数学建模数据处理方法总结
数学建模中的数据处理方法(非常全)

二维插值
在一个长为5个单位,宽为3个单位的金属薄 片上测得15个点的温度值,试求出此薄片的 温度分布,并绘出等温线图。(数据如下表)
yi xi
1
2
3
4
5
1
82
81
80
82
84
2
79
63
61
65
87
3
84
84
82
85
86
二维插值(px_lc21.m)
temps=[82,81,80,82,84;79,63,61,65,87;84,84,82,85,8 6];
微分方程数值解(单摆问题)
再编函数文件(danbai.m) function xdot=danbai(t,x) xdot=zeros(2,1); xdot(1)=x(2);xdot(2)=-9.8/25*sin(x(1));
微分方程数值解(单摆问题)
在命令窗口键入() [t,x]=ode45(‘danbai’,[0:0.1:20],[0.174
想得到更理想的结果,我们可以自己设计 解决问题的方法。(可以编写辛普森数值 计算公式的程序,或用拟合的方法求出被 积函数,再利用MATLAB的命令 quad,quad8)
数值微分
已知20世纪美国人口统计数据如下,根据 数据计算人口增长率。(其实还可以对于 后十年人口进行预测)
年份
人口× 106
微分方程数值解单摆问题二次规划线性规划有约束极小问题fvallinprogfaba1b1lbub线性规划有约束极小问题线性规划有约束极小问题线性规划有约束极小问题把问题极小化并将约束标准化线性规划有约束极小问题z145714最大
【数学建模中的数据处理方法】
数学建模各类方法归纳总结

数学建模各类方法归纳总结数学建模是一门应用数学领域的重要学科,它旨在通过数学模型对现实世界中的问题进行分析和解决。
随着科技的不断发展和应用需求的增加,数学建模的方法也日趋多样化和丰富化。
本文将对数学建模的各类方法进行归纳总结,以期帮助读者更好地了解和应用数学建模。
一、经典方法1. 贝叶斯统计模型贝叶斯统计模型是一种基于概率和统计的建模方法。
它通过利用先验知识和已知数据来确定未知数据的后验概率分布,从而进行推理和预测。
贝叶斯统计模型在金融、医药、环境等领域具有广泛应用。
2. 数理统计模型数理统计模型是基于概率统计理论和方法的建模方法。
它通过收集和分析样本数据,构建统计模型,并通过参数估计和假设检验等方法对数据进行推断和预测。
数理统计模型在市场预测、风险评估等领域有着重要的应用。
3. 线性规划模型线性规划模型是一种优化建模方法,它通过线性目标函数和线性约束条件来描述和解决问题。
线性规划模型在供应链管理、运输优化等领域被广泛应用,能够有效地提高资源利用效率和降低成本。
4. 非线性规划模型非线性规划模型是一种对目标函数或约束条件存在非线性关系的问题进行建模和求解的方法。
非线性规划模型在经济学、物理学等领域有着广泛的应用,它能够刻画更为复杂的现实问题。
二、进阶方法1. 神经网络模型神经网络模型是一种模拟人脑神经元系统进行信息处理的模型。
它通过构建多层神经元之间的连接关系,利用反向传播算法进行训练和学习,实现对复杂数据的建模和预测。
神经网络模型在图像识别、自然语言处理等领域取得了显著的成果。
2. 遗传算法模型遗传算法模型是一种模拟自然界生物进化过程的优化方法。
它通过模拟遗传、交叉和突变等过程,逐步搜索和优化问题的最优解。
遗传算法模型在组合优化、机器学习等领域具有广泛的应用。
3. 蒙特卡洛模拟模型蒙特卡洛模拟模型是一种基于随机模拟和概率统计的建模方法。
它通过生成大量的随机样本,通过对样本进行抽样和分析,模拟系统的运行和行为,从而对问题进行求解和评估。
数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
2023数学建模e题数据处理

2023数学建模e题数据处理一、数据整理1.数据收集首先,我们需要收集相关的数据,包括水位、水流量和含沙量等数据。
