第三章_磨损及磨损理论
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ⅲ 剧烈磨损阶段:由于摩擦条件发生较大的变化 (如温度的急剧增高,金属组织的变化等),磨损 速度急剧增加。这时机械效率下降,精度降低, 出现异常的噪音及振动,最后导致零件完全失效。 ** 从磨损过程的变化来看,为了提高机器零件的 使用寿命,应尽量延长“稳定磨损阶段”。
二、 磨 损 的 分 类
1、粘着磨损
随着滑动速度的变化,磨损类型由一种形式转变为另一种 形式。 如图(a)所示,当摩擦速度很低时,主要是氧化磨损,出 现Fe2O3的磨屑,磨损量很小。 随速度的增大,氧化膜破裂,金属的直接接触,转化为粘 着磨损,磨损量显著增大。 滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转 为氧化磨损,磨屑为Fe3O4,磨损量又减小。 如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开 始增加。
由(1)和(2)式,可得:
(3)
(3)
式(3)是假设了各个微凸体在接触时均产生一个磨粒而导出 如果考虑到微凸体相互产生磨粒的概率数K和滑动距离L, 则接触表面的粘着磨损量表达式为:
(4)
由于对于弹性材料σs≈H/3,H为布氏硬度值,则式(4)可 变为: 式中K为粘着磨损系数
由(4)式可得粘着磨损的三个定律: ①材料磨损量与滑动距离成正比:适用于多种条件 ②材料磨损量与法向载荷成正比:适用于有限载荷范围 ③材料磨损量与较软材料的屈服极限σy(或硬度H)成反 比
由于式中的K代表 微凸体中产生磨 粒的概率,即粘 着磨损系数.因 此,K值必须按不 同的滑动材料组 合和不同的摩擦 条件求得。右表 给出了不同工况 和摩擦副配对时 的磨损系数K值。
(5) 粘着磨损的影响因素
①摩擦副材料性质的影响
a.脆性材料比塑性材料的抗粘着能力高。
塑性材料粘着点的破坏以塑性流动为主,发生在
冶金的相(互)溶性:两种金属能在固态互相溶解的性能。
摩擦的相(互)溶性:一定配对材料在发生摩擦和磨损时抵 抗粘着的性能。 一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差, 相同金属摩擦副,摩擦互溶性最差。
c.材料的组织结构和表面处理 金属的组织结构对粘着磨损也有影响,多相金属比 单相金属的抗粘着磨损能力高;金属中化合物相比 单相固溶体的粘着倾向小。 通过表面处理技术在金属表面生成硫化物、磷化物 或氯化物等薄膜可以减少粘着效应,同时表面膜限 制了破坏深度,提高抗粘着磨损的能力。
⑤润滑油、润滑脂的影响
在润滑油、润滑脂中加人油性或极压添加剂 能提高润滑油膜吸附能力及油膜强度,能成倍地 提高抗粘着磨损能力。 油性添加剂是由极性非常强的分子组成,在 常温条件下,吸附在金属表面上形成边界润滑膜, 防止金属表面的直接接触,保持摩擦面的良好润 滑状态。 极压添加剂是在高温条件下,分解出活性元 素与金属表面起化学反应,生成一种低剪切强度 的金属化合物薄膜,防止金属因干摩擦或边界摩 擦条件下而引起的粘着现象。
右图为钢制销钉在钢制圆盘上滑 动摩擦时的结果。图中示出钢的 磨损系数随表观压力的变化曲线。 纵坐标为K/H,代表单位载荷、 单位滑动距离的磨损量,横坐标 代表平均接触压力。 当压力值小于片H/3时,磨损率 小而且保持不变(即K保持常数); 但当压力值超过H/3时,磨损量急剧增大(K值急剧增大), 这意味着在这样高的载荷作用下会发生大面积的粘着焊连。 对其他金属也有类似的情况,只是K开始增加时的平均压 力值通常比H/3稍低而已。 在压力值为H/3作用下,各个微凸体上的塑性变形区开始 发生相互影响。当压力值增加到H/3以上时,整个表面变 成塑性流动区,因而实际接触面积不再与载荷成正比,出 现剧烈的粘着磨损,摩擦表面严重破坏。
表层深处,磨损颗粒大。脆性材料粘着点的破坏
主要是剥落,发生在Hale Waihona Puke Baidu层浅处,磨损颗粒小,呈
磨屑状,磨屑容易脱落, 不堆积在表面上。
