,异常检测也存在一些挑战。
首先,选择合适的异常检测方法是一个挑战。
数据挖掘中的聚类分析方法
数据挖掘中的聚类分析方法数据挖掘是一种通过智能计算和算法挖掘数据价值的技术。
而数据挖掘中的聚类分析方法则是其中的一个重要分支。
聚类分析是指将相似的数据组合在一起,不同的数据分开,形成不同的类别。
聚类分析在机器学习、数据分析、数据挖掘、图像处理等领域有广泛的应用。
本文将从聚类分析的定义、算法、分类等方面进行讲解。
一、聚类分析的定义聚类分析是一种无监督学习算法,它主要用于将样本根据各自的相似性分成若干类别。
聚类分析主要有两种方法:层次聚类和划分聚类。
层次聚类是一种自下而上的聚类方法,将每个样本视为一个初始聚类,然后将聚类依次合并,形成更大的聚类,直到所有样本都组成一个聚类。
层次聚类的结果是一个聚类树状结构,通过剪枝可以获得不同的聚类结果。
划分聚类是一种自上而下的聚类方法,将所有样本看作一个大的聚类,然后逐渐将其划分成更小的聚类,最终得到所需的聚类数目。
划分聚类主要有K均值聚类和高斯混合模型聚类二、聚类分析的算法(一) 层次聚类算法层次聚类常用的算法是自底向上的聚合算法和自顶向下的分裂算法。
自底向上的聚合算法是指先构造n个初始聚类,然后迭代合并最接近的两个聚类,直到达到某个停止条件。
这个停止条件可以是达到了所需的聚类数目,也可以是聚类之间距离的最大值。
自顶向下的分裂算法则是从所有样本开始,将其划分成两个聚类,然后逐步分裂聚类,得到所需的聚类数目。
(二) K均值聚类K均值聚类是一种划分聚类算法,它需要先指定K个聚类中心,然后根据距离来将样本点分配给不同的聚类中心。
然后将每个聚类内部的样本的均值作为该聚类的新中心,重新计算每个样本点和聚类中心的距离,直到聚类中心不再改变或达到一定的迭代次数。
K均值聚类的优势在于简单快速,具有很好的可扩展性和聚类效果。
但是这种算法需要预先确定聚类中心数,且对初始聚类中心的选择比较敏感。
(三) 高斯混合模型聚类高斯混合模型聚类是一种基于概率密度估计的算法,它假设每个聚类的密度函数是一个高斯分布。
聚类分析方法
聚类分析方法
聚类分析是一种常用的数据挖掘方法,它可以将相似的数据点分组在一起。
在聚类分析中,数据被分为多个类别,每个类别都包含具有类似特征的数据点。
聚类分析方法有很多种,其中一种是K均值聚类。
K均值聚
类的目标是将数据点分为K个簇,使得每个数据点都属于与
其最近的质心所代表的簇。
首先,在聚类分析中,需要先选择一个初始的簇质心,然后迭代地将每个数据点分配到与其最近的质心所代表的簇中,然后更新簇质心的位置,直到达到收敛。
另一种常见的聚类分析方法是层次聚类。
层次聚类将数据点逐渐合并成一个个的簇,直到所有数据点都属于同一个簇。
层次聚类可以根据不同的相似性度量来合并簇,例如单链接、完全链接或平均链接等。
另外,谱聚类是一种基于图论的聚类方法,它利用数据点之间的相似性构建一个相似度矩阵,并将其转化为一个图。
然后,通过计算图的特征向量来对数据进行聚类分析。
聚类分析方法还有很多其他的变体和扩展,例如密度聚类、模糊聚类和网格聚类等。
这些方法可以根据具体的问题和数据类型来选择和应用。
总的来说,聚类分析方法是一种无监督学习的方法,可以用于发现数据中的内在结构和模式。
它在很多领域都有广泛的应用,
如市场分析、社交网络分析和生物信息学等。
通过应用聚类分析方法,可以帮助我们更好地理解和分析数据。
数据挖掘中的聚类分析与分类模型比较
数据挖掘中的聚类分析与分类模型比较数据挖掘是一种通过自动或半自动的方法来发现数据模式、建立模型和进行预测的技术。
在数据挖掘的过程中,聚类分析和分类模型是两种重要的方法,它们在从数据中提取有用信息方面起到了关键作用。
本文将对这两种方法进行比较,探讨它们的优缺点及在实际应用中的差异。
一、聚类分析聚类分析是一种无监督学习的方法,它是指在没有预定义类别标签的情况下自动将数据分组或分类的方法。
聚类分析的目标是利用数据自身的特点将相似的数据点聚集在一起,不同的数据点被分成不同的类别。
聚类分析可以帮助我们发现数据中的隐藏模式和结构,进行数据的可视化和理解,识别异常值和离群点等。
聚类分析的优点:1.适用范围广:聚类分析可以适用于各种类型的数据,包括数值型数据、文本数据和图像数据等,因此在各个领域都有着广泛的应用。
2.无需先验知识:聚类分析不需要先验知识或者标签,它可以自动发现数据中的结构和模式,适用于未知的数据集。
3.可解释性强:聚类分析生成的结果是一组相互独立的类别,每个类别都有其特定的特征和属性,因此结果易于理解和解释。
聚类分析的缺点:1.结果不稳定:聚类分析的结果会受到初始化的影响,有时候可能会出现不稳定的情况,需要多次运行算法来得到稳定的结果。
2.难以确定聚类数目:在聚类分析中,通常需要指定聚类的数目,但是很难确定一个合适的聚类数目,这可能会影响聚类分析的结果。