这些数据可以从相关的水文站或者环保部门获取。
在收集数据时,需要注意数据的准确性和完整性,因为这将直接影响到后续的数据处理和分析结果。
2.数据排序收集到的数据需要进行排序,以便于后续的数据处理和分析。
我们可以按照时间顺序对数据进行排序,即按照时间戳将数据按照时间先后进行排列。
二、数据预处理1.缺失数据处理在数据中可能会存在缺失值,这将对数据分析产生不良影响。
因此,我们需要对缺失值进行处理。
可以采用插值法、回归法等常见的方法对缺失值进行填充。
2.异常值处理在数据中也可能存在一些异常值,这些异常值可能会对数据分析产生不良影响。
因此,我们需要对异常值进行处理。
可以采用箱线图等方法来发现异常值,并将其进行处理。
3.时间序列划分在进行数据分析时,需要将数据按照时间序列进行划分。
可以根据具体的情况来确定时间序列的长度和划分方式,以便更好地进行数据分析。
三、数据分析1.水位数据分析水位数据是水文数据中一个重要的指标,通过对水位数据的分析可以了解水位的动态变化情况。
我们可以采用时间序列分析、趋势分析等方法对水位数据进行处理和分析。
2.水流量数据分析水流量是衡量一个河流或者流域水资源的重要指标之一。
通过对水流量数据的分析可以了解水资源的分布情况以及变化趋势。
我们可以采用统计分析和机器学习等方法对水流量数据进行处理和分析。
3.含沙量数据分析含沙量是衡量水质的一个重要指标之一。
通过对含沙量数据的分析可以了解水体中的泥沙含量以及变化情况。
我们可以采用时间序列分析和回归分析等方法对含沙量数据进行处理和分析。
四、数据可视化1.分组数据分布图可视化通过分组数据分布图可以将数据的分布情况可视化出来,从而更好地了解数据的分布特征和规律。
我们可以采用柱状图、饼图等方法对数据进行可视化处理。
2.相关系数热力图可视化相关系数热力图可以用来展示变量之间的相关关系,从而更好地了解变量之间的关系和规律。
数学建模处理数据的方法

数学建模处理数据的方法
数学建模是一种将实际问题转化为数学问题,并通过数学方法进行分析和求解的过程。
在处理数据时,数学建模可以帮助我们理清数据之间的关系,提取有用的信息,并进行预测和优化。
首先,数学建模可以通过统计方法对数据进行描述和分析。
统计方法可以帮助我们计算数据的均值、方差、相关性等指标,从而揭示数据的一些基本特征。
此外,统计方法还可以进行假设检验,判断数据之间是否存在显著差异。
其次,数学建模还可以利用数据拟合方法对数据进行模型建立和参数估计。
数据拟合可以通过选择合适的函数形式,将数据与模型进行匹配,从而得到最佳拟合曲线或曲面。
这样,我们就可以利用拟合模型进行数据预测和插值。
此外,数学建模还可以利用优化方法对数据进行优化处理。
优化方法可以求解最优化问题,即在给定的约束条件下,寻找使某个目标函数取得最大或最小值的最优解。
通过优化方法,我们可以对数据进行调整、优化和规划,从而实现最优决策。
最后,数学建模还可以利用时间序列分析和回归分析等方法对数据进行预测和回归分析。
时间序列分析可以揭示数据的趋势、周期和季节性变化,从而进行未来的预测。
回归分析可以帮助我们建立因变量与自变量之间的关系模型,并进行参数估计和显著性检验。
总之,数学建模是处理数据的强大工具。
通过数学建模,我们可以从数据中提取有用的信息,进行分析和预测,并优化决策和规划。
数学建模的方法丰富多样,可以根据具体问题和数据特点选择合适的方法进行处理。
数学建模数据处理方法

数学建模数据处理方法数学建模是解决实际问题的重要方法,而数据处理是数学建模中不可或缺的一环。
数据处理方法的好坏直接影响到模型的准确性和可靠性,因此需要对数据进行准确、全面的处理和分析。
下面将从数据采集、数据清洗、数据分析三个方面介绍数学建模中的数据处理方法。
一、数据采集数据采集是数学建模中首先需要完成的工作。
数据采集工作的质量对最终结果的精确度和代表性具有至关重要的影响。
