概率论与数理统计论文1

概率论与数理统计论文1
概率论与数理统计论文1

“概率论与数理统计”课程论文

姓名:徐守华

学号:1305061038

专业班级:电子信息工程1班

成绩:

教师评语:

2013 年12 月27 日

浅析数学期望在实际生活中的应用

摘要:数学期望是概率论中的一个重要概念,是随机变量的数字特征之一,体现了随机变量总体取值的平均水平,本文主要阐述了数学期望的定义和性质,讨论了实际生活中的某些应用问题,从而使我们能够使用科学的方法对其进行量化的评价,平衡了极大化期望和极小化风险的矛盾,达到我们期望的最佳效果。

关键词:概率统计;数学期望;实际问题;应用.

引言:

早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。录比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为

100*3/4=75法郎,乙的期望所得值为25法郎。这个故事里出现了“期望”这个词,数学期望由此而来。在经济生活中,有许多问题都可以直接或间接的利用数学期望来解决,风险决策中的期望值法便是处理风险决策问题常用的方法。数学期望是随机变量的数字特征之一,它代表了随机变量总体取值的平均水平。

一、期望的概念及性质

1.离散型随机变量的数学期望

设X 是离散型随机变量,其分布律为P(X =i x )= i p (i=1,2……),若级

数1i i i x p ∞

=∑ 绝对收敛,则称该级数的和为X 的数学期望,记作)(X E ,即:

∑∞

==1)(i i i p x X E

2.连续型随机变量的数学期望

设)(x f 为连续型随机变量X 的概率密度,若积分()xf x dx +∞-∞?

绝对收敛,则

称它为X 的数学期望,记作)(X E ,即: ?∞

∞-=dx x xf X E )()( 3.期望的性质

1)c c c E ,)(=为任意常数;

2)c X cE cX E ),()(=为常数,X 为变量;

3)Y X Y E X E Y X E ,),()()(+=+为变量;

4)若Y X ,独立,则)()()(Y E X E XY E =。

二、数学期望在实际问题中的应用

1.决策投资方案:决策方案即将数学期望最大的方案作为最佳方案加以决策。它帮助人们在复杂的情况下从可能采取的方案中做出选择和决定。具体做法为:如果知道任一方案Ai(i=1,2,…m)在每个影响因素Sj(j=1,2,…,n)发生的情况下,实施某种方案所产生的盈利值及各影响因素发生的概率,则可以比较各个方案的期望盈利,从而选择其中期望盈利最高的为最佳方案。

假设某人用10万元进行为期一年的投资,有两种投资方案:一是购买股票;二是存入银行获取利息。买股票的收益取决于经济形势,若经济形势好可获利4万元,形势中等可获利1万元,形势不好要损失2万元。如果存入银行,假设利率为

8%,可得利息8000元,又设经济形势好、中、差的概率分别为30%、50%、20%。试问应选择哪一种方案可使投资的效益较大?

比较两种投资方案获利的期望大小:购买股票的获利期望是E(A1)=4×0.3+1×0.5+(-2)×0.2=1.3(万元),存入银行的获利期望是E(A2)=0.8(万元),由于E(A1)>E(A2),所以购买股票的期望收益比存入银行的期望收益大,应采用购买股票的方案。在这里,投资方案有两种,但经济形势是一个不确定因素,做出选择的根据必须是数学期望高的方案。

2. 进货问题:设某种商品每周的需求X 是从区间[10,30]上均匀分布的随机变量,经销商进货量为区间[10,30]中的某一整数,商店销售一单位商品可获利5000元,若供大于求,则削价处理,没处理一单位商品亏价100元,若供不应求,则可以外部调剂供应,此时一单位商品获利300元,为使商品所获利润期望不少于9280,试确定进货量。

解:设进货量a ,则利润为Y =)(X g

)(x g y = =???≤≤--≤<-+)10)((100500)30)((300500a x x a x x a a x a =?

??≤≤-≤<+)10(100600)30(200300a x a x x a a x 期望利润为:

???++-==3010

30

10)200300()100600([201)(201)(a a dx a x dx a x dx x g Y E 928052503505.72≥++-=a

a 解得:220263

a ≤≤, 故利润期望不少于9280元的最少进货量为21单位。

3. 面试方案:设想某人在求职过程中得到了两个公司的面试通知,假定每个公司有三种不同的职位:极好的,工资4万;好的,工资3万;一般的,工资2.5万。估计能得到这些职位的概率为0.2、0.3、0.4,有0.1的可能得不到任何职位。由于

每家公司都要求在面试时表态接受或拒绝所提供职位,那么,应遵循什么策略应答呢?