b. 相同金属或冶金相溶性大的材料摩擦副(相同 金属或晶格类型、电子密度、电化学性能相似的 金属)易发生粘着磨损。异种金属或冶金相溶性小 的材料摩擦副抗粘着磨损能力较高。金属与非金 属摩擦副抗粘着磨损能力高于异种金属摩擦副。 应避免使用同种金属或冶金相溶性大的金属组成 摩擦副。
图(b)是滑动速度保持一定而改变载荷所得到的钢对 钢磨损实验结果。 载荷小产生氧化磨损, 磨屑主要是Fe2O3; 当载荷达到W0后, 磨屑是FeO、Fe2O3 和Fe3O4的混合 物。 载荷超过Wc以后, 便转入危害性的粘着磨损。
④表面温度的影响
表层温度特性对于摩 擦表面的相互作用和 破坏影响很大。表面 温度升高可使润滑膜 失效,使材料硬度下 降,摩擦表面容易产 生粘着磨损。 上图为温度对胶合磨损的影响,可以看出,当表 面温度达到临界值(约80℃)时, 磨损量和摩擦系 数都急剧增加。 影响温度特性的主要因素是表面压力p和滑动速度v, 其中速度的影响更大,因此限制pv值是减少粘着磨 损和防止胶合发生的有效方法。
(3)四种典型的粘着磨损 根据粘着点的强度和破坏位置不同,粘着磨损有几 种不同的形式,从轻微磨损到破坏性严重的胶合磨 损。它们的磨损形式、摩擦系数和磨损度虽然不同 ,但共同的特征是:出现材料迁移,以及沿滑动方 向形成程度不同的划痕。
a.轻微磨损
粘着强度比摩擦副的两金属基体强度低时,剪 切发生在粘着结合面上,表面转移的材料较轻微。 此时虽然摩擦系数增大,但是磨损却很小,材料迁 移也不显著。通常在金属表面具有氧化膜、硫化膜 或其他涂层时发生轻微粘着摩损。
(2)磨粒磨损分类及其磨损特征
磨料磨损根据表面磨损的破坏形式,大体可以 分为下列几种类型: ① 按摩擦表面的数目分为:两体磨料磨损种和 三体磨料磨损
a.二体磨粒磨损 磨粒沿一个固体表面相对运动 产生的磨损。 当磨粒运动方向与固体表面接 近平行时, 磨粒与表面接触处 的应力较低, 固体表面产生擦 伤或微小的犁沟痕迹。 如果磨粒运动方向与固体表面接近垂直时,此时, 磨粒与表面产生高应力碰撞, 在表面上磨出较深 的沟槽, 并有大颗粒材料从表面脱落。 在一对摩擦副中, 硬表面的粗糙峰对软表面起着 磨粒作用, 这也是一种二体磨损, 它通常是低应 力磨粒磨损。
2、磨粒(磨料)磨损
(1)定义
外界硬颗粒或者对磨表面上的硬突起物或 粗糙峰在摩擦过程中引起表面材料脱落的现象, 称为磨粒磨损。
例如:掘土机铲齿、犁耙、球磨机衬板等 的磨损都是典型的磨粒磨损。机床导轨面由于 切屑的存在也会引起磨粒磨损。水轮机叶片和 船舶螺旋桨等与含泥沙的水之间的侵蚀磨损也 属于磨粒磨损。
Ⅰ:跑合阶段
出现在摩擦副的初始运动阶段,由于表面存在 粗糙度,微凸体接触面积小,接触应力大,磨 损速度快。 在一定载荷作用下,摩擦表面逐渐 磨平,实际接触面积逐渐增大,磨损速度逐渐 减慢,如图所示。
Ⅱ稳定磨损阶段:
出现在摩擦副的正常运行阶段。经过跑合,摩擦 表面加工硬化,微观几何形状改变,实际接触面 积增大,压强降低,从而建立了弹性接触的条件, 这时磨损已经稳定下来,如图所示,磨损量随时 间增大缓慢增大。
d.元素周期表中的B族元素,如锗、银、镉、铟、 锡、锑、铊、铅、铋与铁的冶金相容性差,抗粘着 磨损性能好。而铁与A族元素组成的摩擦副粘着倾 向大。
e.材料的硬度 硬度高的金属比硬度低的金属抗粘着能力强,因 为表面接触应力大于较软金属硬度的1/3时,很 多金属将由轻微磨损转变为严重的粘着磨损。
②载荷的影响
(4)简单粘着磨损计算(Archard模型)
上图为粘着磨损模型,假设摩擦副的一方为较硬 的材料,摩擦副另一方为较软的材料;法向载荷W 由n个半径为a的相同微凸体承受。
则当材料产生塑性变形时,法向载荷W与较软材料 的屈服极限σs之间的关系: (1)
当摩擦副产生相对滑动,且滑动时每个微凸体上产 生的磨屑为半球形,其体积为(2/3)πa3,则单位滑动 距离的总磨损量(即磨损率,通常用于判断材料磨损 的快慢程度)为: (2)
b.涂抹
粘着强度大于摩擦副中较软金属的强度,小于较 硬金属的强度。剪切破坏发生在离粘着结合面不远的 较软金属浅层内,软金属涂抹(粘附)在硬金属表面上。