数据采集必须具有相应数据的覆盖范围,数据即时性、真实性和准确性。
采集数据的方法主要有以下几种:1.问卷调查法:通过问卷调查的方式获得数据,是一个经典的数据采集方法。
问卷设计要考虑问题的准确性、问卷的结构和便于回答等因素,其缺点在于有误差和回答方式有主观性。
2.实地调查法:通过实地调查的方式获得数据。
实地调查法拥有远高于其它数据采集方法的数据真实性和准确性,但是它也较为费时费力走,不易操作。
3.网络调查法:通过网络调查的方式获得数据,是应用最广的一种调查方法。
以网络搜索引擎为代表的网络工具可提供大量的调查对象。
在采用网络调查时要考虑到样本的代表性,避免过多的重复样本、无效样本。
此外,由于网络调查法易遭受假冒调查等欺骗行为,结果不能完全符合事实情况。
二、数据清洗在数据采集后,需要对数据进行清洗,以确保数据的准确性和完整性。
数据清洗是数据处理过程中的一项重要工作,它能大大提高数据的质量,保证数据的准确性、真实性和完整性。
数据清洗的过程中主要包括以下几个方面的工作:1.清洗脏数据:包括数据中的重复、缺失、无效和异常值等。
其中缺失值和异常值是数据清洗的重点,缺失值需要根据数据具体情况处理,可采用去除、填充、插值等方式,异常值的处理就是通过人工或自动识别的方式找出这些数据并去除或修正。
2.去除重复数据:在数据采集时出现的重复数据需要进行去重处理,在处理过程中需要注意保持数据的完整性和准确性。
3.清洗无效数据:清洗无效数据是指对数据进行筛选、排序、分组等操作,以得到有意义的数据,提高数据的价值和质量。
数学建模中的几种数据处理方法

揖参考文献铱 咱员暂姜启源,谢金星,叶俊.数学模型[M].第 3 版.北京:高等教育出版社,2003. 咱圆暂司守奎,孙玺菁.数学建模算法与应用[M].北京:国防工业出版社,2011. 咱猿暂何晓群.多元统计分析[M].第 2 版.北京:中国人民大学出版社,2012.
咱责任编辑院杨玉洁暂
作者简介院刘佳渊1986要冤袁女袁淄博职业学院袁现从事高等数学教学尧数学建模竞赛指导等工作遥
5 聚类分析与主成分分析
聚类分析与主成分分析是多元分析的最基本内容袁也是数学建模 中常用到的方法遥 比如 2012 年国赛葡萄酒评价问题尧2013 年城市公 共自行车问题都可以应用聚类分析尧 主成分分分析这类统计分析方 法遥 近年来袁随着数据处理问题越来越多地出现在数学建模竞赛中袁这 一类建模方法也越发受到重视遥 聚类分析是将样品或变量按相似程度 划分类别袁使得同一类中的元素之间的相似性比其他类的元素的相似 性更强遥 聚类分析主要分为 Q 型分析与 R 型分析袁Matlab 软件中 linkage( )与 pdist( )结合可以进行聚类分析遥 主成分分析的原理袁是以 较少数的综合变量取代原有的多维变量袁使数据结构简化袁把原指标 综合成较少几个主成分袁 这几个主成分是原来若干个指标的线性组 合袁它们能尽可能的反应原始变量的信息袁且彼此不相关袁主成分分析 实际是一种降维方法遥 Matlab 中函数 pcacov尧princop尧pcares 都可以进 行主成分分析, 我们以 pcacov 为例说明一下主成分分析的调用方法遥 [coeff,latent,explained]= pcacov(v),其中 v 是总体或样本的相关系数矩 阵袁输出 coeff 是 p 个主成分的系数矩阵袁explained 是这 p 个主成分各 自的贡献率遥
数学建模竞赛常用方法之数据处理

2016/11/24
【例2.1-3】调用load函数读取文件examp02_01.txt至 examp02_12.txt中的数据 >> load examp02_01.txt >> load -ascii examp02_01.txt >> x1 = load('examp02_02.txt') >> x1 = load('examp02_02.txt', '-ascii'); >> load examp02_03.txt >> load examp02_04.txt ……
2016/11/24
【例2.1-4】调用dlmread函数读取文件examp02_01.txt至 examp02_11.txt中的数据 >> x = dlmread('examp02_03.txt') >> x = dlmread('examp02_03.txt', ',', 2, 3) >> x = dlmread('examp02_03.txt', ',', [1, 2, 2, 5]) >> x = dlmread('examp02_05.txt') >> x = dlmread('examp02_06.txt') >> x = dlmread('examp02_09.txt') ……
2016/11/24
三、调用低级函数读取数据
1. 调用fopen函数打开文件
调用格式:
[fid, message] = fopen(filename, permission) [filename, permission] = fopen(fid)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算得 1.1086, 0.8942, a 0.3915, b 0.3699。
则
f
(
x)
f
( x)01.391[11.150ln8(6xx(x0.03) .6829]9941 ,21),2
1,1 x 3 x 3 x5
[1 (x )2 ]1,1 x 3
f (x) a ln x b , 3 x 5
其中, , a,b 为待定常数.
2020/4/30
11
二、数据处理的一般方法
3. 定性指标的量化处理方法
当“很满意”时,则隶属度为1,即 f (5) 1 ;
当“较满意”时,则隶属度为 0.8,即 f (3) 0.8;
如何将其量化?若A-,B+,C-,D+等又 如何合理量化?
根据实际问题,构造模糊隶属函数的量化 方法是一种可行有效的方法。
2020/4/30
10
二、数据处理的一般方法
假设有多个评价人对某项因素评价为A,B,C, D,E共5个等级: {v1 ,v2 ,v3 ,v4,v5}。
譬如:评价人对某事件“满意度”的评价可分为 {很满意,满意,较满意,不太满意,很不满意} 将其5个等级依次对应为5,4,3,2,1。 这里为连续量化,取偏大型柯西分布和对数函数 作为隶属函数:
诸如:教学质量、科研水平、工作政绩、 人员素质、各种满意度、信誉、态度、意识 、观念、能力等因素有关的政治、社会、人 文等领域的问题。
如何对有关问题给出定量分析呢?
2020/4/30
9
二、数据处理的一般方法
3. 定性指标的量化处理方法
按国家的评价标准Байду номын сангаас评价因素一般分为五 个等级,如A,B,C,D,E。
[1 n
n i1
( xij
x
j
)2
]
1 2
M j m1iaxn {xij }
xij [0,1] (i 1,2,L ,n; j 1,2,L , m) mj m1iinn{xij}
2020/4/30
8
二、数据处理的一般方法
3. 模糊指标的量化处理方法
在实际中,很多问题都涉及到定性,或模 糊指标的定量处理问题。
1. 数据类型的一致化处理方法
(1)极小型: 对某个极小型数据指标 x ,
则 x 1 (x 0) ,或 x M x . x
(2)中间型: 对某个中间型数据指标 x ,则
x
2(x m) , M m 2(M x) ,
m x 1 (M m) 2
1 (M m) x M
M m 2
2020/4/30
6
• 所谓无量纲化,也称为指标的规范化,是 通过数学变换来消除原始指标的单位及其 数值数量级影响的过程.因此,就有指标 的实际值和评价值之分.—般地,将指标 无量纲化处理以后的值称为指标评价 值.无量纲化过程就是将指标实际值转化 为指标评价值的过程.