3.对噪声和异常值敏感:聚类分析对数据中的噪声和异常值比较敏感,它可能会将这些噪声和异常值也划分到一个类别中,影响聚类的结果。
二、分类模型分类模型是一种监督学习的方法,它是指在有预定义类别标签的情况下建立模型,用来预测新数据点的类别标签。
分类模型的目标是根据已知的类别标签来训练模型,使其能够对未知数据进行分类。
分类模型可以帮助我们进行预测和决策,识别潜在的规律和模式,进行风险评估和市场分析等。
分类模型的优点:1.预测准确性高:分类模型可以利用已知的类别标签来建立模型,因此通常具有比较高的预测准确性,能够较好地进行分类。
数据挖掘中的聚类分析方法
数据挖掘中的聚类分析方法数据挖掘是一项数据分析过程,通过使用复杂算法和技术来发现隐藏在数据中的模式和关系。
聚类分析方法是数据挖掘中应用广泛的一种方法,它可以将一组数据分为不同组,每组中的对象具有相似的属性,并且不同组之间的对象有明显的差异。
本文将介绍聚类分析的一些基本概念、聚类算法和聚类分析的应用领域。
一、聚类分析的一些基本概念聚类分析是将一组对象按照它们之间的相似度分成多个组的过程。
相似度可以用多种方式进行衡量,比如欧几里得距离、曼哈顿距离、闵可夫斯基距离等。
在聚类分析中,一个重要的概念是簇,它是指一组具有相似属性的对象。
聚类分析的目标是将数据集合分为多个簇,并使得不同簇之间的相似度越小越好,而同一簇内的相似度越大越好。
二、聚类算法聚类算法可以分为层次聚类算法和非层次聚类算法两种。
层次聚类算法将数据集中的对象分为一系列越来越小的簇,并形成一个树形结构,即所谓的聚类树。
非层次聚类算法则直接把数据分成簇,并不会形成树形结构,它们的算法主要有K均值聚类、DBSCAN聚类、层次聚类、EM聚类等。
K均值聚类K均值聚类是一种基于距离的聚类算法。
该算法的基本思想是,将数据集中的对象分为k个簇,每个簇都有一个中心点,称为簇的质心。
首先随机选取k个质心,然后计算每个对象离这k个质心的距离,将其划分到距离最近的质心所在的簇。
接着重新计算每个簇的质心,再次对每个对象进行重新的簇分配,直到簇不再发生变化或达到一定的迭代次数。
DBSCAN聚类DBSCAN聚类是一种基于密度的聚类算法。
该算法的基本思想是,在不同密度的区域中划分不同的簇。
算法需要指定两个参数:邻域半径Eps和最小点数MinPts。
如果一个点的邻域内点的个数大于等于MinPts,则该点为核心点。
如果一个点的邻域内存在核心点,则该点为边界点。
如果一个点既不是核心点也不是边界点,则为噪声点。
聚簇的算法步骤是:随机选择一个点,将该点的邻域内的点加入到该簇中,并继续扫描邻域内其他点,将与该点密度可达的点加入到该簇中。
知识点归纳 数据挖掘中的聚类分析与分类算法
知识点归纳数据挖掘中的聚类分析与分类算法数据挖掘中的聚类分析与分类算法数据挖掘是指从大量数据中自动发现有用的模式、关系或规律的过程。
在数据挖掘过程中,聚类分析和分类算法是两个常用且重要的技术。
本文将对这两个知识点进行归纳总结。
一、聚类分析聚类分析是将一组无标签的数据对象进行分组或聚类的数据挖掘技术。
其目标是通过对象之间的相似性将它们划分为若干个簇,使得同一簇内的对象相似度高,不同簇之间的相似度低。
聚类分析广泛应用于市场分割、社交网络分析、图像处理等领域。
常用的聚类算法有以下几种:1. K-means算法:K-means是一种基于距离度量的聚类算法。
它通过逐步迭代,将数据集分为K个簇,使得每个数据对象与本簇内的其他对象的相似度最高。
2. 层次聚类算法:层次聚类算法是一种通过计算不同类别之间的相似性,并逐步合并相似度高的类别的方式进行数据聚类的方法。
Hierarchical Agglomerative Clustering(HAC)是层次聚类的一种常见算法。
3. 密度聚类算法:密度聚类算法是一种通过计算对象的密度来确定簇的方法,常见的算法有DBSCAN和OPTICS算法。
这类算法可以有效地发现具有不同密度分布的聚类。
二、分类算法分类算法是将带有标签的数据集按照类别或标签进行划分的数据挖掘技术。
通过学习已有数据集的特征和类别标签,分类算法能够对新的未标记数据进行分类预测。
分类算法广泛应用于垃圾邮件过滤、文本分类、风险评估等领域。
常用的分类算法有以下几种:1. 决策树算法:决策树算法是一种基于树形结构的分类算法。
它通过对数据集进行递归分割,使得每个子节点具有最佳的纯度或信息增益,从而实现对数据的分类。
2. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于条件概率的分类算法。
它假设特征之间相互独立,并通过计算条件概率来进行分类预测。
3. 支持向量机算法:支持向量机算法是一种通过寻找最优分割超平面将数据划分为不同类别的算法。
数据挖掘与聚类分析
数据挖掘与聚类分析数据挖掘是通过从大量数据中提取知识或信息的过程,用于发现有用的模式、规律和趋势。