极端的情况是很好处理的,如提供极好的职位或没工作,当然不用做决定了。对于其他情况,我们的方案是,采取期望受益最大的原则。先考虑现在进行的是最后一次面试,工资的数学期望值为: E(A1)=4×0.2+3×0.3+2.5×0.4+0×0.1=2.7万。

那么在进行第一次面试时,我们可以认为,如果接受一般的值位,期望工资为2.5万,但若放弃(可到下一家公司碰运气),期望工资为2.7万,因此可选择只接受极好的和好的职位。这一策略下工资总的期望如果此人接到了三份这样的面试通知,又应如何决策呢?

最后一次面试,工资的期望值仍为2.7万。第二次面试的期望值可由下列数据求知:极好的职位,工资4万;好的,工资3万;一般的,工资2.5万;没工作(接受第三次面试),2.7万。期望值为:E(A2)=4×0.2+3×0.3+2.5×0.4+2.7×0.1=3.05万。

这样,对于三次面试应采取的行动是:第一次只接受极好的职位,否则进行第二次面试;第二次面试可接受极好的和好的职位,否则进行第三次面试;第三次面试则接受任何可能提供的职位。这一策略下工资总的期望值为4×0.2+3.05×0.8=3.24万。故此在求职时收到多份面试通知时,应用期望受益最大的原则不仅提高就业机会,同时可提高工资的期望值。

4. 保险公司获利问题:一年中一个家庭晚万元被盗的概率是0.01,保险公司开办一年期万元以上家庭财产保险,参加者需交纳保险费100元,若一年内万元以上财产被盗,保险公司赔偿a元(a>100),试问a如何确定才能使保险公司获

利?

解:只需考虑保险公司对任一参保家庭的获利情况,设X 表示保险公司对任一参保家庭的收益,则X 的取值为100或100-a ,其分布为:

根据题意: 001.010001.0)100(99.0100)(>-=?-+?=a a X E

解得 10000

a ,所以)10000

,100(∈a 时保险公司才能期望获利。 三、结束语

数学期望具有广泛的应用价值。实践证明当风险决策问题较为复杂时,决策者在保持自身判断的条件下处理大量信息的能力将减弱,在这种情况下,风险决策的分析方法可为决策者提供强有力的科学工具,以帮助决策者作出决策,但不能代替决策者进行决策。因为在现实生活中的风险决策还会受到诸多因素的影响,决策者的心理因素,社会上的诸多因素等,人们还需综合各方面的因素作出更加合理的决断。

参考文献

[1] 李贤平. 概率论与数理统计[M].复旦大学出版社, 2003

[2] 孙荣恒. 应用概率论 [M].科学出版社, 2001

[3] 魏宗舒,概率论与数理统计[M].高等教育出版社,2003

[4] 赵秀恒等:概率论与数理统计 [M]. 河北教育出版社,2006

[5] 高鸿业:西方经济学[M]. 中国人民大学出版社,2006 .

数理统计论文

研究生课程考核试卷 (适用于课程论文、提交报告) 科目:概率论与数理统计上课时间:2017.2-2017.5 姓名:刘振学号: 20160702031专业:机械工程教师:刘朝林 工作单位或所在行业:重庆大学 考生成绩: 卷面成绩平时成绩课程综合成绩阅卷评语: 阅卷教师 (签名)

回归分析在数理统计中的应用 摘要:回归分析是数理统计中重要的一种数据统计分析的思想, 是处理变量间的相关关系的一种有效工具。其目的在于根据已知自变量的变化来估计或预测因变量的变化情况,或者根据因变量来对自变量做一定的控制. 它可以提供变量间相关关系的数学表达式, 且利用概率统计知识,对经验公式及有关问题进行分析、判断以确定经验公式的有效性,从众多的解释变量中,判断哪些变量对因变量的影响是显著的,哪些是不显著的. 还可以利用所得经验公式,由一个或几个变量的值去预测或控制个变量的值时的值,去预测或控制另一个变量的取值,同时还可知道这种预测和控制可以达到什么样的精度。 本文就是针对实际问题运用回归分析中一元线性回归分析的统计方法,来确定自变量与 另一个变量的相关关系,并确立出较为合理的回归方程,再对其的可信度进行统计检验. 关键词:回归分析;回归方程;F检验法

1.问题的提出 调查一下重庆大学学生的生活费与家庭收入的关系,看看是否家庭收入越高,学生的每月支出也越多,从而根据学生每月消费支出,进而估计学生的家庭收入情况,对学生的生活补助等问题有重要的参考意义 2.数据描述 根据调研的重庆大学学生家庭月收入与每月生活费的数据,确定两者关系。数据来源100多份问卷调查的抽样,取其中10份,绘制表1如下图所示序号家庭月收入每月生活费14800 500 25200 600 35420 650 45600 700 56000 750 66400 800 76800 900 87000 1000 97200 1200 108000 1500 表1-1 重庆大学学生家庭月收入与每月生活费的数据利用matlab软件画出家庭月收入与每月生活费的散点图,如图一所示

李贤平《概率论与数理统计》标准答案

李贤平《概率论与数理统计》标准答案

————————————————————————————————作者:————————————————————————————————日期: 2

第5章 极限定理 1、ξ为非负随机变量,若(0)a Ee a ξ <∞>,则对任意x o >,{}ax a P x e Ee ξξ-≥≤。 2、若()0h x ≥,ξ为随机变量,且()Eh ξ<∞,则关于任何0c >, 1{()}()P h c c Eh ξξ-≥≤。 4、{}k ξ各以 12 概率取值s k 和s k -,当s 为何值时,大数定律可用于随机变量序列1,,,n ξξL L 的算术平均值? 6、验证概率分布如下给定的独立随机变量序列是否满足马尔可夫条件: (1)1{2}2 k k P X =±= ; (2)(21) 2{2}2 ,{0}12k k k k k P X P X -+-=±===-; (3)1 1 2 21{2},{0}12 k k k P X k P X k --=±===-。 7、若k ξ具有有限方差,服从同一分布,但各k 间,k ξ和1k ξ+有相关,而1,(||2)k k l ξξ-≥是独立的, 证明这时对{}k ξ大数定律成立。 8、已知随机变量序列12,,ξξL 的方差有界,n D c ξ≤,并且当||i j -→∞时,相关系数0ij r →,证明 对{}k ξ成立大数定律。 9、对随机变量序列{}i ξ,若记11()n n n ηξξ= ++L ,11 ()n n a E E n ξξ=++L ,则{}i ξ服从大数定律 的充要条件是22()lim 01()n n n n n a E a ηη→∞?? -=??+-?? 。 10、用斯特灵公式证明:当,,n m n m →∞→∞-→∞,而 0m n →时, 2 2211~2n m n n e n m n π -???? ???-?? ??。 12、某计算机系统有120个终端,每个终端有5%时间在使用,若各个终端使用与否是相互独立的,试 求有10个或更多终端在使用的概率。

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率论与数理统计学1至7章课后标准答案

第五章作业题解 5.1 已知正常男性成人每毫升的血液中含白细胞平均数是7300, 标准差是700. 使用切比雪 夫不等式估计正常男性成人每毫升血液中含白细胞数在5200到9400之间的概率. 解:设每毫升血液中含白细胞数为,依题意得,7300)(==X E μ,700)(==X Var σ 由切比雪夫不等式,得 )2100|7300(|)94005200(<-=<

概率论与数理统计结课论文

概率论与数理统计课程总结报告——概率论与数理统计在日常生活中的应用 姓名: 学号: 专业:电子信息工程

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与 数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论 数理统计 经济生活 随机变量 贝叶斯公式 基本知识 §1.1 概率的重要性质 1.1.1定义 设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。 概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) 1.1.2 概率的一些重要性质 (i ) 0)(=φP (ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率) (vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=?

概率论与数理统计习题

一 、名词解释 1、样本空间:随机试验E 的所有可能结果组成的集合,称为E 的样本空间。 2、随机事件:试验E 的样本空间S 的子集,称为E 的随机事件。 3、必然事件:在每次试验中总是发生的事件。 4、不可能事件:在每次试验中都不会发生的事件。 5、概率加法定理:P(A ∪B)=P(A)+P(B)-P(AB) 6、概率乘法定理:P(AB)=P(A)P(B │A) 7、随机事件的相互独立性:若P(AB)=P(A)P(B)则事件A,B 是相互独立的。 8、实际推断原理:概率很小的事件在一次试验中几乎是不会发生的。 9、条件概率:设A ,B 是两个事件,且P(A)>0,称P(B │A)=()()A P AB P 为在事件A 发生的条件下事件B 发生的条件概率。 10、全概率公式: P(A)= () ) /(1 B B i A P n i i P ∑= 11、贝叶斯公式: P(Bi │A)= ()( ) ∑=?? ? ????? ?? n i j A P j P i A P i P B B B B 1 12、随机变量:设E 是随机试验,它的样本空间是S=﹛e ﹜。如果对于每一个e ∈S,有一个实数X(e)与之对应,就得到一个定义的S 上的单值实值函数X=X(e),称为随机变量。 13、分布函数:设X 是一个随机变量,χ是任意实数,函数F(χ)=P(X ≤χ)称为X 的分布函数。 14、随机变量的相互独立性:设(χ,у)是二维随机变量 ,如果对于任意实数χ,у,有F(χ,у)=F x (χ)·F y (у)或 f (χ,у)= f x (χ)·f y (у)成立。则称为X 与Y 相互独立。 15、方差:E ﹛〔X-E(χ)〕2〕 16、数学期望:E(χ)= ()dx x xf ?∞ -+∞ (或)= i p i i x ∑+∞ =1 17、简单随机样本:设X 是具有分布函数F 的随机变量,若χ1 , χ2 … , χn 是具有同一分布函数F 的相互独立的随机变量,则称χ1 , χ2 … , χn 为从总体X 得到的容量为n 的简单随机样本。 18、统计量:设χ1 , χ2 … , χn 是来自总体X 的一个样本,g(χ1 , χ2 … , χn )是χ1 , χ2 … , χn 的函数,若g 是连续函数,且g 中不含任何未知参数,则称g(χ1 , χ2 … , χn )是一统计量。 19、χ2(n)分布:设χ1 , χ2 … , χn 是来自总体N(0,1)的样本,则称统计量 χ2=n x x x 2......2212++ , 服从自由度为n 的χ2分布,记为χ2~χ2 (n). 20、无偏估计量:若估计量θ=θ(χ1 , χ2 … , χn )的数学期望E(θ)存在,且对任意θ ∈ (H)有E(θ)=θ,则称θ是θ的无偏估计量。 二、填空: 1、随机事件A 与B 恰有一个发生的事件A B ∪ A B 。 2、随机事件A 与B 都不发生的事件是A B 3、将一枚硬币掷两次,观察两次出现正反面的情况,则样本空间S= (正正)(正反)(反正)(反反) 。 4、设随机事件A 与B 互不相容,且P(A)=0.5,P(B)=31,则 P(A ∪ B)=65P (AB)=0。 5、随机事件A 与B 相互独立,且P(A)= 3 1 ,P(B)=51,则P (A ∪ B )= 15 7。 6、盒子中有4个新乒乓球,2个旧乒乓球,甲从中任取一个用后放回(此球下次算旧球),乙再从中取一个,那么乙取到新 球的概率是95 。 4 8、若X 的分布函数是F(x)=P(X ≤ x) , x ∈ (-∝,+∝) 则当x 1 ≤ x 2 时,P (x 1

第一章 概率论与数理统计1

概 率 论 第一章 随机事件与概率 例1 设B A ,为随机事件,已知() 4.0,6.0)(, 5.0)(===A B P B p A P ,求 1) )(B A P + 2) )(B A P 3) ()B A P 4) )(B A P - 5) )(B A P + 例2 6个不同的球,投入编号为1到7的7个空盒中,求下列事件的概率:1) 1号到6号盒中各有一个球 2) 恰有6个盒中各有1个球 3) 1号盒内有2个球 例3 袋中有两个5分的,三个贰分的,五个1分的钱币。任取其中5个,求钱额总数超过壹角的概率。 例4 验收一批共有60件的可靠配件,按验收规则,随机抽验3件,只要3件中有一件不合格就拒收整批产品,假设,检验时,不合格品被误判为合格品的概率为0.03 ,而合格品被判为不合格品的概率为0.01,如果在60件产品中有3件不合格品,问这批产品被接收的概率是多少? 例5 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有2件残品,且含0,1和2件残品的箱各占80%,15%和5%。现随意抽取一箱,从中随意检验4只,若未发现残品则通过验收,否则逐一检验并更换。试求:1)一次通过验收的概率 2)通过验收的箱中确无残品的概率。 例6 一个医生已知某疾病的自然痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定10人中至少有4人治好,则认为这种药有效,反之,则无效,求:1)虽然新药有效,且把痊愈的概率提高到35%,但经过验收被否定的概率;2)新药完全无效,但经过试验被认为有效的概率。 例7 设B A ,是两个事件,0)(,0)(21>=>=P B P P A P ,且121>+P P ,证明:1 211)(P P A B P --≥ 例8 已知161)()(,0)(,41)()()(==== ==BC P AB P AB P C P B P A P ,求C B A ,,全不发生的概率。 例9 在长度为a 的线段内任取两点,将其分成三段,求它们能构成三角形的概率。 例10 设有三门炮同时对某目标射击,命中的概率分别为0.2,0.3,0.5,目标命中一发被击毁的概率是0.2,命中两发被击毁的概率为0.6,命中三发被击毁的概率为0.9,求三门炮在一次射击中击毁目标的概率。 例11 假设一厂家生产的仪器,以概率0.70可以直接出厂,以概率0.30需进一步调试,调试后以概率0.80可以出厂,并以概率0.20定为不合格品而不能出厂。现该厂生产了) 2n(n ≥

