数学建模中的数据处理方法(非常全)

合集下载

数学建模中的数据处理方法(非常全)

数学建模中的数据处理方法(非常全)

二维插值
在一个长为5个单位,宽为3个单位的金属薄 片上测得15个点的温度值,试求出此薄片的 温度分布,并绘出等温线图。(数据如下表)
yi xi
1
2
3
4
5
1
82
81
80
82
84
2
79
63
61
65
87
3
84
84
82
85
86
二维插值(px_lc21.m)
temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,8 6];
微分方程数值解(单摆问题)
再编函数文件(danbai.m) function xdot=danbai(t,x) xdot=zeros(2,1); xdot(1)=x(2);xdot(2)=-9.8/25*sin(x(1));
微分方程数值解(单摆问题)
在命令窗口键入() [t,x]=ode45(‘danbai’,[0:0.1:20],[0.174
想得到更理想的结果,我们可以自己设计 解决问题的方法。(可以编写辛普森数值 计算公式的程序,或用拟合的方法求出被 积函数,再利用MATLAB的命令 quad,quad8)
数值微分
已知20世纪美国人口统计数据如下,根据 数据计算人口增长率。(其实还可以对于 后十年人口进行预测)
年份
人口× 106
微分方程数值解单摆问题二次规划线性规划有约束极小问题fvallinprogfaba1b1lbub线性规划有约束极小问题线性规划有约束极小问题线性规划有约束极小问题把问题极小化并将约束标准化线性规划有约束极小问题z145714最大
【数学建模中的数据处理方法】

数学建模数据处理方法

数学建模数据处理方法

数学建模数据处理方法数据处理是数学建模中非常重要的一步,它能够帮助我们从大量的数据中提取有用的信息,为问题解决提供支持。

在数学建模中,常常需要对原始数据进行预处理、清洗和转换,以及进行统计分析和可视化,下面将介绍一些相关的数据处理方法。

1. 数据清洗数据清洗是指对原始数据进行处理,以去除重复、缺失、错误或异常值。

常见的数据清洗方法有:- 去重:检查数据中是否存在重复的记录,如果有,可以根据需要进行删除或合并。

- 缺失值处理:判断数据中是否存在缺失值,对于缺失值可以选择删除、填补或进行插值。

- 异常值检测和处理:通过统计分析和可视化方法,寻找数据中的异常值,并根据问题的具体要求进行处理,例如删除、替换或进行修正。

2. 数据转换数据转换是指将原始数据转换为更适合数据分析和建模的形式。

常见的数据转换方法有:- 标准化:将不同尺度和范围的数据转换为相同的标准尺度,例如通过Z-score标准化或MinMax标准化。

- 对数变换:将数据进行对数转换,可以使得数据的分布更加接近正态分布,便于后续的分析和建模。

- 离散化:将连续的数值变量转换为离散的类别变量,例如将年龄转换为年龄段等。

3. 统计分析统计分析是对数据进行描述、推断和预测的过程,为数学建模提供重要的支持。

常见的统计分析方法有:- 描述统计分析:对数据进行基本的描述分析,例如计算平均值、方差、中位数等统计指标。

- 探索性数据分析:通过可视化手段对数据的分布、关系和异常值等进行探索,例如绘制直方图、散点图和箱线图等。

- 假设检验和推断统计学:根据问题的需求,使用相关的假设检验方法进行统计推断,例如t检验、方差分析和回归分析等。

4. 数据可视化数据可视化是将数据以图形或图表的形式展示,帮助我们更直观地理解数据的分布和关系。

常见的数据可视化方法有:- 折线图、柱状图和饼图:适用于展示变量的分布和比例关系。

- 散点图和热力图:适用于展示变量之间的关系和相关性。

数学建模处理数据的方法

数学建模处理数据的方法

数学建模处理数据的方法
数学建模是一种将实际问题转化为数学问题,并通过数学方法进行分析和求解的过程。

在处理数据时,数学建模可以帮助我们理清数据之间的关系,提取有用的信息,并进行预测和优化。

首先,数学建模可以通过统计方法对数据进行描述和分析。

统计方法可以帮助我们计算数据的均值、方差、相关性等指标,从而揭示数据的一些基本特征。

此外,统计方法还可以进行假设检验,判断数据之间是否存在显著差异。

其次,数学建模还可以利用数据拟合方法对数据进行模型建立和参数估计。

数据拟合可以通过选择合适的函数形式,将数据与模型进行匹配,从而得到最佳拟合曲线或曲面。

这样,我们就可以利用拟合模型进行数据预测和插值。

此外,数学建模还可以利用优化方法对数据进行优化处理。

优化方法可以求解最优化问题,即在给定的约束条件下,寻找使某个目标函数取得最大或最小值的最优解。

通过优化方法,我们可以对数据进行调整、优化和规划,从而实现最优决策。

最后,数学建模还可以利用时间序列分析和回归分析等方法对数据进行预测和回归分析。

时间序列分析可以揭示数据的趋势、周期和季节性变化,从而进行未来的预测。

回归分析可以帮助我们建立因变量与自变量之间的关系模型,并进行参数估计和显著性检验。

总之,数学建模是处理数据的强大工具。

通过数学建模,我们可以从数据中提取有用的信息,进行分析和预测,并优化决策和规划。

数学建模的方法丰富多样,可以根据具体问题和数据特点选择合适的方法进行处理。

数学建模中的数据处理方法 非常全PPT共82页

数学建模中的数据处理方法 非常全PPT共82页
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
数学建模中的数据处理方法 非常全 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔

数学建模数据处理方法

数学建模数据处理方法

数学建模数据处理方法数学建模是解决实际问题的重要方法,而数据处理是数学建模中不可或缺的一环。

数据处理方法的好坏直接影响到模型的准确性和可靠性,因此需要对数据进行准确、全面的处理和分析。

下面将从数据采集、数据清洗、数据分析三个方面介绍数学建模中的数据处理方法。

一、数据采集数据采集是数学建模中首先需要完成的工作。

数据采集工作的质量对最终结果的精确度和代表性具有至关重要的影响。

数据采集必须具有相应数据的覆盖范围,数据即时性、真实性和准确性。

采集数据的方法主要有以下几种:1.问卷调查法:通过问卷调查的方式获得数据,是一个经典的数据采集方法。

问卷设计要考虑问题的准确性、问卷的结构和便于回答等因素,其缺点在于有误差和回答方式有主观性。

2.实地调查法:通过实地调查的方式获得数据。

实地调查法拥有远高于其它数据采集方法的数据真实性和准确性,但是它也较为费时费力走,不易操作。

3.网络调查法:通过网络调查的方式获得数据,是应用最广的一种调查方法。

以网络搜索引擎为代表的网络工具可提供大量的调查对象。

在采用网络调查时要考虑到样本的代表性,避免过多的重复样本、无效样本。

此外,由于网络调查法易遭受假冒调查等欺骗行为,结果不能完全符合事实情况。

二、数据清洗在数据采集后,需要对数据进行清洗,以确保数据的准确性和完整性。

数据清洗是数据处理过程中的一项重要工作,它能大大提高数据的质量,保证数据的准确性、真实性和完整性。

数据清洗的过程中主要包括以下几个方面的工作:1.清洗脏数据:包括数据中的重复、缺失、无效和异常值等。

其中缺失值和异常值是数据清洗的重点,缺失值需要根据数据具体情况处理,可采用去除、填充、插值等方式,异常值的处理就是通过人工或自动识别的方式找出这些数据并去除或修正。

2.去除重复数据:在数据采集时出现的重复数据需要进行去重处理,在处理过程中需要注意保持数据的完整性和准确性。

3.清洗无效数据:清洗无效数据是指对数据进行筛选、排序、分组等操作,以得到有意义的数据,提高数据的价值和质量。

数学建模中的几种数据处理方法

数学建模中的几种数据处理方法

揖参考文献铱 咱员暂姜启源,谢金星,叶俊.数学模型[M].第 3 版.北京:高等教育出版社,2003. 咱圆暂司守奎,孙玺菁.数学建模算法与应用[M].北京:国防工业出版社,2011. 咱猿暂何晓群.多元统计分析[M].第 2 版.北京:中国人民大学出版社,2012.
咱责任编辑院杨玉洁暂
作者简介院刘佳渊1986要冤袁女袁淄博职业学院袁现从事高等数学教学尧数学建模竞赛指导等工作遥
5 聚类分析与主成分分析
聚类分析与主成分分析是多元分析的最基本内容袁也是数学建模 中常用到的方法遥 比如 2012 年国赛葡萄酒评价问题尧2013 年城市公 共自行车问题都可以应用聚类分析尧 主成分分分析这类统计分析方 法遥 近年来袁随着数据处理问题越来越多地出现在数学建模竞赛中袁这 一类建模方法也越发受到重视遥 聚类分析是将样品或变量按相似程度 划分类别袁使得同一类中的元素之间的相似性比其他类的元素的相似 性更强遥 聚类分析主要分为 Q 型分析与 R 型分析袁Matlab 软件中 linkage( )与 pdist( )结合可以进行聚类分析遥 主成分分析的原理袁是以 较少数的综合变量取代原有的多维变量袁使数据结构简化袁把原指标 综合成较少几个主成分袁 这几个主成分是原来若干个指标的线性组 合袁它们能尽可能的反应原始变量的信息袁且彼此不相关袁主成分分析 实际是一种降维方法遥 Matlab 中函数 pcacov尧princop尧pcares 都可以进 行主成分分析, 我们以 pcacov 为例说明一下主成分分析的调用方法遥 [coeff,latent,explained]= pcacov(v),其中 v 是总体或样本的相关系数矩 阵袁输出 coeff 是 p 个主成分的系数矩阵袁explained 是这 p 个主成分各 自的贡献率遥