而聚类分析是数据挖掘的一种技术,它将数据集中的对象分组成相似的子集,每个子集都有自己的特征和属性。
本文将探讨数据挖掘与聚类分析的概念、应用和挑战。
1. 概念介绍数据挖掘是一种利用计算机自动分析大量数据并发现其中隐含的知识或规律的过程。
它涉及多个领域包括机器学习、统计学和数据库技术。
数据挖掘的目标是从大量数据集中提取有意义的模式,以帮助决策和预测未来趋势。
聚类分析是数据挖掘技术中的一个重要方法,它通过将数据集中的对象分成不同的组别,每个组别内的对象具有相似的特征和属性。
聚类分析的目标是将相似的对象放在一起,不相似的对象放在不同的组别中,从而形成一种结构化的数据集。
2. 应用领域数据挖掘与聚类分析在许多领域都有广泛的应用。
以下是一些典型的应用领域:2.1 市场营销在市场营销中,数据挖掘可以帮助企业了解消费者的行为和偏好,预测未来的市场趋势,从而制定更合理的营销策略。
聚类分析可以将消费者分成不同的群组,根据每个群组的特征来制定个性化的营销方案。
2.2 生物信息学在生物信息学中,数据挖掘可以帮助科学家分析和理解生物学数据,发现蛋白质、基因和基因组的模式和规律。
聚类分析可以帮助科学家将不同的生物对象分类,从而研究它们之间的相似性和差异性。
2.3 网络安全在网络安全领域,数据挖掘可以帮助检测网络攻击、异常行为和恶意软件。
聚类分析可以将网络流量分成不同的群组,根据每个群组的特征来确定是否存在安全威胁。
3. 挑战与限制数据挖掘与聚类分析虽然在各个领域都有广泛的应用,但也面临一些挑战和限制。
以下是一些常见的挑战:3.1 数据质量数据挖掘的结果取决于数据的质量,而现实世界中的数据往往存在噪声、缺失和错误。
处理低质量的数据可能导致分析结果的不准确性和偏差。
3.2 纬度灾难当数据集的维度非常高时,聚类分析可能面临纬度灾难问题。
聚类分析方法和数据挖掘法的区别
聚类分析方法和数据挖掘法的区别
聚类分析方法和数据挖掘法是两种不同的数据分析技术,它们有以下几点区别:
1. 目标:聚类分析旨在将一组数据分为不同的群组,每个群组内的成员相似度较高,而不同群组间的成员相似度较低。
数据挖掘的目标是从大量数据中提取有用信息,发现隐藏的模式、关联和规律。
2. 方法:聚类分析方法主要通过计算数据之间的相似度或距离来形成群组,最常见的方法有K均值聚类、层次聚类等。
而数据挖掘方法则包括多种技术,如关联规则挖掘、分类、回归、异常检测等。
3. 数据类型:聚类分析方法适用于各种类型的数据,包括数值型数据、文本数据和离散型数据等。
数据挖掘方法也适用于各种数据类型,但可能会针对不同类型的数据选择不同的分析方法。
4. 解释性:聚类分析通常不关注特定的因果关系或预测结果,而是对数据进行描述性分组。
而数据挖掘方法更侧重于对数据进行预测分析,提供对未来事件或行为的判断。
5. 应用领域:聚类分析方法主要用于市场细分、用户分类、模式识别和图像处理等领域,以及一些非监督学习的问题。
数据挖掘方法则广泛应用于市场营销、金融、医疗、电信等各个领域,用于挖掘业务中的模式和规律。
综上所述,聚类分析方法和数据挖掘方法在目标、方法、数据类型、解释性和应用领域等方面存在一定的差异。
常用的数据挖掘方法
常用的数据挖掘方法
1. 聚类分析。
聚类分析是一种无监督学习方法,它的目标是将相似的数据点归为一类。
通过聚类分析,我们可以发现数据中的模式和结构,帮助我们更好地理解数据。
在实际应用中,聚类分析常用于市场细分、社交网络分析、图像分析等领域。
2. 分类算法。
分类算法是一种监督学习方法,它的目标是根据已知的数据点的特征,预测新的数据点所属的类别。
常见的分类算法包括决策树、支持向量机、朴素贝叶斯等。
在实际应用中,分类算法常用于垃圾邮件过滤、医学诊断、金融欺诈检测等领域。
3. 关联规则挖掘。
关联规则挖掘是一种发现数据中项之间关联关系的方法。
它的经典应用是购物篮分析,通过挖掘顾客购买商品之间的关联规则,帮助商家进行商品搭配和促销策略的制定。
4. 时间序列分析。
时间序列分析是一种用于处理时间序列数据的方法,它的目标是预测未来的趋势和模式。
时间序列分析常用于股票价格预测、气象预测、交通流量预测等领域。
5. 文本挖掘。
文本挖掘是一种用于处理文本数据的方法,它的目标是从大量的文本数据中发现有用的信息。
文本挖掘常用于情感分析、舆情监控、文本分类等领域。
总结。
数据挖掘是一门多学科交叉的领域,涉及统计学、机器学习、数据库等多个学科的知识。
在实际应用中,数据挖掘方法常常与大数据技术相结合,帮助企业和组
织更好地利用他们拥有的数据资源。
希望本文介绍的常用数据挖掘方法能够帮助读者更好地理解数据挖掘的基本原理和方法,并在实际应用中取得更好的效果。
聚类分析数据
聚类分析数据引言概述:聚类分析是一种数据挖掘技术,它能够将相似的数据对象分组,形成具有相似特征的聚类。