这种模式的摩擦系数与轻微磨损差不多,但磨损程度 加剧。
c.擦伤
粘着强度比摩擦副的两基体金属的强度都高。剪 切主要发生在软金属的亚表层内,有时也发生在硬金 属的亚表层内,转移到硬金属上的粘着物又刮削软金 属表面,使软金属表面出现划痕,所以擦伤主要发生 在软金属表层,硬金属表面也偶有划伤。
第三章 磨损及磨损理论
一、概述
1、磨损定义:
相互接触的物体在相对运动中,表层材料不断损 失、转移或产生残余变形的现象称为磨损,它是 伴随着摩擦而产生的必然结果。
有些磨损是有益的,如“研磨”,可使零件表 面粗糙度减小,使刀刃变得锋利。 但是,据统计,约有80 %左右的机械零件是由 于磨损而报废或失效。磨损不仅消耗材料,浪 费能源,并直接影响到机器的寿命和可靠性。 固此,对磨损的研究引起了人们的极大关注。
粘着磨损一般随法向载荷增加到某一临界值后 而急剧增加,如图所示,K/H的比值实际上是材 料硬度与许用压力的关系。当载荷值超过材料 硬度值的1/3时,磨损急剧增加,严重时咬死。 因此设计中选择的许用压力必须低于材料硬度 值的1/3。
③速度的影响
在压力一定的情况下,粘着磨损随滑动速度的 增加而增加,在达到某一极大值后,又随着滑 动速度的增加而减少。下图为摩擦速度不太高 的范围内,钢铁材料的磨损随摩擦速度、接触 压力的变化规律。
2、磨损研究的主要内容:
(1) 主要磨损类型的发生条件、特征和变化 规律; (2) 磨损的影响因素, 包括摩擦副材料、表 面形态、润滑状况、环境条件, 以及滑动速 度、载荷、工作温度等工况参数;
(3) 磨损的模型与磨损计算;
(4) 提高材料耐磨性的措施;
(5) 磨损研究的测试技术与实验分析方法。
3、磨损过程 零件的正常磨损过程大致可分为三个阶段: Ⅰ:跑合阶段;Ⅱ:稳定磨损阶段;Ⅲ:剧 烈磨损阶段
a.凿削式磨粒磨损 这类磨损的特征是冲击力大,磨料以很大的冲击力 切入金属表面,因此工件受到很高的应力,造成表 面宏观变形,并可以从摩擦表面凿削下金属大颗粒, 在被磨损表面有较深的沟槽和压痕。 如挖掘机的斗齿、 矿石破碎机锤头 等零件表面的磨 损即属于此种磨 损形式。
b.高应力碾碎式磨粒磨损 这类磨损的特点是应力高,磨料所受的应力超过 磨料的压碎强度,当磨料夹在两摩擦表面之间时, 局部产生很高的接触应力,这种压应力使韧性金 属的摩擦表面产生塑性变形或疲劳, 而脆性金属 表面则发生脆裂或剥落。 同时磨料不断被碾碎,被碾碎 的磨料颗粒呈多角形,擦伤金 属,在摩擦表面留下沟槽和凹 坑。 如矿石粉碎机的颚板、 轧碎机滚筒等表面的破坏。
b.三体磨粒磨损 外界磨粒移动于两摩擦表面之间, 类似于研磨 作用, 称为三体磨粒磨损。 通常三体磨损的磨粒与金属表面产生极高的接 触应力, 往往超过磨粒的压溃强度。这种压应 力使韧性金属的摩擦表面产生塑性变形或疲劳, 而脆性金属表面则发生脆裂或剥落。
② 按摩擦表面所受的应力和冲击的大小分为凿削 式磨料磨损、高应力碾碎式磨料磨损和低应力 擦伤式磨料磨损。
d.咬合
如果粘着强度比两金属基体的强度高得多,而且粘 着点面积较大时,剪切破坏发生在一个或两个金属 表层深的地方。
此时表面将沿着滑动方向呈现明显的撕脱,出现严 重磨损。如果滑动继续进行,粘着范围将很快增大 ,摩擦产生的热量使表面温度剧增,极易出现局部 熔焊,使摩擦副之间咬死而不能相对滑动。 这种破坏性很强的磨损形式,应力求避免。
(1)定义
当摩擦副相对滑动时, 由于粘着效应所形 成的结点发生剪切断裂,接触表面的材料 从一个表面转移到另一个表面的现象称为 粘着磨损。
(2) 粘着磨损机理 当摩擦副接触时,接触首先发生 在少数几个独立的微凸体上。因 此,在一定的法向载荷作用下, 微凸体的局部压力就可能超过材 料的屈服压力而发生塑性变形, 继而使两摩擦表面产生粘着; 此后,在相对滑动过程中,如果粘着点的剪切发生 在界面,则磨损轻微;如果剪切发生在界面以下, 则材料就会从一个表面转移到另外一表面,继续滑 动,一部分转移的材料分离,从而形成游离磨粒。 ** 接触-塑性变形-粘着-剪断粘着点-材料转移再粘着,循环不断进行,构成粘着磨损过程。