图像分割的阈值法综述

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像分割的阈值法综述

(武汉理工大学信息工程学院)

摘要:图像分割是由图像处理到图像分析的关键步骤,也是一种基本的计算机视觉技术。这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能。阈值分割法是图像处理最基本的分割方法,它具有计算量小、实现简单等优点,在图像分析和识别中起着重要作用。图像阈值化就是按照灰度级,将图像空间划分成与现实景物相对应的一些有意义的区域,各个区域内部灰度级是均匀的,而相邻区域灰度级是不同的,其间存在边界。它的划分可以通过从灰度级出发,选取一个或多个阈值来实现。

关键词:图像分割;阈值

Abstract:Image segmentation by image processing to image analysis of the key steps, is also a basic computer vision technology. This is because the image segmentation,object separation, feature extraction and the parameters in the original image into a more abstract and more compact form, making more high-level analysis and understanding possible. Threshold segmentation method is the most basic image processing segmentation method, which has computation, and simple to achieve, in image analysis and recognition play an important role. Image threshoiding is in accordance with the gray level, the image space is divided into scenes with reality that corresponds to some meaningful regions, each region within the gray level is uniform,while the adjacent regi on of gray scale is different, there remain boundary. It’s divided by starting from the gray level, select one or more threshold values to achieve.

Keywords: Image Segmentation; Threshold Values

1 研究背景

在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。

图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是像素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。

本文研究基于阈值法的图像分割技术,研究对象为256级灰度图像。

2 阈值法的基本原理

阈值分割法的基本原理是:通过设定不同的特征阈值,把图像像素点分为若干类。常用的特征

包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。设原始图像为(x,y)

f,按照一定的准则在(x,y)

f中找到特征值,将图像分割为两个部分,分割后的图像为:

0 1(,) (,)

(,)

f x y t

f x y t b

g x y

b <³

ìïï

ïïî(1) 在实际应用中为了满足速度的要求,常常会采用二值化阈值分割方法来缩减数据量、简化处理分析过程。这尤其适合于在物体与背景有较强对比情况下的分割。若取:b0=0(黑),b0=1(白),即为我们通常所说的图像二值化。

3 阈值法图像分割方法介绍

全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。

最常用的阈值分割方式是将灰度一分为二,所有灰度值大于或等于某阈值的像素都被判属于物体,其它像素被判属于背景;或者相反。阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。

由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法进行了研究。根据阈值法的原理可以将阈值选取技术分为3大类。

3.1 基于点的全局阈值法

3.1.1 P-tile法

P-tile法是早期的基于灰度直方图的自动阈值选择方法,它假设在亮(灰度级高)背景中存在一个暗(灰度级低)目标,并且已知目标在整幅图像中所占面积比为P%。该方法选择阈值的原则是:依次累计灰度直方图,直到累计值大于或等于目标物所占面积,此时的灰度级即为所求的阈值。

该方法计算简单,抗噪声性能较好。不足之处是要预先知道给定目标与整幅图像的面积比P,因此在P未知或P随不同图像改变时,该方法不适用。

3.1.2 双峰法

灰度直方图是数字图像处理中最简单和最有用的工具,它是灰度级的函数,描述的是图像中具有该灰度级的像素的个数。灰度直方图概括了一幅图像的灰度级内容,任何一幅图像的直方图都包括了可观的信息,某些类型的图像还可由其直方图完全描述。

对于目标与背景的灰度级有明显差别的图像,通常采用直方图技术来确定阈值,一幅物体与背景对比明显的图像一般具有包含双峰的灰度直方图,物体中的像素产生直方图中的一个峰,而背景

相关文档
最新文档