数学建模数据处理方法

数学建模数据处理方法
2019/2/11 1
二、数据处理的一般方法
1. 数据类型的一致化处理方法
一般问题的数据指标 x1 , x2 ,
极大型:期望取值越大越好; 极小型:期望取值越小越好;
, xm (m 1) 可能有
什么是一 致化处理? 为什么要 一致化?
“极大型” 、 “极小型” 、 “中间型” 和 “区间型” 指标。
2019/2/11 13


二、数据处理的一般方法
3. 定性指标的量化处理方法
1 1.1086 ( x 0.8942 ) 2 f ( x) 0.3915ln x 0.3699 ,


1
,1 x 3 3 x 5
根据这个规律, 对于任何一个评价值, 都可给出一个合适的 量化值。 据实际情况可构 造其他的隶属函数。 如取偏大型正态分布。
2019/2/11 3
• 若指标体系中存在不同类型的指标,必须 在综合评价之前将评价指标的类型做一致 化处理.例如,将各类指标都转化为极大 型指标,或极小型指标.一般的做法是将 非极大型指标转化为极大型指标.但是, 在不同的指标权重确定方法和评价模型中, 指标一致化处理也有差异
2019/2/11
4
2019/2/11 5
二、数据处理的一般方法
1. 数据类型的一致化处理方法
(3)区间型:对某个区间型数据指标 x ,则
ax 1 c , x a x 1, a xb 1 x b , x b c
其中 [a, b] 为 x 的最佳稳定区间,c max{a m, M b} ,
2 1 1 1.1086( x 0.8942) ,1 x 3 则 f ( x) 2 1 [ 1 ( x ) ] ,1 , x 3 x 5 0.3915ln x 0.3699 f ( x) 3 x5 a ln x b , 其中 , , a, b 为待定常数.

数学建模处理数据的方法

数学建模处理数据的方法

数学建模处理数据的方法
数学建模是通过数学方法和技巧来解决实际问题的一种方法。

在处理数据方面,数学建模提供了许多有效的方法来分析、处理和解释数据。

首先,数学建模中常用的一种方法是统计分析。

统计分析通过收集和整理数据,并进行概率分布、回归分析、假设检验等统计技术的运用,得出对数据的描述和推断。

通过统计分析,可以对数据进行整体的描述和总结,找出数据中的规律和趋势,以及得出对未来数据的预测和推断。

其次,数学建模还应用了数据挖掘技术。

数据挖掘是通过自动或半自动的方式,从大量数据中发现模式、关联和规律的过程。

数学建模在数据挖掘中使用了聚类、分类、关联规则挖掘等算法,通过对数据的处理和分析,揭示数据中隐藏的信息和关系。

数据挖掘可以帮助我们从数据中发现新的知识、预测未来的趋势和行为,并应用于商业、医学、金融等领域。

另外,数学建模还使用了数值计算的方法来处理数据。

数值计算通过将数据转化为数学模型,并使用数值方法进行计算和求解,得到模型的解析结果。

数值计算在数学建模中常用于求解复杂的数学方程和优化问题,通过对数据的数值计算,可以得到更准确的结果和预测。

此外,数学建模还可以利用图论、最优化、时间序列分析等方法来处理数据。

图论可以用于表示和分析数据之间的关系和网络结构;最优化可以用于求解数据中
的最佳方案和最优决策;时间序列分析可以用于对时间序列数据进行建模和预测。

总而言之,数学建模提供了多种处理数据的方法,包括统计分析、数据挖掘、数值计算、图论、最优化和时间序列分析等。

这些方法可以帮助我们更好地理解和应用数据,从而解决实际问题。

数学建模中的数据处理与分析

数学建模中的数据处理与分析

数学建模中的数据处理与分析在数学建模中,数据处理与分析是十分关键的一部分。

通过对数据的处理和分析,可以有效地揭示数据背后的规律和趋势,为问题求解提供有力的支持和指导。

本文将介绍数学建模中常用的数据处理与分析方法及其应用。

一、数据预处理在进行数据处理与分析之前,我们首先要进行数据预处理。

数据预处理主要包括数据清洗、数据平滑、数据集成和数据转换等过程。

1. 数据清洗数据清洗是指对原始数据进行处理,清除其中的噪声、异常值和缺失值等。

这样可以提高数据的质量和可靠性,避免在后续分析中产生误差。

2. 数据平滑数据平滑是为了消除数据中的随机波动和噪声,以便更好地观察数据的趋势和规律。

数据平滑可以采用滑动平均、指数平滑等方法。

3. 数据集成数据集成是将多个数据源的数据整合到一个统一的数据源中,使得数据能够进行有效的分析和利用。

常用的数据集成方法包括数据合并和数据拼接等。

4. 数据转换数据转换是将原始数据转化为适合分析的形式,常用的数据转换方法包括标准化、归一化和离散化等。

通过数据转换,可以减小数据之间的差异,使得数据更易于进行比较和分析。

二、数据分析方法数据处理完成后,我们可以根据实际问题的需求,采用不同的数据分析方法来研究数据的规律和特征。

1. 描述性统计分析描述性统计分析是对数据进行整体的统计和总结,常用的统计指标包括平均值、标准差、方差、频数分布等。

通过描述性统计分析,可以初步了解数据的分布情况和基本统计特征。

2. 相关性分析相关性分析是研究数据之间的相关关系,常用的分析方法包括相关系数和回归分析等。

通过相关性分析,可以揭示出数据之间的相关性和影响因素,为问题的解决提供参考。

3. 聚类分析聚类分析是将数据对象划分为若干个类别的分析方法,常用的聚类方法包括层次聚类和k均值聚类等。

聚类分析可以将相似的数据对象归为一类,为问题的分类和分组提供基础。

4. 因子分析因子分析是通过统计方法找出一组变量的共同因子,降低变量的维度,简化数据的表达和分析。

2020年数学建模竞赛b题

2020年数学建模竞赛b题

2020年数学建模竞赛b题
2020年数学建模竞赛B题是关于“数据预处理”的问题。

题目要求对给定的数据集进行预处理,包括数据清理、缺失值处理、异常值检测、数据类型转换和特征工程等步骤。

根据问题描述,需要对以下几个方面进行操作:
1. 数据清理:清理重复、错误或无效的数据。

对于重复数据,可以删除或合并重复的记录;对于错误或无效的数据,需要将其替换或删除。

2. 缺失值处理:处理缺失值。

可以使用插值、填充、删除等方法来处理缺失值,使其对后续分析的影响最小化。

3. 异常值检测:检测异常值。

可以使用统计学方法、可视化方法或机器学习方法来检测异常值,并将其标记或删除。

4. 数据类型转换:将数据转换为合适的数据类型,以使其适用于后续的分析和建模。

5. 特征工程:对特征进行变换或组合,以生成新的特征或改进现有特征的表示。

可以使用特征选择、特征提取、特征转换等方法来进行特征工程。

在完成以上操作后,需要对处理后的数据进行评估和比较,以确定其质量和适用性。

数学建模中常用的数据处理方法

数学建模中常用的数据处理方法

一、市场占有率问题(红色为常用信息)一个企业的销售量(或销售额)在市场同类产品中所占的比重。

直接反映企业所提供的商品和劳务对消费者和用户的满足程度,表明企业的商品在市场上所处的地位。

市场份额越高,表明企业经营、竞争能力越强。

市场份额根据不同市场范围有4种测算方法:1.总体市场份额。

指一个企业的销售量(额)在整个行业中所占的比重。

2.目标市场份额。

指一个企业的销售量(额)在其目标市场,即它所服务的市场中所占的比重。

一个企业的目标市场的范围小于或等于整个行业的服务市场,因而它的目标市场份额总是大于它在总体市场中的份额 。

3.相对于3个最大竞争者的市场份额。

指一个企业的销售量和市场上最大的 3个竞争者的销售总量之比。

如:一个企业的市场份额是30%,而它的3个最大竞争者的市场份额分别为20%,10%,10%,则该企业的相对市场份额就是30%÷40%=75%,如4个企业各占25%,则该企业的相对市场份额为33%。

一般地,一个企业拥有33%以上的相对市场份额,就表明它在这一市场中有一定实力。

4.相对于最大竞争者的市场份额。

指一个企业的销售量与市场上最大竞争者的销售量之比。

若高于100%,表明该企业是这一市场的领袖。

二、顾客满意度问题(红色为常用信息)2.1 顾客满意度概述确定顾客满意程度的指标和顾客满意级度是对顾客满意度进行测量控制的关键问题。

顾客满意度是评价企业质量管理体系业绩的重要手段。

为此,要科学确定顾客满意度的指标和满意度的级度并对顾客满意度进行测量监控和分析,才能进一步改进质量管理体系。

2.2 顾客的需求结构要建立一组科学的顾客满意程度的评价指标,首先要研究顾客的需求结构。

经对顾客作大量调查分析,顾客需求的基本结构大致有以下几个方面: 1.品质需求:包括性能、适用性、使用寿命、可靠性、安全性、经济性和美学(外观)等;2.功能需求:包括主导功能、辅助功能和兼容功能等;3.外延需求:包括服务需求和心理及文化需求等;4.价格需求:包括价位、价质比、价格弹性等。

数学建模中的几种数据处理方法-精选教育文档

数学建模中的几种数据处理方法-精选教育文档

数学建模中的几种数据处理方法-精选教育文档数学建模中的几种数据处理方法随着科学技术的发展,数学的应用范围日益广泛。

数学建模是利用数学方法解决实际问题的一种实践,它有助于提高学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的能力,以及培养学生创新精神和合作意识,因此数学建模以及数学建模竞赛受到广泛关注。

在建立数学模型时首先要分析变量,要尽可能的找全研究对象所涉及的量,分清变量主次地位,忽略引起小误差的变量,简化数学模型。

分析变量之间的关系,第一步要对数据做处理,即对原始数据做适当变换或其他处理,从中发现隐藏的数学规律,因此数据处理非常重要。

本文总结了数学建模中常用的几种数据处理方法,并给出相关软件的调用命令。

1 数据的录入与保存对数据进行处理首先要学会如何录入保存数据,在Excle软件与Spss软件中都是以工作表的形式存储数据,在Matlab中可以用数据文件.mat的形式保存数据。

Mat文件是Matlab以标准二进制格式保存的文件,可将空间中有用的数据变量保存下来。

Mat文件的生成和调用是由函数save和load完成的。

例:A是一矩阵,对其赋值,通过命令save data1 A就会把矩阵A数据保存在文件data1.mat中了,若要调用矩阵A,则通过命令lada data1就会将矩阵A中的数据加载在当前工作环境中。

2 基本的数据分析在数学建模竞赛中,我们常常要求一组数据的平均值、最大值、最小值、中位值、方差等基本统计量,利用Excle可以方便求得。

此外我们还可以利用Excle绘制直方图、概率分布图、频数直方图等。

Excle可以方便的实现对数据排序、筛选、分类汇总等基本的数据处理。

这些基本的数据分析方法是进行数据分析的第一步,它清晰地反应数据的基本走势。

3 插值与拟合在建模竞赛中经常会碰到这样一种问题,要从一组实验观测数据揭示自变量x与因变量y之间的关系,这就需要用到插值与拟合方法。

数学建模中的数据处理方法

数学建模中的数据处理方法
Байду номын сангаас
82
85
86
二维插值(px_lc21.m)
● temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,86];
● mesh(temps) 的粗造度。
%根据原始数据绘出温度分布图,可看到此图
二维插值
二维插值
曲线拟合
曲线拟合
● 问题:弹簧在力F的作用下伸长x厘米。F和x在一定的范围内服从虎克定 律。试根据下列数据确定弹性系数k,并给出不服从虎克定律时的近似公 式。
数学建模中的数据处理方法
目录
曲线插值与拟合
一维插值
对表格给出的函数,求出没有给出的函数值。 在实际工作中,经常会遇到插值问题。 下表是待加工零件下轮廓线的一组数据,现需要
得到x坐标每改变0.1时所对应的y的坐标.
x 0 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6
回归分析
回归分析
回归分析
回归分析
回归分析
回归分析
观察所得残差分布图,看到第8个数据的残差置信区间不含零点,此点视为异 常点,剔除后重新计算。
Residuals
6 4 2 0 -2 -4 -6
2
Residual Case Order Plot
4
6
8
Case Number
10
12
回归分析
回归分析
微分方程数值解(单摆问题)
微分方程数值解(单摆问题)
微分方程数值解(单摆问题)
微分方程数值解(单摆问题)
优化问题
线性规划有约束极小问题

数学建模中的数据处理方法

数学建模中的数据处理方法

数学建模中的数据处理方法数学建模是指利用数学方法和技术对实际问题进行抽象和建模,并通过求解数学模型来解决问题。

在数学建模过程中,数据处理是不可或缺的一部分,它涉及到对原始数据进行整理、清洗和分析等过程。

下面是数学建模中常用的数据处理方法。

1.数据清洗:数据清洗是指对原始数据进行处理,以去除异常值、缺失值和错误值等。

常用的数据清洗方法有如下几种:-异常值处理:通过识别和处理异常值,提高模型的稳定性和准确性。

可采用箱线图、标准差法等方法进行处理。

-缺失值处理:对于含有缺失值的数据,可以选择删除带有缺失值的样本,或者采用插补方法填充缺失值,如均值插补、回归插补等。

-错误值处理:通过对数据进行分析和检验,去除具有错误的数据。

常用的方法有逻辑检查、重复值检查等。

2.数据预处理:数据预处理是指对原始数据进行预处理,以提高建模的效果和精度。

常见的数据预处理方法有如下几种:-数据平滑:通过平均、加权平均等方法,对数据进行平滑处理,提高数据的稳定性和准确性。

常用的方法有移动平均法、曲线拟合法等。

-数据变换:通过对数据进行变换,可以提高数据的线性关系,使得建模的效果更好。

常见的方法有对数变换、指数变换、差分变换等。

-数据标准化:将不同量纲和单位的数据统一到一个标准的尺度上,提高模型的稳定性和准确性。

常见的方法有最小-最大标准化、标准差标准化等。

3.数据分析:数据分析是指对处理后的数据进行统计和分析,挖掘数据的潜在规律和特征,为建模提供依据。

常见的数据分析方法有如下几种:-描述统计分析:通过计算和描述数据的中心趋势、离散程度等统计指标,对数据进行总结和概括。

-相关分析:通过计算变量之间的相关系数,研究变量之间的关系和依赖程度。

-因子分析:通过对多个变量进行聚类和降维,找出主要影响因素并进行分类和解释。

-时间序列分析:对具有时间特性的数据进行分析和预测,探索数据的变化规律和趋势。

-主成分分析:通过对多个变量进行线性组合,得到新的综合指标,降低数据的维度。

数学建模中的主要方法和应用

数学建模中的主要方法和应用

数学建模中的主要方法和应用数学建模是当今现代科学技术发展中的重要组成部分,它将数学方法、计算机技术与实际问题结合,通过数学模型建立、分析和求解实际问题,为人类社会的发展提供了巨大的支持和帮助。

数学建模方法丰富多彩,如最优化方法、微分方程模型、图论模型和随机过程模型等,其中最常用的是最优化方法和微分方程模型。

下面将从理论和实践两个方面展开介绍,重点讲述数学建模中最常用的方法及其应用。

一、最优化方法最优化方法是数学建模中应用广泛的一种方法,它是求解优化问题的一类数学算法。

在数学建模中,最优化方法的应用范围非常广泛,可以用于优化问题的建模与求解,如在工业生产中,我们需要在保证质量的前提下尽量节约原材料和能源,这时就可以采用最优化方法建立优化模型。

最优化方法按不同的算法分类,可以分为线性规划、非线性规划和动态规划等,其中线性规划是最为常见和基础的一种方法。

线性规划的求解一般采用单纯形法,通过计算确定最优解。

非线性规划是线性规划的扩展,它是求解目标函数不是线性函数的规划问题。

非线性规划的求解方法有牛顿法和梯度下降法等,这些方法都需要利用微积分的基础知识。

对于一个复杂的优化问题,在建立模型的过程中,最关键的就是确定目标函数。

一个好的目标函数需要具备可行性、一致性、可表达性和可求解性等特点。

在具体求解过程中,还需要对目标函数进行求导,确定优化点,并验证该点是否为全局最优解。

二、微分方程模型微分方程模型是数学建模中常用的一种方法,它是利用微积分的基础知识建立模型,解决与时间有关的问题。

在实际生活中,许多问题都与时间有关,如人口增长、物种灭绝、气候变化等,这些问题的变化过程都可以通过微分方程模型进行描述和分析。

微分方程模型按不同级别分类,可以分为一阶微分方程、二阶微分方程和高阶微分方程等,其中最为常用的是一阶微分方程。

一阶微分方程是指微分方程中未知函数的导数最高次数为一的情况,它可以描述很多与时间相关的变化问题。

数学建模数据处理方法

数学建模数据处理方法

数学建模数据处理方法数学建模数据处理是指通过合理的方法对采集的数据进行整理、清洗、分析和展示,从而得出结论和预测。

在数学建模中,数据处理是非常重要的一步,它能够帮助我们准确地理解问题并找到相应的解决方案。

数据处理的方法有很多种,下面是一些常用的方法及相关参考内容:1. 数据整理:数据整理是指对采集到的数据进行整合和分类处理。

常见的方法包括数据的转置、去重、分组、排序等。

例如,Pandas是一个Python库,提供了许多用于数据整理的函数和方法,可以参考其官方文档和相关教程。

2. 数据清洗:数据清洗是指对数据中的噪声、异常值和缺失值进行处理,使数据更加准确和可靠。

常见的方法包括数据的平滑、插值、异常值检测和处理等。

例如,Scipy是一个Python库,提供了许多用于数据清洗的函数和方法,可以参考其官方文档和相关教程。

3. 数据分析:数据分析是指对数据进行统计和分析,从中提取出有用的信息和关系。

常见的方法包括描述性统计、回归分析、时间序列分析、聚类分析等。

例如,Numpy是一个Python库,提供了许多用于数据分析的函数和方法,可以参考其官方文档和相关教程。

4. 数据展示:数据展示是指通过图表、图像等方式将数据可视化,使人们更直观地理解数据。

常见的方法包括柱状图、折线图、散点图、热力图等。

例如,Matplotlib是一个Python库,提供了许多用于数据展示的函数和方法,可以参考其官方文档和相关教程。

5. 数据预处理:数据预处理是指对数据进行标准化、归一化、降维等处理,以便于后续的建模和分析。

常见的方法包括特征缩放、PCA降维、正则化等。

例如,Scikit-learn是一个Python库,提供了许多用于数据预处理的函数和方法,可以参考其官方文档和相关教程。

综上所述,数学建模数据处理方法包括数据整理、数据清洗、数据分析、数据展示和数据预处理等。

不同的方法适用于不同的问题和数据类型,在实际应用中可以根据具体情况选择合适的方法。

数学建模异常数据处理方法

数学建模异常数据处理方法

数学建模异常数据处理方法异常数据处理是数学建模中一个非常重要的环节。

在实际问题中,我们往往会遇到一些异常数据,这些数据与我们所建立的模型不符,可能是因为测量误差、数据录入错误、设备故障等原因导致。

处理这些异常数据对于准确建模和分析结果的得出至关重要。

本文将介绍一些常用的数学方法和技巧,用于处理异常数据。

我们可以通过统计方法来检测和处理异常数据。

常见的统计方法包括均值、中位数、标准差等。

我们可以计算数据集的均值和标准差,然后根据偏差大小来判断是否为异常数据。

如果某个数据与均值的偏差超过了3倍标准差,我们可以将其视为异常数据,并进行处理。

处理方法可以是将异常数据剔除,或者用其他合理的数据进行替代。

我们可以利用插值方法来处理异常数据。

插值方法是通过已知数据点之间的关系来推测未知数据点的值。

常用的插值方法有线性插值、拉格朗日插值、牛顿插值等。

我们可以根据异常数据前后的趋势,利用插值方法来估计异常数据的值,从而修正异常数据。

我们还可以使用回归分析来处理异常数据。

回归分析是一种通过拟合数据点与自变量之间的关系来预测因变量的方法。

当数据集中存在异常数据时,回归分析的结果往往会受到异常数据的影响。

为了排除异常数据的干扰,我们可以采用鲁棒回归分析方法,如岭回归、加权最小二乘法等。

这些方法可以降低异常数据对回归分析结果的影响,提高模型的准确性。

我们还可以利用滤波方法来处理异常数据。

滤波是一种信号处理的方法,用于去除信号中的噪声和干扰。

常用的滤波方法有移动平均滤波、中值滤波、卡尔曼滤波等。

我们可以将异常数据视为信号中的噪声和干扰,通过滤波方法来平滑数据,从而减小异常数据的影响。

我们还可以利用机器学习方法来处理异常数据。

机器学习是一种通过训练数据来构建模型,并利用模型对新数据进行预测或分类的方法。

在处理异常数据时,我们可以将异常数据视为一类特殊的数据,通过机器学习算法来识别和分类异常数据。

常用的机器学习算法有支持向量机、随机森林、神经网络等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微分方程数值解(单摆问题)


在命令窗口键入() [t,x]=ode45(‘danbai’,[0:0.1:20],[0.1745,0]); [t,y]=ode45(‘danbai’,[0:0.1:20],[0.5236,0]); plot(t,x(:,1),’r’,t,y(:,1),’k’);
1 1.5 2 3.9 4 6.6 7 11.7 9 15.6 12 18.8 13 19.6 15 20.6 17 21.1
x F
曲线拟合




解题思路:可以用一阶多项式拟合求出k, 以及近似公式。 在MATLAB中,用以下命令拟合多项式。 polyfit(x0,y0,n) 一般,也需先观察原始数据的图像,然后 再确定拟和成什么曲线。
二维插值
曲线拟合



假设一函数g(x)是以表格形式给出的,现要 求一函数f(x),使f(x)在某一准则下与表格函 数(数据)最为接近。 由于与插值的提法不同,所以在数学上理 论根据不同,解决问题的方法也不同。 此处,我们总假设f(x)是多项式。
曲线拟合

问题:弹簧在力F的作用下伸长x厘米。F和x 在一定的范围内服从虎克定律。试根据下 列数据确定弹性系数k,并给出不服从虎克定 律时的近似公式。
年份
人 口 × 106
r (t )
x x
数值微分

解题思路:设人口是时间的函数x(t).于是人 口的增长率就是x(t)对t的导数.如果计算出人 口的相关变化率 。那么人口增长满 足 ,它在初始条件x(0)=x0下的解 为 .(用以检查计算结果的正确性)
数值微分

解:此问题的特点是以离散变量给出函数x(t),所 以就要用差分来表示函数x(t)的导数.
数值微分

已知20世纪美国人口统计数据如下,根据 数据计算人口增长率。(其实还可以对于 后十年人口进行预测)
1900 76.0 1910 92.0 1920 106.5 1930 123.2 1940 131.7 1950 150.7 1960 179.3 1970 204.0 1980 226.5 1990 251.4
446 7.04 714 4.28 950 3.40 1422 2.54 1634 2.13
深度 水温
二维插值

MATLAB中二维插值的命令是: z=interp2(x0,y0,z0,x,y,'meth')
二维插值

在一个长为5个单位,宽为3个单位的金属薄 片上测得15个点的温度值,试求出此薄片的 温度分布,并绘出等温线图。(数据如下表)
一维插值

解决上述问题,我们可分两步:

用原始数据绘图作为选用插值方法的参考. 确定插值方法进行插值计算
一维插值(px_lc11.m)



对于上述问题,可键入以下的命令: x0=[0,3,5,7,9,11,12,13,14,15]'; y0=[0,1.2,1.7,2.0,2.1,2.0,1.8,1.2,1.0,1.6]' plot(x0,y0) %完成第一步工作 x=0:0.1:15; y=interp1(x0,y0,x'); %用分段线性插值完成第二步 工作 plot(x,y) y=spline(x0,y0,x'); plot(x,y) %用三次样条插值完成第二步工作
曲线拟合(px_lc31.m)



对于上述问题,可键入以下的命令: x=[1,2,4,7,9,12,13,15,17]'; F=[1.5,3.9,6.6,11.7,15.6,18.8,19.6,20.6,21 .1]'; plot(x,F,'.') 从图像上我们发现:前5个数据应与直线拟合, 后5个数据应与二次曲线拟合。于是键入 : a=polyfit(x(1:5),F(1:5),1); a=polyfit(x(5:9),F(5:9),2)
数值积分
x y1 y2 x y1 y2 x y1 y2 7.0 44 44 61.0 36 117 111.5 32 121 10.5 45 59 68.5 34 118 118.0 65 122 13.0 47 70 76.5 41 116 123.5 55 116 17.5 50 72 80.5 45 118 136.5 54 83 34.0 50 93 91.0 46 118 142.0 52 81 40.5 38 100 96.0 43 121 146.0 50 82 44.5 30 110 101.0 37 124 150.0 66 86 48.0 30 110 104.0 33 121 157.0 66 85 56.0 34 110 106.5 28 121 158.0 68 68
二维插值




%下面开始进行二维函数的三阶插值。 width=1:5; depth=1:3; di=1:0.2:3; wi=1:0.2:5; [WI,DI]=meshgrid(wi,di);%增加了节点数目 ZI=interp2(width,depth,temps,WI,DI,'cubic'); % 对数据(width,depth,temps)进 % 行三阶插值拟合。 surfc(WI,DI,ZI) contour(WI,DI,ZI)

常用后一个公式。(因为,它实际上是用二次插 值函数来代替曲线x(t))即常用三点公式来代替函 数在各分点的导数值:
数值微分




MATLAB用命令diff按两点公式计算差分;此题自编程序 用三点公式计算相关变化率.编程如下(diff3.m): for i=1:length(x) if i==1 r(1)=(-3*x(1)+4*x(1+1)-x(1+2))/(20*x(1)); elseif i~=length(x) r(i)=(x(i+1)-x(i-1))/(20*x(i)); else r(length(x))=(x(length(x)-2)-4*x(length(x)1)+3*x(length(x)))/(20*x(length(x))); end end r=r;
Find x that minimizes f(x)=-5x1-4x2-6x3 subject to x1-x2+x3≦20 3x1+2x2+4x3≦42 3x1+2x2≦30 0≦x1, 0≦x2,0≦x3
数值积分


解题思路:数据实际上表示了两条曲线, 实际上我们要求由两曲线所围成的图形的 面积。 解此问题的方法是数值积分的方法。具体 解时我们遇到两个问题:

1。数据如何输入; 2。没有现成的命令可用。
数值积分(px_wj11.m)




对于第一个问题,我们可把数据拷贝成M文 件(或纯文本文件)。 然后,利用数据绘制平面图形。键入 load mianji.txt A=mianji'; plot(A(:,1),A(:,2),'r',A(:,1),A(:,3),'g')
微分方程数值解(单摆问题)
单摆问题的数学模型是
在初始角度不大时,问题可以得到很好地解决, 但如果初始角较大,此方程无法求出解析解.现 问题是当初始角为100和300时,求出其解,画出 解的图形进行比较。
微分方程数值解(单摆问题)


解:若θ0较小,则原方程可用 来近 似.其解析解为θ(t)= θ0cosωt, . 若不用线性方程来近似,那么有两个模型:
微分方程数值解(单摆问题)

取g=9.8,l=25, 100=0.1745, 300=0.5236.用 MATLAB求这两个模型的数值解,先要作如下 的处理:令x1=θ,x2=θ’,则模型变为
微分方程数值解(单摆问题)


再编函数文件(danbai.m) function xdot=danbai(t,x) xdot=zeros(2,1); xdot(1)=x(2);xdot(2)=-9.8/25*sin(x(1));
优化问题



线性规划有约束极小问题 非线性规划有约束极小问题 非线性无约束极小问题 非线性最小二乘问题 二次规划
线性规划有约束极小问题

模型


用命令 [x, fval]= linprog(f,A,b,A1,b1,lb,ub)
线性规划有约束极小问题



【数学建模中的数据处理方法】
范筑军
【主要内容】



曲线插值与拟合 数值微分与积分 微分方程数值解 优化问题 回归分析 判别分析
Байду номын сангаас
曲线插值与拟合

一维插值 二维插值 曲线拟合
一维插值

对表格给出的函数,求出没有给出的函数值。 在实际工作中,经常会遇到插值问题。 下表是待加工零件下轮廓线的一组数据,现需要 得到x坐标每改变0.1时所对应的y的坐标.
yi 1 2 3 xi 1 82 79 84 2 81 63 84 3 80 61 82 4 82 65 85 5 84 87 86
二维插值(px_lc21.m)


temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,86]; mesh(temps) %根据原始数据绘出温度分布图,可看 到此图的粗造度。
数值积分
数值积分



接下来可以计算面积。键入: a1=trapz(A(:,1)*40/18,A(:,2)*40/18); a2=trapz(A(:,1)*40/18,A(:,3)*40/18); d=a2-a1 d = 4.2414e+004
相关文档
最新文档