通过聚类分析,我们可以对大量的数据进行分析和归类,从而发现数据中的潜在模式和规律。
本文将从五个大点来阐述聚类分析数据的重要性和应用。
正文内容:1. 聚类分析的基本原理1.1 数据预处理:在进行聚类分析之前,需要对原始数据进行预处理,包括数据清洗、缺失值处理、数据标准化等。
1.2 距离度量:聚类分析的核心是计算数据对象之间的相似度或距离,常用的距离度量包括欧氏距离、曼哈顿距离和余弦相似度等。
1.3 聚类算法:常用的聚类算法包括K-means、层次聚类和密度聚类等,它们根据不同的原理和假设来进行聚类分析。
2. 聚类分析的应用领域2.1 市场营销:聚类分析可以对消费者进行分群,帮助企业了解不同消费群体的需求和偏好,从而制定针对性的市场营销策略。
2.2 医学研究:聚类分析可以对疾病患者进行分组,帮助医生了解不同病情和治疗效果,为个性化医疗提供依据。
2.3 社交网络分析:聚类分析可以对社交网络中的用户进行分组,帮助了解用户的兴趣和行为模式,从而进行精准推荐和社交关系分析。
2.4 图像处理:聚类分析可以对图像进行分割,将相似的像素点归为一类,从而实现图像的分析和识别。
2.5 金融风险评估:聚类分析可以对金融数据进行分组,帮助评估不同投资组合的风险和收益,为投资决策提供支持。
3. 聚类分析的优势和挑战3.1 优势:聚类分析可以发现数据中的潜在模式和规律,帮助我们了解数据的内在结构和特点,从而做出更准确的决策。
3.2 挑战:聚类分析结果的可解释性较差,需要根据具体领域知识进行解释和理解;聚类算法对初始聚类中心的选择较为敏感,需要进行参数调优。
4. 聚类分析的评估方法4.1 内部评估:通过计算聚类结果的紧密度和分离度来评估聚类的质量,常用的内部评估指标包括轮廓系数和DB指数等。
4.2 外部评估:通过将聚类结果与已知的标签进行比较来评估聚类的准确性,常用的外部评估指标包括兰德指数和互信息等。
聚类分析数据
聚类分析数据聚类分析是一种数据挖掘技术,用于将相似的数据对象归类到同一个簇中。
通过对数据进行聚类分析,可以发现数据中的隐藏模式、结构和关系,匡助我们更好地理解数据。
本文将介绍聚类分析的基本概念、常用方法和步骤,并通过一个示例来演示如何进行聚类分析。
1. 聚类分析的基本概念聚类分析是一种无监督学习方法,不需要事先标记好的训练数据。
它根据数据样本之间的相似性,将它们划分为不同的簇。
聚类分析的目标是使同一簇内的数据对象相似度较高,而不同簇之间的相似度较低。
2. 聚类分析的常用方法聚类分析有多种方法,常见的包括层次聚类和K均值聚类。
2.1 层次聚类层次聚类是一种自底向上的聚类方法,它从每一个数据对象作为一个簇开始,逐步合并最相似的簇,直到所有数据对象都被合并为一个簇或者达到预设的簇数目。
2.2 K均值聚类K均值聚类是一种迭代的聚类方法,它将数据对象划分为K个簇,每一个簇由一个质心代表。
初始时,随机选择K个质心,然后迭代地将每一个数据对象分配到最近的质心所在的簇,再更新质心的位置,直到质心的位置再也不变化或者达到预设的迭代次数。
3. 聚类分析的步骤聚类分析通常包括以下步骤:3.1 数据准备首先,需要采集和整理要进行聚类分析的数据。
数据可以是数值型、分类型或者混合型的。
确保数据的质量和完整性,处理缺失值和异常值。
3.2 特征选择根据分析目标和数据特点,选择合适的特征作为聚类分析的输入。
特征应该具有代表性,能够区分不同的数据对象。
3.3 数据标准化对于具有不同量纲的特征,需要进行数据标准化,以消除量纲影响。
常用的标准化方法包括最小-最大标准化和Z-score标准化。
3.4 选择聚类方法和参数根据数据的特点和分析目标,选择合适的聚类方法和参数。
不同的聚类方法适合于不同类型的数据和分析需求。
3.5 执行聚类分析根据选择的聚类方法和参数,执行聚类分析。
对于层次聚类,可以使用聚类树或者热图来可视化聚类结果。
对于K均值聚类,可以绘制簇内离散度图或者簇间离散度图来评估聚类的质量。
数据挖掘的常见技术
数据挖掘的常见技术数据挖掘是一种通过从大量数据中发现隐藏模式、关联和信息的过程。
它利用各种算法和技术来分析数据,并从中提取有价值的知识和见解。
在这篇文章中,我们将介绍一些常见的数据挖掘技术。
一、聚类分析聚类分析是一种将数据分组为具有相似特征的集合的技术。
它通过计算数据点之间的相似性来确定数据点的聚类。
聚类分析可以用于市场细分、社交网络分析等许多领域。
二、关联规则挖掘关联规则挖掘是一种寻找数据集中项之间关联关系的技术。
它通过识别频繁项集和关联规则来发现数据中的关联模式。
关联规则挖掘可以用于购物篮分析、推荐系统等。
三、分类和回归分析分类和回归分析是一种通过学习数据集中的样本来预测新数据的技术。
分类分析将数据分为不同的类别,而回归分析则预测数据的数值。
这些技术可以应用于信用评分、风险分析等。
