三上间隔排列 教材分析 苏教版新版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律往往是事物内在的固有联系,这种联系在一定条件下,会决定事物必然向着某种趋势发展。规律是客观存在的,不以人的意志而转移。但是,人们能够通过实践认识规律、利用规律。发现规律才能本质地认识事物及其变化的特征,利用规律才能使事物更好地满足人们生存和发展的需要。所以,人类自古至今始终在探索规律、发现规律、利用规律。
学生学习数学,获得数学基础知识和基本技能当然是重要的,但不是唯一目的。学习数学要学会用数学的视角看世界,用数学方法认识客观世界中各式各样的事物,学会通过数学思考去把握千变万化的现象,用数学方法描述、交流变化中的规律。数学课程标准十分重视培养学生探索规律的兴趣与能力,在“数与代数”领域里设计了“探索规律”的内容和要求。
学习数学的过程是认识数学规律的过程。任何一个重要数学概念的形成、计算规则的习得,都是对有关具体对象里的规律的发现、理解和掌握。在数学教学中凸显“探索规律”,能从根本上改善数学学习的方式,不仅提高数学知识的学习质量,从而促进数学思考、问题解决、情感态度等方面培养目标的实现,为持续发展积聚能量。
苏教版义务教育数学教科书从三年级上册起,每册都编排一次探索规律的内容。选择一些日常生活或数学学习中可能接触到的现象,写成教材,让学生在数学课上探索、发现隐含在这些现象里的数学规律,并且用数学方式表达、交流,落实课程标准在这方面的目标任务。
探索规律的教材有其特定的编写形式,一般分四块编排教学内容及其过程。首先,呈现一种现象,引起学生注意,激发探索规律的兴趣;接着,安排观察、操作、实验等各种数学活动,帮助学生探索并找到规律;然后,采用适当方式表达、交流发现的规律,提升数学思考的水平;最后,回顾探索规律的过程和进行的活动,反思收获、积累经验,享受成功的喜悦。
三年级上册研究两种物体“一一间隔排列”的现象。间隔排列在日常生活中经常能够看到,几乎每个学生都曾经接触过,但一般不会关注和研究它。两种物体一一间隔排列,是最简单的间隔排列,其中的要素不多,规律比较明显,适合三年级学生探索。
(一)引导学生观察有趣的现象,通过“看”“数”“比”“圈”等活动,由表及里逐步体验现象里的规律
规律是客观存在的,是隐含且可以发现的。只要对丰富的具体现象进行深入细致的研究,从感性认识到理性认识,就能发现规律。探索规律的教学重点在于“探索”,必须让学生经历亲自寻找规律的过程。如果把规律直接告诉学生,就失去了探索规律的教育价值。当然,小学生探索规律是很不容易的,经常会遇到困难,教学应及时给予指导和帮助。就这一次探索规律来说,教材安排了以下一些活动。
1. 观察现象,了解其中的物体是怎样排列的。
教材呈现一幅生动的画面:许多兔子排成一行跳舞,每两只兔子之间有一个蘑菇;一根绳上,每两个夹子之间晾一块手帕;场地前面,每两根木桩之间有一块篱笆。
观察现象,怎样看,看什么,都很重要。教材问学生:图中的兔子与蘑菇的排列有什么特点?木桩与篱笆、夹子与手帕呢?这些问题引领学生把画面里的物体分成三组,
分别观察各组的两种物体是怎样排列的。看出兔子与蘑菇一个隔一个排成一行,夹子与手帕一个隔一个排成一行,木桩与篱笆一个隔一个排成一行。发现每组的两种物体都是一个隔一个地排成一行,从而初步了解课题“间隔排列”的意思。
2. 数出各种物体的个数,比较每组两种物体的个数,初步发现它们的共同点。
从数学角度观察现象,要关注现象里的数学内容。“数”能得出物体的数量,“比”能找到相同与不同。教材让学生在表格里填写各种物体的个数,这是从现象中收集数学信息。还要比较每排两种物体的数量,得出兔子比蘑菇多1个,夹子比手帕多1个,木桩比篱笆多1个,发现同组的两种物体的个数都相差1。
3. 把同组的两种物体“一对一”地圈出来,体验“相差1个”是合理的。
同组的两种物体为什么都相差1个?相差1个是不是规律?需要进一步研究。这些思考使学生进入探索规律的状态。教材安排,把1只兔子和1个蘑菇看成一组,圈在一个圈里。圈的结果是多余1只兔子,表明兔子与蘑菇像图画里那样排列,兔子应该比蘑菇多1个。按照圈兔子与蘑菇那样,把1个夹子和1块手帕看成一组,圈成一圈;把1根木桩和1块篱笆看成一组,圈成一圈,能够发现多余1个夹子或1根木桩,并且体会同组两种物体个数相差1的必然性与合理性。
4. 放大情境,增加物体数量,体会“相差1个”是稳定的。
如果更多的兔子和蘑菇像这样排列,还会相差1个吗?如果更多的夹子和手帕像这样排列,还会相差1个吗?教材提出问题“20只兔子站成一行,每两只兔子中间有一个蘑菇,一共有多少个蘑菇?”由于兔子和蘑菇仍然是一一间隔排列,所以回答这个问题,一方面可以想“兔子比蘑菇多1个”,通过20-1=19,算出蘑菇的个数。另一方面可以想“如果最后多余1只兔子,那么前面的19只兔子应该有19个蘑菇来一一对应”。教材还问“把20块手帕像上面那样夹在绳上,一共需要多少个夹子?”回答这个问题也可以一边算“20+1=21”,一边想“1个夹子和1块手帕看成一组,20个夹子和20块手帕组成20组,最后还应该多余1个夹子”。
情境里的物体增加了,排列规律没有改变,学生对两种物体相差1个的规律有了更丰富的体会。
(二)创设摆学具的操作情境,安排学生继续探索间隔排列的规律,并且想办法表达规律
1. 通过呈现规律的变式进一步丰富认识。
两种物体的一一间隔排列也有变化,主要表现在:一行物体的两端,是同一种物体,还是两种不同物体。前面的兔子与蘑菇排成一行,两端都是兔子;夹子和手帕排成一行,两端都是夹子;木桩与篱笆的排列,两端都是木桩。学生已经探索并理解了两端是同一种物体的间隔排列规律,接着还要他们探索两端是不同物体的间隔排列规律。
教材安排学生摆学具:如果把■与●一个隔一个地排成一行,■有10个,●最少有几个?最多有几个?这是一个开放的操作情境,其中■的个数是规定的,●的个数是不确定的。
学生一般会先把10个■摆成一行,再把●插进去。由于问题具有挑战性,他们会思考“●怎样摆,个数最少?”“怎样摆,个数最多?”于是摆出如下三种情况: