数据处理与数学建模方法..
数学建模计算方法

数学建模计算方法蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)数据拟合、参数估计、插值等数据处理算法(比赛中通常会碰到大量的数据必须要处理,而处理数据的关键就在于这些算法,通常使用Matlab 作为工具)线性规划、整数规划、多元规划、二次规划等规划类问题(建模比赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件实现) 图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,必须要认真准备)动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法〔制定〕中比较常用的方法,很多场合可以用到比赛中)4建模计算法三层次结构:最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。
中间层:这一层次中包涵了为实现目标所涉及的中间环节,它可以由假设干个层次组成,包括所必须合计的准则、子准则,因此也称为准则层。
最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
递阶层次结构中的层次数与问题的复杂程度及必须要分析的详尽程度有关,一般地层次数不受限制。
每一层次中各元素所支配的元素一般不要超过 9 个。
这是因为支配的元素过多会给两两比较推断带来困难。
层次分析法的应用:在应用层次分析法研究问题时,碰到的主要困难有两个:(i)如何依据实际状况抽象出较为贴切的层次结构;(ii)如何将某些定性的量作比较接近实际定量化处理。
层次分析法对人们的思维过程进行了加工整理,提出了一套系统分析问题的方法,为科学管理和决策提供了较有说服力的依据。
但层次分析法也有其局限性,主要表现在:(i)它在很大程度上依赖于人们的经验,主观因素的影响很大,它至多只能排除思维过程中的严重非一致性,却无法排除决策者个人可能存在的严重片面性。
数学建模常用的十种解题方法

数学建模常用的十种解题方法 摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。
这个建立数学模型的全过程就称为数学建模。
数学建模的十种常用方法有蒙特卡罗算法;数据拟合、参数估计、插值等数据处理算法;解决线性规划、整数规划、多元规划、二次规划等规划类问题的数学规划算法;图论算法;动态规划、回溯搜索、分治算法、分支定界等计算机算法;最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法;网格算法和穷举法;一些连续离散化方法;数值分析算法;图象处理算法。
关键词:数学建模;蒙特卡罗算法;数据处理算法;数学规划算法;图论算法 一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
在工程、通讯、金融等技术问题中, 实验数据很难获取, 或实验数据的获取需耗费很多的人力、物力, 对此, 用计算机随机模拟就是最简单、经济、实用的方法; 此外, 对一些复杂的计算问题, 如非线性议程组求解、最优化、积分微分方程及一些偏微分方程的解⑿, 蒙特卡罗方法也是非常有效的。
一般情况下, 蒙特卜罗算法在二重积分中用均匀随机数计算积分比较简单, 但精度不太理想。
通过方差分析, 论证了利用有利随机数, 可以使积分计算的精度达到最优。
本文给出算例, 并用MA TA LA B 实现。
1蒙特卡罗计算重积分的最简算法-------均匀随机数法二重积分的蒙特卡罗方法(均匀随机数)实际计算中常常要遇到如()dxdy y x f D ⎰⎰,的二重积分, 也常常发现许多时候被积函数的原函数很难求出, 或者原函数根本就不是初等函数, 对于这样的重积分, 可以设计一种蒙特卡罗的方法计算。
数学建模的十大算法

数学建模的十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)2 十类算法的详细说明2.1 蒙特卡罗算法大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。
数学建模的基本方法和步骤

数学建模的基本方法和步骤
数学建模是一种应用数学方法解决实际问题的研究方法,其基本方法和步骤如下:
1. 确定问题:明确要解决的问题,包括问题的描述、背景、目的和限制等。
2. 收集数据:收集与问题相关的数据,可以通过调查、实验、案例分析等方式获取。
3. 建立模型:基于问题的特点,选择合适的数学模型来描述问题,包括线性、非线性、概率等模型。
4. 分析模型:对建立的数学模型进行分析,确定模型的参数和假设,并进行模型的检验和优化。
5. 求解模型:根据建立的数学模型,求解出问题的答案,可以使用数值方法、统计分析等方法进行求解。
6. 验证和评估:对求解出的答案进行验证和评估,检查答案的准确性和可靠性,并根据需要进行模型的优化和改进。
数学建模的基本方法和步骤需要注重问题分析、模型建立、数据分析和模型求解等环节,其中数据分析是非常重要的一环,需要注重数据的收集、处理和分析,以获取准确和可靠的信息。
同时,数学建模需要注重实践,需要结合实际情况,不断优化和改进模型,以达到更好的解决实际问题的效果。
数学建模是一种重要的研究方法,可以帮助我们更好地理解和解决现实世界中的各种问题,具有广泛的应用前景和发展趋势。
数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
数学建模十大经典算法( 数学建模必备资料)

建模十大经典算法1、蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。
2、数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具。
3、线性规划、整数规划、多元规划、二次规划等规划类问题。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo、MATLAB软件实现。
4、图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。
6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。
这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7、网格算法和穷举法。
网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8、一些连续离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9、数值分析算法。
如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10、图象处理算法。
赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理。
历年全国数学建模试题及解法赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A 出版资源配置06B 艾滋病疗法的评价及疗效的预测 07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10A 10B赛题发展的特点:1.对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B ,某些问题需要使用计算机软件,01A 。
数学建模在大数据分析中的应用有哪些

数学建模在大数据分析中的应用有哪些在当今数字化时代,大数据已经成为了企业和组织决策的重要依据。
然而,要从海量的数据中提取有价值的信息并非易事,这就需要运用数学建模的方法来进行分析和处理。
数学建模作为一种将实际问题转化为数学问题并求解的工具,在大数据分析中发挥着至关重要的作用。
首先,数学建模可以用于数据预处理。
在大数据分析中,原始数据往往存在缺失值、异常值和噪声等问题。
通过建立数学模型,如统计模型、插值模型等,可以对缺失值进行合理的填充,对异常值进行识别和处理,以及对噪声进行滤波和平滑。
例如,在处理销售数据时,如果某些月份的销售额缺失,可以使用时间序列模型来预测缺失的值;对于明显偏离正常范围的销售额,可以通过设定阈值来识别并剔除异常值。
其次,分类和预测是大数据分析中的常见任务,数学建模在这方面也表现出色。
决策树、支持向量机、朴素贝叶斯等机器学习算法本质上都是数学模型。
以决策树为例,它通过对数据特征的递归划分,构建出一棵类似于流程图的树结构,从而实现对新数据的分类。
在预测方面,回归模型如线性回归、逻辑回归等被广泛应用。
比如,通过建立线性回归模型,可以根据历史房价数据来预测未来房价的走势。
数学建模还能够帮助进行聚类分析。
聚类的目的是将相似的数据点归为同一类,而不同类之间的数据差异较大。
常见的聚类模型有KMeans 算法、层次聚类算法等。
以 KMeans 算法为例,它通过不断迭代计算数据点到聚类中心的距离,重新分配数据点所属的类别,最终实现数据的聚类。
在市场细分、客户细分等领域,聚类分析可以帮助企业更好地了解客户群体的特征和行为模式。
在关联规则挖掘中,数学建模也发挥着重要作用。
关联规则挖掘旨在发现数据中不同项之间的关联关系,例如购物篮分析中,哪些商品经常被一起购买。
Apriori 算法是一种经典的关联规则挖掘算法,它基于概率和统计的原理,通过设置支持度和置信度等阈值来筛选出有意义的关联规则。
通过这种方式,企业可以进行商品推荐、优化库存管理等。
数学建模方法与经验

数学建模方法与经验数学建模是一种解决实际问题的方法,通过建立数学模型来描述现象和探索解决问题的方法。
数学建模方法与经验是指在数学建模过程中所运用的各种方法和经验总结,旨在提高数学建模的效果和准确性。
以下是一些常见的数学建模方法与经验。
1.问题分析:正确的问题分析是数学建模的第一步,需要对问题进行深入的理解和分析。
问题分析包括问题的背景、目标、约束条件和关键要素等方面的考虑,并根据实际情况确定数学建模的方向和方法。
2.建立模型:建立数学模型是数学建模的核心步骤,需要根据问题的特征和要求选择适当的数学方法和模型类型。
常见的数学模型包括线性模型、非线性模型、动态模型、优化模型等。
在建立数学模型时,需要包括问题的数学描述、变量的定义、假设和约束条件等。
3.数据处理:数学建模中离不开数据的处理和分析。
数据处理包括数据采集、数据预处理、数据清洗、数据可视化等步骤。
数据的准确性和可靠性对数学建模的结果具有很大的影响,因此需要进行有效的数据处理和分析。
4.模型求解:在建立好数学模型后,需要选择合适的算法和方法来求解模型。
常见的模型求解方法包括数值方法、解析方法、优化算法等。
选择合适的求解方法有助于提高模型求解的效率和准确性。
5.模型验证与评估:模型验证是指对建立的数学模型进行验证和评估,判断模型的准确性和可靠性。
模型验证可以通过实验数据对比、模型输出与实际情况对比等方式进行。
模型评估可以通过误差分析、灵敏度分析等方法进行。
6.模型优化与改进:在建立数学模型和求解模型的过程中,可能会遇到一些问题和困难。
这时需要根据实际情况对模型进行优化和改进。
模型优化可以通过调整模型参数、改进求解算法等方式进行。
在进行数学建模时,还需要注意以下几点经验:1.问题的抽象与简化:在建立数学模型时,问题往往会比较复杂,需要对问题进行适当的抽象与简化。
适当的抽象与简化可以使问题更容易理解和求解。
2.多种方法的比较:在建立数学模型时,可以尝试不同的方法和模型,比较它们的优缺点,选择最合适的方法和模型。