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率论与数理统计期末试卷及答案(最新11)

湖北汽车工业学院 概率论与数理统计考试试卷 一、(本题满分24,每小题4分)单项选择题(请把所选答案填在答题卡指定位置上): 【C 】1.已知A 与B 相互独立,且0)(>A P ,0)(>B P .则下列命题不正确的是 )(A )()|(A P B A P =. )(B )()|(B P A B P =. )(C )(1)(B P A P -=. )(D )()()(B P A P AB P =. 【B 】2.已知随机变量X 的分布律为 则)35(+X E 等于 )(A 8. )(B 2. )(C 5-. )(D 1-. 【A 】3.设随机变量X 与Y 均服从正态分布2~(,4)X N μ,2~(,5)Y N μ,而 }5{},4{21+≥=-≤=μμY P p X P p ,则 )(A 对任何实数μ,都有21p p =. )(B 对任何实数μ,都有21p p <. )(C 只对μ的个别值,才有21p p =. )(D 对任何实数μ,都有21p p >. 【C 】4.在总体X 中抽取样本,,,321X X X 则下列统计量为总体均值μ的无偏估计量的是 )(A 3213211X X X ++= μ. )(B 2223212X X X ++=μ. )(C 3333213X X X ++=μ. )(D 4 443214X X X ++=μ. 【D 】5. 设)(~n t X ,则~2 X )(A )(2n χ. )(B )1(2χ. )(C )1,(n F . )(D ),1(n F . 【B 】6.随机变量)1,0(~N X ,对于给定的()10<<αα,数αu 满足αα=>)(u u P , 若α=<)(c X P ,则c 等于 )(A 2αu . )(B )1(α-u . )(C α-1u . )(D 21α-u . 二、(本题满分24,每小题4分)填空题(请把你认为正确的答案填在答题卡指定位置上): 1. 设样本空间{},2,3,4,5,6 1=Ω,{},21=A ,{},32=B ,{},54=C ,则=)(C B A {},3,4,5,61. 2. 某班级学生的考试成绩数学不及格的占15%,语文不及格的占5%,这两门都不及格的占 3%。已知一学生数学不及格,那么他语文也不及格的概率是 5 1 . 3. 设离散型随机变量X 的分布列为{}k a k X P ?? ? ??==31, ,3,2,1=k ,则=a 2. 4. 已知2)(-=X E ,5)(2 =X E ,那么=-)32015(X D 9.

概率论与数理统计答案精选

习 题二 1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大 号码,写出随机变量X 的分布律. 【解】 故所求分布律为 2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出 的次品个数,求: (1) X 的分布律; (2) X 的分布函数并作图; (3) 133 {},{1},{1},{12}222 P X P X P X P X ≤<≤≤≤<<. 【解】 故X 的分布律为 (2) 当x <0时,F (x )=P (X ≤x )=0 当0≤x <1时,F (x )=P (X ≤x )=P (X =0)= 22 35 当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435 当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数 (3) 3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率. 【解】 设X 表示击中目标的次数.则X =0,1,2,3. 故X 的分布律为 分布函数 4.(1) 设随机变量X 的分布律为 P {X =k }=! k a k λ, 其中k =0,1,2,…,λ>0为常数,试确定常数a . (2) 设随机变量X 的分布律为 P {X =k }=a/N , k =1,2,…,N ,

试确定常数a . 【解】(1) 由分布律的性质知 故 e a λ -= (2) 由分布律的性质知 即 1a =. 5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求: (1) 两人投中次数相等的概率; (2) 甲比乙投中次数多的概率. 【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7) (1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+ 331212 33 (0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++ (2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+ =0.243 6.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)? 【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有 即 200 2002001 C (0.02)(0.98) 0.01k k k k N -=+<∑ 利用泊松近似 查表得N ≥9.故机场至少应配备9条跑道. 7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)? 【解】设X 表示出事故的次数,则X ~b (1000,0.0001) 8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则 故 1 3 p = 所以 4451210(4)C ()33243 P X === . 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3) (2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3) 10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时 间间隔起点无关(时间以小时计). (1) 求某一天中午12时至下午3时没收到呼救的概率; (2) 求某一天中午12时至下午5时至少收到1次呼救的概率.