2020/4/30
7
二、数据处理的一般方法
2020/4/30
1
二、数据处理的一般方法
1. 数据类型的一致化处理方法
一般问题的数据指标 x1, x2,L , xm (m 1) 可能有
“极大型”、“极小型”、“中间型”和“区间型”指标。
极大型:期望取值越大越好; 极小型:期望取值越小越好; 中间型:期望取值为适当的中间值最好; 区间型:期望取值落在某一个确定的区间 内为最好。
2020/4/30
什么是一 致化处理? 为什么要
一致化?
2
• 所谓一致化处理就是将评价指标的类型进 行统一.一般来说,在评价指标体系中, 可能会同时存在极大型指标、极小型指标、 居中型指标和区间型指标,它们都具有不 同的特点.如产量、利润、成绩等极大型 指标是希望取值越大越好;而成本、费用、 缺陷等极小型指标则是希望取值越小越好; 对于室内温度、空气湿度等居中型指标是 既不期望取值太大,也不期望取值太小, 而是居中为好..
2020/4/30
3
• 若指标体系中存在不同类型的指标,必须 在综合评价之前将评价指标的类型做一致 化处理.例如,将各类指标都转化为极大 型指标,或极小型指标.一般的做法是将 非极大型指标转化为极大型指标.但是, 在不同的指标权重确定方法和评价模型中, 指标一致化处理也有差异
2020/4/30
4
二、数据处理的一般方法
2. 数据指标的无量纲化处理方法
在实际数据指标之间,往往存在着不可公度性,
会出现“大数吃小数”的错误,导致结果的不合理。
(1)标准差法: xij
xij
sj
xj
(2)极值差法:xij
xij m j M j mj
(3)功效系数法:xij
c
xij mj M j mj
d
x j
1 n
n i1
xij
s j
2020/4/30
5
二、数据处理的一般方法
1. 数据类型的一致化处理方法
(3)区间型:对某个区间型数据指标 x ,则
x
11,
a
c
x
,
xa a xb
1
x
b c
,
xb
其中[a,b] 为 x 的最佳稳定区间,c max{a m, M b} , M 和 m 分别为 x 可能取值的最大值和最小值。
据实际情况可构 造其他的隶属函数。 如取偏大型正态分布。
2020/4/30
13
三、数据建模的综合评价方法
1. 线性加权综合法
m
用线性加权函数 y wj x j 作为综合评价模型, j 1
对 n 个系统进行综合评价。
适用条件:各评价指标之间相互独立。 对不完全独立的情况,其结果将导致各指标间信 息的重复,使评价结果不能客观地反映实际。
主要特点: (1)突出了各指标值的一致性,即平衡评价指标值 较小的指标影响的作用; (2)权重系数大小的影响不是特别明显,而对指标 值的大小差异相对较敏感。
2020/4/30
15
• 一般情况下,在综合评价指标中,各指标 值可能属于不同类型、不同单位或不同数 量级,从而使得各指标之间存在着不可公 度性,给综合评价带来了诸多不便.为了 尽可能地反映实际情况,消除由于各项指 标间的这些差别带来的影响,避免出现不 合理的评价结果,就需要对评价指标进行 一定的预处理,包括对指标的一致化处理 和无量纲化处理.
主要特点: (1)各评价指标间作用得到线性补偿; (2)权重系数的对评价结果的影响明显。
2020/4/30
14
三、数据建模的综合评价方法
2. 非线性加权综合法
m
用非线性函数 y
xwj j
作为综合评价模型,对 n
j 1
个系统进行综合评价。其中 w j 为权系数,且要求 x j 1 。
适用条件:各指标间有较强关联性。
a ln x b , 3 x 5
其中, , a,b 为待定常数.
2020/4/30
12
二、数据处理的一般方法
3. 定性指标的量化处理方法
f
(
x)
1
1.1086(
x
0.8942)
2
1 ,1 x 3
0.3915ln x 0.3699 ,
3 x5
根据这个规律, 对于任何一个评价值, 都可给出一个合适的 量化值。