四、异常检测异常检测是一种识别数据中异常或异常模式的技术。
它可以帮助发现潜在的欺诈行为、故障检测等。
异常检测可以使用统计方法、机器学习方法等。
五、文本挖掘文本挖掘是一种从大量文本数据中提取有用信息的技术。
它可以用于情感分析、主题建模等。
文本挖掘通常使用自然语言处理和机器学习技术。
六、时间序列分析时间序列分析是一种研究时间序列数据的技术。
它可以用于预测未来趋势、分析季节性变化等。
时间序列分析可以使用统计方法、神经网络等。
七、网络分析网络分析是一种研究网络结构和关系的技术。
它可以帮助发现社交网络中的关键人物、识别网络中的社群等。
网络分析可以使用图论、机器学习等方法。
八、决策树决策树是一种通过树状结构表示决策规则的技术。
它可以帮助做出分类和回归决策。
决策树可以使用信息增益、基尼指数等方法构建。
九、支持向量机支持向量机是一种通过构建超平面来做分类和回归的技术。
它可以处理高维数据和非线性问题。
支持向量机可以使用不同的核函数进行分类。
十、神经网络神经网络是一种模拟人脑神经元之间连接的技术。
它可以用于分类、回归等任务。
神经网络可以使用不同的层次和激活函数进行建模。
数据挖掘入门——聚类、分类与预测分析
数据挖掘入门——聚类、分类与预测分析数据挖掘是指从大量数据中提取有用信息和知识的过程。
聚类、分类和预测分析是数据挖掘中常用的三种技术手段。
本文将对这三种技术分别进行介绍,并详细阐述他们的步骤和应用。
一、聚类分析1. 定义:聚类分析是将一组对象划分为具有相似特征的若干个簇的过程。
2. 步骤:a. 选择合适的相似性度量方法,用于计算不同对象之间的相似程度。
b. 选择合适的聚类算法,如K-means、层次聚类等。
c. 对数据集进行预处理,包括缺失值处理、异常值处理等。
d. 根据选择的聚类算法对数据进行迭代聚类,直到达到停止条件。
e. 对聚类结果进行评估,如使用Silhouette系数评估聚类的质量。
3. 应用:聚类分析可以应用于市场细分、社交网络分析、图像分割等领域。
例如,在市场细分中,可以将顾客划分为不同的群体,从而更好地针对不同群体制定营销策略。
二、分类分析1. 定义:分类分析是将一组对象划分为已知类别的离散变量的过程。
2. 步骤:a. 收集和准备数据,将数据转化为适合分类算法处理的形式。
b. 选择合适的分类算法,如决策树、逻辑回归、神经网络等。
c. 使用训练集对分类模型进行训练。
d. 使用测试集对分类模型进行评估,如计算准确率、召回率等指标。
e. 对分类模型进行调优和验证,提高模型的分类性能。
3. 应用:分类分析可以应用于文本分类、垃圾邮件过滤、信用评估等领域。
例如,在文本分类中,可以将新闻文章自动分类为不同的类别,提供快速有效的信息检索。
三、预测分析1. 定义:预测分析是根据过去的数据和模式,对未来的数据进行预测和分析的过程。
2. 步骤:a. 收集和准备历史数据,包括特征变量和目标变量。
b. 根据历史数据训练预测模型,如线性回归、时间序列分析等。
c. 使用训练好的预测模型进行未来数据的预测。
d. 对预测结果进行评估,如计算预测误差、判断模型的准确性。
e. 对预测模型进行优化和验证,提高模型的预测能力。
数据挖掘中的聚类分析算法
数据挖掘中的聚类分析算法在数据挖掘领域,聚类分析算法是一种常用的技术,可用于将数据集中的对象分成相似的组或簇。
通过聚类分析,可以揭示数据中的内在结构和模式,为进一步的数据分析、模式识别和决策支持提供基础。
一、介绍聚类分析是一种无监督学习算法,它不需要人为提供标签或类别信息,而是通过对数据集中的对象进行相似性度量和自动分类来实现聚类。
它通过计算数据对象之间的距离或相似度,将相似的对象归于同一簇,不相似的对象则归于不同簇。
二、K均值算法K均值算法是聚类分析中最常用的算法之一。
它通过将数据集划分为K个簇,其中K是用户提供的参数,然后迭代地调整簇的中心位置,使得簇内的对象尽可能接近其聚类中心,簇间的距离尽可能远。
K均值算法的步骤如下:1. 选择初始的K个聚类中心,可以是随机选择或通过一定的启发式算法来确定;2. 将每个数据对象分配给距离其最近的聚类中心,形成初始的簇;3. 重新计算每个簇的聚类中心,即将每个簇中的对象的特征取平均值;4. 重复步骤2和步骤3,直到达到停止条件(如达到最大迭代次数或簇中心不再发生变化)。
K均值算法的优点是简单易实现,计算效率较高。
但是,它对初始聚类中心的选择非常敏感,且无法处理各簇大小不均衡、数据形状不规则或包含噪声的情况。
三、层次聚类算法层次聚类算法是一种将数据集从层次结构的角度进行划分的聚类方法。
它迭代地合并或分割簇,直到满足某个停止条件为止。
层次聚类算法有两种主要类型:1. 凝聚型层次聚类:凝聚型层次聚类从单个对象为簇开始,然后将最相似或最近的簇合并为一个新的簇,直到所有对象都合并为一个簇或达到停止条件。