概率论与数理统计小论文

概率论与数理统计小论文

彩票与概率 摘要 随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。 关键词:概率彩票偏态原理惯性原理 贝叶斯定理机率论或概率论是研究随机性或不确定性等现象的数学。更精确地说,机率论是用来模拟实验在同一环境下会产生不同结果的情状。典型的随机实验有掷骰子、扔硬币、抽扑克牌概率论以及轮盘游戏等。概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。 举个例子:掷一枚硬币,正面和反面出现的概率相等,都是1/2,这是经过上百万次试验取得的理论数据。但是如果只掷20次,可能正面出现的几率为13/20,则反面出现的几率仅为7/20。由此可以看出,概率和几率的关系,是整体和具体、理论和实践、战略和战术的关系。几率随着随机事件次数的增加,会趋向于概率。 彩票是一种以筹集资金为目的发行的,印有号码、图形、文字、面值的,由购买人自愿按一定规则购买并确定是否获取奖励的凭证。在我国,国家发行的彩票有两种,分别是中国福利彩票和中国体育彩票。以合法形式、公平原则,重新分配社会的闲散资金,协调社会的矛盾和关系,使彩票具有了一种特殊的地位和价值. 假设100人买彩票,奖金100万,可是得到100万的只有一人,他中奖还要缴税,这100万就是买彩票的100人的钱。 打个比方, 第1期的第一个号码开6 第2期的第一个号码又开6--这个可能性有多大? 第3期的第一个号码又开6--这个可能性有多大? 第4期的第一个号码又开6--这个可能性有多大? 第5期的第一个号码又开6--这个可能性有多大? 第6期的第一个号码又开6--这个可能性有多大? .... 地球末日的一期的第一个号码又开6--这个可能性有多大? “下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑! 一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,

11概率论与数理统计试卷及答案

福州大学概率论与数理统计试卷A (20130702) 附表: (Φ 2.5)=0.9937, (Φ3)=0.9987,09.2)19(025.0=t 一、 单项选择(共18分,每小题3分) 1.设随机变量X 的分布函数为()F x ,则以下说法错误的是( ) (A )()()F x P X x =≤ (B )当12x x <时,12()()F x F x < (C )()1,()0F F +∞=-∞= (D )()F x 是一个右连续的函数 2.设,A B 独立,则下面错误的是( ) (A) B A ,独立 (B) B A ,独立 (C) )()()(B P A P B A P = (D)φ=AB 3. 设X 与Y 相互独立,且3 1 )0()0(= ≥=≥Y P X P ,则=≥)0},(max{Y X P ( ) (A )91 (B )95 (C )98 (D )3 1 4. 设128,,,X X X K 和1210,,,Y Y Y L 分别是来自正态总体()21,2N -和()2,5N 的样本,且相互独立,21S 和22S 分别为两个样本的样本方差,则服从(7,9)F 的统计量是( ) (A )222152S S (B ) 212254S S (C )222125S S (D )2 22 145S S 5. 随机变量)5.0,1000(~B X ,由切比雪夫不等式估计≥<<)600400(X P ( ) (A)0.975 (B)0.025 (C)0.5 (D) 0.25 6.设总体),(~2 σμN X ,n X X X ,,,21Λ为X 的一组样本, X 为样本均值,2 s 为样本 方差,则下列统计量中服从)(2n χ分布的是( ). (A) 1--n s X μ (B) 2 2)1(σs n - (C) n s X μ - (D) ∑=-n i i X 1 22)(1μσ 学院 专业 级 班 姓 名 学 号

概率论与数理统计含答案.

《概率论与数理统计》复习大纲与复习题 09-10第二学期 一、复习方法与要求 学习任何数学课程,要求掌握的都是基本概念、基本定理、基本方法,《概率论与数理统计》同样.对这些基本内容,习惯称三基,自己作出罗列与总结是学习的重要一环,希望尝试自己完成. 学习数学离不开作题,复习时同样.正因为要求掌握的是基本内容,将课件中提供的练习题作好就可以了,不必再找其他题目. 如开学给出的学习建议中所讲: 作为本科的一门课程,在教材中我们讲述了大纲所要求的基本内容.考虑到学员的特点,在学习中可以有所侧重.考试也有所侧重,期末考试各章内容要求与所占分值如下: 第一章随机事件的关系与运算,概率的基本概念与关系,约占30分. 第二章一维随机变量的分布,约占25分. 第三章二维随机变量的分布,仅要求掌握二维离散型随机变量的联合分布律、边缘分布律、随机变量独立的判别与函数分布的确定. 约占10分. 第四章随机变量的数字特征. 约占15分. 第五、六、七、八章约占20分.内容为: 第五章:契比雪夫不等式与中心极限定理. 分布);正态总体样第六章:总体、样本、统计量等术语;常用统计量的定义式与常用分布(t分布、2 本函数服从分布定理. 第七章:矩估计,点估计的评选标准,一个正态总体期望与方差的区间估计. 第八章:一个正态总体期望与方差的假设检验. 二、期终考试方式与题型 本学期期末考试类型为集中开卷考试,即允许带教材与参考资料. 题目全部为客观题,题型有判断与选择.当然有些题目要通过计算才能得出结果.其中判断题占70分,每小题2分;选择题占30分,每小题3分. 三、应熟练掌握的主要内容 1. 理解概率这一指标的涵义. 2. 理解统计推断依据的原理,即实际推断原理,会用其作出判断. 3. 理解事件的包含、相等、和、差、积、互斥、对立的定义,掌握样本空间划分的定义.掌握事件的运算律.

概率论与数理统计教学大纲

《概率论与数理统计》教学大纲 一、内容简介 《概率论与数理统计》是从数量侧面研究随机现象规律性的数学理论,其理论与方法已广泛应用于工业、农业、军事和科学技术中。主要包括:随机事件和概率,一维和多维随机变量及其分布,随机变量的数字特征,大数定律与中心极限定理,参数估计,假设检验等内容。 二、本课程的目的和任务 本课程是理工学科和社会学科部分专业的基础课程。课程内容侧重于讲解概率论与数理统计的基本理论与方法,同时在教学中结合各专业的特点介绍性地给出在科研、生产、社会等各领域中的具体应用。课程的任务在于使学生建立随机现象的基本概念和描述方法,掌握运用概率论和统计学原理对自然和人类社会的现象进行观察、描述和预言的方法和能力。为学生树立基本的概率论和统计思维素养,以及进一步在相关方向深造,打下基础。 三、本课程与其它课程的关系 学生在进入本课程学习之前,应学过:高等数学、线性代数。这些课程的学习,为本课程提供了必需的数学基础知识。本课程学习结束后,学生可具备进一步学习相关课程的理论基础,同时由于概率论与数理统计的理论与方法向各基础学科、工程学科的广泛渗透,与其他学科相结

合发展成不少边缘学科,所以它是许多新的重要学科的基础,学生应对本课程予以足够的重视。 四、本课程的基本要求 概率论与数理统计是一个有特色的数学分支,有自己独特的概念和方法,内容丰富,结果深刻。通过对本课程的学习,学生应该建立用概率和统计的语言对随机现象进行描述的基本概念,熟练掌握概率论与数理统计中的基本理论和分析方法,能熟练运用基本原理解决某些实际问题。具体要求如下: (一)随机事件和概率 1、理解随机事件的概念,了解样本空间的概念,掌握事件之间的关系和 运算。 2、理解概率的定义,掌握概率的基本性质,并能应用这些性质进行概率 计算。 3、理解条件概率的概念,掌握概率的加法公式、乘法公式、全概率公 式、贝叶斯公式,并能应用这些公式进行概率计算。 4、理解事件的独立性概念,掌握应用事件独立性进行概率计算。 5、掌握伯努利概型及其计算。 (二)随机变量及其概率分布 1、理解随机变量的概念 2、理解随机变量分布函数的概念及性质,理解离散型随机变量的分布律 及其性质,理解连续型随机变量的概率密度及其性质,会应用概率分

概率论与数理统计论文

概率论与数理统计论文与总结 概率论与数理统计这门数学科学在我们的生活中有着广泛的应用,从初中我们便开始接触古典概型。经过将近一个学期的学习,我们对概率论和数理统计这两门课程的基本理论和方法了进一步的了解,同时也深刻的意识到自己所学的知识还是十分有限的。 在这门课程中我们并没有研究特别高深的理论知识,而是主要学习了概率论和数理统计的基本理论和基本方法,学会用概率论和数理统计的思维去思考并且将其应用于科学研究和工程实际中。在本学期课堂上,我也听到了王老师讲的许多“课外的知识”,使我对人生有了不少新的认识与看法。 一 概率论与数理统计在生活中的应用 在日常生活中,我们经常可以看到让参赛选手选择不同奖励盒子的电视节目。如果参赛选手选对了盒子就可以得到丰厚的奖品。如果选错了盒子的话则会一无所有。这样的游戏不仅仅是运气的问题,我们也可以通过概率论与数理统计的知识进行分析,从而提高获奖的概率。下面我们描述这样一个游戏并对其进行数学建模。 参赛选手面前有三个完全相同的盒子,其中一个有5000元的奖金,另外两个什么也没有。参赛选手可以从中任选一个盒子,但暂且不打开它。节目主持人随后打开一个盒子,其中什么也没有,然后问参赛者是坚持原来的选择还是换成另一个没有被打开的盒子。一般的人可能会认为那么既然现在只剩下两个盒子,每个盒子中有奖金的概率都是0.5,所以他坚持原来的选择。这个推理看似是没有缺陷的,但是经过应用概率论与数理统计的知识仔细分析后我们会发现,他选择另一个没有被打开过的盒子获取奖金的概率是坚持原来选择获得奖金的两倍。下面我们对该过程进行分析: 首先我们假设有三个盒子,分别标号为1、2、3,不妨假设5000元奖金在1号盒子中。在题目中隐含的一个条件就是主持人知道奖金在哪一个盒子中,并且他打开的总是没有奖金的盒子。 首先我们假定参赛选手决定不换盒子,则参赛选手从1、2和3中任选一个 盒子。设事件A 、B 及C 分别为选择1号盒子,2号盒子,3号盒子。获得奖金为事件W ,则参赛选手获取奖金的概率为: ()()13 P W P A == 假设参赛选手总决定换盒子。当参赛选手选择第一个盒子时,无论主持人打开的是2号盒子还是3号盒子,参赛选手换了盒子后都无法获取奖金。当参赛选手选择2号盒子时,主持人一定会打开没有奖金的3号盒子,参赛选手换了盒子后一定会获得奖金。参赛选手选择3号盒子时同理。则参赛选手获得奖金的概率为: ()()()23 P W P B P C =+=