它通过计算簇与簇之间的相似度来确定最近的簇。
2. 分裂型层次聚类:分裂型层次聚类从一个包含所有对象的簇开始,然后将簇逐渐分裂为子簇,直到每个簇只包含一个对象或达到停止条件。
它通过计算簇内对象之间的相似度来确定分裂的位置。
层次聚类算法的优点是不需要预先指定聚类的个数,且可以直观地展示数据的层次结构。
数据挖掘中的聚类分析与异常检测方法综合比较
数据挖掘中的聚类分析与异常检测方法综合比较数据挖掘是一种通过从数据集中提取有价值的信息和模式来发现隐藏在大规模数据背后的知识的过程。
聚类分析和异常检测是数据挖掘中两种常用的方法。
本文将综合比较这两种方法的特点和应用。
聚类分析是一种将相似的数据对象聚集到一起的技术,使得同一类内的对象相似度高,而不同类别之间的相似度低。
聚类分析的目标是在不需要事先知道类别标签的情况下,将数据集划分成不同的群组。
聚类分析的优点在于它可以发现数据集中的自然分布和结构,并可以揭示数据中的潜在关系。
聚类分析的应用范围广泛,例如市场细分、客户分群、推荐系统等。
聚类分析的缺点是需要对数据集进行预处理和特征选择,对初始参数和聚类算法的选择很敏感。
相比之下,异常检测是一种寻找与大部分数据对象显著不同的数据对象的技术。
异常检测的目标是检测出数据集中不符合正常模式的数据对象。
异常检测的优点在于它可以帮助发现可能存在的问题、错误或欺诈行为。
异常检测的应用范围广泛,例如网络入侵检测、信用卡欺诈检测等。
异常检测的缺点是难以定义和划分什么是异常,因为异常是相对于正常模式而言的,同时也容易被异常对象的数量和分布影响。
聚类分析和异常检测方法在数据挖掘中有各自的优缺点,但也可以互相补充和整合。
例如,可以先使用聚类分析将数据集划分成不同的群组,然后再使用异常检测方法进一步检测每个群组中是否存在异常点。
这种综合应用可以提高异常检测的准确性和可靠性。
总而言之,聚类分析和异常检测是数据挖掘中常用的方法。
聚类分析可以用来发现数据集的自然分布和结构,而异常检测则可以帮助发现不符合正常模式的数据对象。
综合应用这两种方法可以更好地挖掘数据集中的知识和模式。
在实际应用中,根据具体问题和需求,选择和调整适当的聚类分析和异常检测方法是非常重要的。
数据挖掘中聚类分析的使用教程
数据挖掘中聚类分析的使用教程数据挖掘是一个广泛应用于计算机科学和统计学的领域,它旨在从大量的数据中发现隐藏的模式和关联。
聚类分析是数据挖掘中最常用的技术之一,它可以将相似的数据点归类到同一个群组中。
本文将介绍聚类分析的基本概念、常用算法以及如何在实际应用中使用。
一、什么是聚类分析?聚类分析是一种无监督学习方法,它通过计算数据点之间的相似性来将它们划分为不同的群组。
聚类分析的目标是使同一群组内的数据点尽可能相似,而不同群组之间的数据点尽可能不同。
聚类分析可以帮助我们发现数据中的潜在模式、结构和关联。
二、常用的聚类算法1. K-means算法K-means算法是最常用的聚类算法之一,它将数据点划分为预先设定的K个簇。
算法的基本思想是通过计算数据点与簇中心的距离,将每个数据点分配到距离最近的簇中心。
然后,重新计算每个簇的中心点,并重复此过程直到簇心不再发生变化或达到预定的迭代次数。
2. 层次聚类算法层次聚类算法是一种自底向上或自顶向下的递归分割方法。
它的特点是不需要预先设定聚类簇的个数,而是通过计算数据点之间的距离或相似性,逐步合并或分割簇。
层次聚类可以生成一棵树形结构,称为聚类树或谱系树,通过对树进行剪枝可以得到不同个数的簇。
3. 密度聚类算法密度聚类算法基于数据点之间的密度来识别具有高密度的区域。
算法的核心思想是计算每个数据点的密度,并将高密度区域作为簇的中心进行扩展。
最常用的密度聚类算法是DBSCAN,它使用一个邻域半径和最小密度来定义一个核心点,从而将数据点划分为核心点、边界点和噪声点。
三、如何使用聚类分析1. 准备数据在使用聚类分析前,首先需要准备好适合进行聚类的数据。
这些数据可以是数字、文本或图像等形式,但需要将其转化为计算机能够处理的格式。
同时,数据应该经过预处理,例如去除噪声、处理缺失值和标准化等。
2. 选择适当的聚类算法根据数据的特点和问题的需求,选择合适的聚类算法。
例如,如果数据点的分布呈现明显的球状或椭球状,可以选择K-means算法;如果数据点的分布具有一定的层次结构,可以选择层次聚类算法;如果数据点的分布具有不同的密度区域,可以选择密度聚类算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.聚类分析中的数据结构和数据类型 SEMINAR
(2)数据类型 聚类分析起源于统计学,传统的分析方法大多是在 数值类型数据的基础上研究的。然而数据挖掘的对象复 杂多样,要求聚类分析的方法不仅能够对属性为数值类 型的数据进行,而且要适应数据类型的变化。 1)区间标度变量 区间标度变量是一个粗略线性标度的连续度量。典 型的例子则包括重量和高度,经度和纬度坐标,以及摄 氏或华氏温度等。 数据之间纯在差异性,同时多个属性肯那个有不同 的度量单位,所以在计算数据相似性之前要进行数据的 标准化。
1.3数据挖掘对聚类的典型要求 SEMINAR
(8)基于约束的聚类 在实际应用当中可能需要在各种约束条件下进行聚类。 找到既要满足特定的约束,又要具有良好聚类特性的数据 分组是一项具有挑战性的任务。我们希望聚类算法可以在 考虑这些限制的情况下,仍具有较好的表现。 (9)可解释性和可用性 聚类的结果最终都是要面向用户的,用户期望聚类得 到的信息是可理解和可应用的。
3.聚类分析算法分类
SEMINAR
在该算法中,一次迭代中把每一个数据对象分到离它最 近的聚类中心所在类,这个过程的时间复杂度为O(nkd),这 里的n指的是总的数据对象个数,k指定的聚类数,d是数据对 象的维数;新的分类产生以后需要计算新的聚类中心,这个过 程的时间复杂度为O(nd)。因此,这个算法一次迭代需要的总 的时间复杂度为O(nkd)。 例:假设给定如下要进行聚类的元组: {2,4,10,12,3,20,30,11,25} 假设要求的簇的数量为k=2。 应用K一means算法: 第一步:初始时用前两个数值作为簇的质心,这两个簇的质 心是:m1=2;m2=4;
1.3数据挖掘对聚类的典型要求 SEMINAR
(3)能够发现任意形状的聚类 有些簇具有规则的形状,如矩形和球形。但是,更 一般地,簇可以具有任意形状。 (4)用于决定输入参数的领域知识最小化 在聚类分析当中,许多聚类算法要求用户输入一定 的参数,如希望簇的数目。聚类结果对于输入参数很敏 感,通常参数较难确定,尤其是对于含有高维对象的数 据集更是如此。 (5)处理高维数据的能力 既可处理属性较少的数据,又能处理属性较多的数 据。很多聚类算法擅长处理低维数据,一般只涉及两到 三维,通常最多再加二维的情况下能够很好地判断聚类 的质量。
3.聚类分析算法分类
SEMINAR
第二步:对剩余的每个对象,根据其与各个簇中心的 距离,将它赋给最近的簇,可得: K1=(2,3}; K2={4,10,12,20,30,11,25}; 数值3与两个均值的距离相等,所以任意的选择K1作为其 所属的簇。 第三步:计算新的质心: m1=(2+3)/2=2.5; m2=(4+10+12+20+30+11+25)/7=16; 重新对簇中的成员进行分配可得K1 ={2,3,4}和K2 ={10,12,20,30,11,25},
2.聚类分析中的数据结构和数据类型 SEMINAR
4)序数型变量 序数型变量类似于标称型变量,但它的各个状态是有 意义的序列。 序数型变量值的相对顺序是必要的,而其实际的大小 则不那么重要。一个序数型变量的值可以映射为秩。假设 一个变量f有m个状态,这些有序的状态定义了一个序列 1,…,m,关于f的相异度计算步骤如下: ① 第i个对象的f值为xif,变量f有m个有序的状态,对应于序 列1,…,m。用对应的秩rif代替xif,rif ∈ {1,…,m} ② 每个序数型变量有不同数目的状态,为了使每个变量都 有相同的权重,我们将每个变量的值域映射到[0.0,1.0]上:
3.聚类分析算法分类
SEMINAR
1.K-means(k均值)算法 K-means算法的相似度计算根据一个簇中对象的平均值 即簇的质心来进行,它的处理过程如下:首先,随机地选择k 个对象作为初始的k个簇的质心;然后对剩余的每个对象,根 据其与各个质心的距离,将它赋给最近的簇;再后重新计算每 个簇的质心。这个过程不断重复,直到准则函数收敛。通常采 用的准则函数为平方误差和准则函数,即SSE(sum of the squared error),其定义如下:
1.2聚类分析与其他分类或预测的不同 SEMINAR
聚类与其他分类或预测的不同
(1)大多数分类方法都是演绎的,即人们事先确定某种事物 分类的准则或各类别的标准,分类的过程就是比较分类的要 素与各类别标准,然后将各要素划归于各类别中。确定事物 的分类准则或各类别的标准或多或少带有主观色彩。 (2)聚类分析是归纳的,不需要事先确定分类的准则来分析 数据对象,不考虑己知的类标记。一般情况下,训练数据中 不提供类标记,聚类的目标就是通过聚类算法产生这种标记。
2.聚类分析中的数据结型
(1)数据结构 许多基于内存的少类算法选择如下两种有代表性的数据 结构。 1)数据矩阵(对象-变量结构) 数据矩阵是一张关系表的形式,每列代表对象的一个属性, 每个元组代表一个数据对象。 具有p个属性的n个对象(例如,人可以用年龄,身高, 体重,性别,种族等来描述)可以看成如下n×p(n个对象×p 个属性)的矩阵。
2.聚类分析中的数据结构和数据类型 SEMINAR
如果属性p是序数型或比例标度型变量:将其转化为区间 标度变量值对待。
3.聚类分析算法分类