《概率论与数理统计》袁荫棠 中国人民大学出版社 课后答案 概率论第一章

概论论与数理统计 习题参考解答 习题一 8.掷3枚硬币,求出现3个正面的概率. 解:设事件A ={出现3个正面} 基本事件总数n =23,有利于A 的基本事件数n A =1,即A 为一基本事件, 则.125.08 121)(3====n n A P A 9.10把钥匙中有3把能打开门,今任取两把,求能打开门的概率. 解:设事件A ={能打开门},则为不能打开门 A 基本事件总数,有利于的基本事件数,210C n =A 27C n A =467.0157910212167)(21027==××?××==C C A P 因此,.533.0467.01(1)(=?=?=A P A P 10.一部四卷的文集随便放在书架上,问恰好各卷自左向右或自右向左的卷号为1,2,3,4的概率是多少?解:设A ={能打开门},基本事件总数,2412344=×××==P n 有利于A 的基本事件数为,2=A n 因此,.0833.012 1)(===n n A P A 11.100个产品中有3个次品,任取5个,求其次品数分别为0,1,2,3的概率. 解:设A i 为取到i 个次品,i =0,1,2,3, 基本事件总数,有利于A i 的基本事件数为5100C n =3 ,2,1,0,5973==?i C C n i i i 则w w w .k h d a w .c o m 课后答案网

00006.098 33512196979697989910054321)(006.0983359532195969739697989910054321)(138.098 33209495432194959697396979899100543213)(856.033 4920314719969798991009394959697)(5100297335100 39723225100 49711510059700=××==××?××××××××====××= ×××××?××××××××====×××=×××××××?××××××××=×===××××=××××××××===C C n n A P C C C n n A P C C n n A P C C n n A P 12.N 个产品中有N 1个次品,从中任取n 个(1≤n ≤N 1≤N ),求其中有k (k ≤n )个次品的概率.解:设A k 为有k 个次品的概率,k =0,1,2,…,n ,基本事件总数,有利于事件A k 的基本事件数,k =0,1,2,…,n ,n N C m =k n N N k N k C C m ??=11因此,n k C C C m m A P n N k n N N k N k k ,,1,0,)(11?===??13.一个袋内有5个红球,3个白球,2个黑球,计算任取3个球恰为一红,一白,一黑的概率.解:设A 为任取三个球恰为一红一白一黑的事件, 则基本事件总数,有利于A 的基本事件数为, 310C n =121315C C C n A =则25.04 12358910321)(310121315==×××××××===C C C C n n A P A 14.两封信随机地投入四个邮筒,求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解:设A 为前两个邮筒没有信的事件,B 为第一个邮筒内只有一封信的事件,则基本事件总数,1644=×=n 有利于A 的基本事件数,422=×=A n 有利于B 的基本事件数, 632=×=B n 则25.041164)(====n n A P A .375.083166)(====n n B P B w w w .k h d a w .c o m 课后答案网

概率论与数理统计浙大四版习题答案第六章1

第六章 样本及抽样分布 1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。 解: 8293 .0)7 8( )7 12( } 6 3.68.16 3.6526 3.62.1{}8.538.50{),36 3.6, 52(~2 =-Φ-Φ=< -< - =<15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}. 解:(1)??? ???? ?? ?????>-=?????????? ?? ?? > -=>-255412 25415412 }112 {|X P X P X P =2628.0)]2 5(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]2 1215( [1}15{15 5 1 =-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]2 1210( 1[1}10{15 55 1 =Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32 )的一个样本,求}.44.1{10 1 2>∑=i i X P

相关文档
最新文档