SEMINAR
聚类分析算法分类 聚类分析技术通常可分为五大类,分别是基于划分的 聚类,基于层次的聚类,基于密度的聚类,基于网格的聚 类以及基于模型的聚类。
3.聚类分析算法分类
SEMINAR
数据挖掘中的聚类分析算法研究
SEMINAR
结构 • 一、聚类分析 • 二、聚类分析中的数据结构和数据类型 • 三、聚类分析算法分类
1.1聚类分析
SEMINAR
• 聚类分析( clustering analysis )
聚类是把一组个体按照相似性划分成若干个类别, 跟平常说的“物以类聚”相似。由聚类所生成的簇是一 组数据对象的集合,这些对象与同一个簇中的对象彼此 相似,与其他簇中的对象相异。在许多应用中,可以将 一个簇中的数据对象作为一个整体来对待。
2.聚类分析中的数据结构和数据类型 SEMINAR
数据标准化处理以后就可以进行属性值的相似性测量, 通常是计算对象间的距离。 对于n维向量xi和xj,有以下几种距离函数: ① 欧氏距离
② 曼哈顿距离
2.聚类分析中的数据结构和数据类型 SEMINAR
③ 概化的明考斯基(Minkowski)距离
当m=2时,明考斯基D2即为欧氏距离;当m=1时,明考 斯基D1即为曼哈顿距离。
1.3数据挖掘对聚类的典型要求 SEMINAR
数据挖掘对聚类的典型要求
(1)可伸缩性 可伸缩性是指算法不论对于小数据集还是对于大数 据集,都应是有效的。 (2)处理不同字段类型的能力 算法不仅要能处理数值型数据,还要有处理其它类型 字段的能力,包括分类/标称类型(categorical/nominal), 序数型(ordinal),二元类型(binary),或者这些数据类型的 混合。
2.聚类分析中的数据结构和数据类型 SEMINAR
2)二元变量 二元变量只有两个状态:0和1。其中二元变量又分 为对称的二元变量和不对称的二元变量。前者是指变量的 两个状态不具有优先权,后者对于不同的状态其重要性是 不同的。 对于二元变量,度量两个变量的差异度可以由简单匹 配系数(对称的情况)和Jaccard系数(非对称的情况)决定。 设两个对象xi和xj,q是属性值在两个对象中都为1的属性 个数,r是属性值在xi中为1而在xj中为0的属性个数,s是属 性值在xi中为0而在xj中为1的属性个数,t是属性值在两个 对象中都为0的属性个数。则
2.聚类分析中的数据结构和数据类型 SEMINAR
简单匹配系数:
Jaccard系数
2.聚类分析中的数据结构和数据类型 SEMINAR
3)标称型变量 标称变量是二元变量的推广,它可以有多于两个状态 值,状态之间是无序的。 两个对象i和j之间的差异度可用简单匹配法来计算:
其中,m是对象xi和xj中匹配的属性个数,而p是全部 属性个数。
3.聚类分析算法分类
不断重复这个过程可得:
SEMINAR
注意在最后两步中簇的成员是一致的。由于均值不 再变化,所以均值已经收敛了。因此,该问题的答案为 K1={2,3,4,10,11,12}和K2 ={20,30,25}。
3.聚类分析算法分类
SEMINAR
K-means优缺点: 此聚类分析算法伸缩性良好,并且针对大型数据集效率 很高。 初始的 K-means 算法缺点如下:(1)初始聚类中心选择 的好与坏将会对聚类结果的质量产生很大影响;(2)算法很容 易陷入局部最优解,有时会产生较差的结果;(3)算法开始时 要求用户给出聚类簇的个数 k,而对于 K 值的选择还没有很 好的准则可循;(4)对噪声敏感;(5)只能在可以定义聚类的平 均值的条件下才可以应用,即适合处理数值属性的数据 (6)聚 类的最终结果也许会出现不平衡现象,不适合发现那些非凸 面形状的簇或者大小差别非常大的簇。
① 对比例标度型变量进行对数变换,变换得到的值采用区间 标度变量的方法来处理。 ② 将比例标度型变量看做连续的序数型数据,将其秩作为区 间标度的值来对待。 6)混合类型的变量 以上讨论了各种数据类型和创门差异度的计算方法, 在实际数据库中,数据对象是由混合类型的变量描述的。 在实际聚类分析中,将不同的类型属性组合在同一个差异 度矩阵中进行计算。设数据包含m个不同类型的属性,对象 xi和xj之间的差异度定义为:
这里的SSE是数据库中所有对象的平方误差总和,p为数 据对象,mi是簇Ci的平均值。这个准则函数使生成的结果尽可 能的紧凑和独立。
3.聚类分析算法分类
SEMINAR
K 均值算法的形式化描述如下: K-means 算法: 输入:具有 n 个数据对象的数据集,聚类结果中簇的个数 k。 输出: 满足准则函数的 k 个聚类。 处理过程: (1) 在数据集里任意选择 k 个对象,然后将每个数据对象代表 初始聚类的中心; (2) 将剩下的数据划分到和数据本身相距最近的簇心的簇中; (3) 重新计算每个簇的均值得到新的簇心值 (4) 重复(2)到(3)一直到每个簇不再发生变化或者目标函数收敛 结束