相控阵技术介绍
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波前同时撞击到压电晶片。
斜波束-接收一侧
相控阵波束形成
相控阵探头波束偏转(接收): -在接收过程中施加合适的电子延迟。 -只有信号“满足”延迟法则达到同相位,合并后
才会产生有效信号。
相控阵波形成
相控阵信号处理总图 出于经济考虑,脉冲发生器通常采用多路输出。
Omniscan 16/128是指仪器具有16个脉冲发生 器,通过多路输出得到128个超声通道。
波束形成
聚焦波束-接收侧
聚焦法则产生
聚焦法则计算器
本机工具 -TomoView -Omniscan “编程探头”
EPRI 工作手册 PASS,CIVA, 等.
相Hale Waihona Puke Baidu阵波束的特点
波束聚焦
把超声能量聚集到一个焦点的能力 使用一个探头可以把波束聚焦在不同深度 对称(比如抛物线)聚焦法则(时间延迟
合成探头技术
PA探头基于合成技术, 从合成探头获得的信噪比 比压电陶瓷材料高10-30dB。
压电合成探头使用薄陶瓷棒放在聚合体内而制成。
合成探头技术
一个薄金属层放在压电合成体上。在这个 金属层内设计的晶片确保压电材料统一激 发。
探头制造:外壳
探头的结构与常规探 头相似
声匹配 压电合成体 填充材料 多达128个共轴电线
信号发射(触发)和接收(回波)注入时 间延时来实现的。 任何用于缺陷检测和测量的UT技术都可用 相控阵探头完成
。
优点
相控阵最显著的特点是 可以灵活、便捷而有效地控制声 束形状和声压分布。 其声束角度、焦柱位置、焦点尺寸 及位置在一定范围内连续、动态可调;而且探头内可快速 平移声束。因此 ,与传统超声检测技术相比 ,相控阵技术 的 ,优势是 ①用单轴扇形扫查替代栅格形扫查可提高检测 速度。②不移动探头或尽量少移动探头可扫 100 % 扫查 厚大工件和形状复杂工件的各个区域 ,是解决可达性差和 空间限制问题的有效手段。③通常不需要复杂的扫查装 置 ,不需更换探头就可实现整个体积或所关心区域的多角 度多方向扫查 ,因此在核工业设备检测中可减少受辐照时 间。④优化控制焦柱长度、焦点尺寸和声束方向 ,在分辨 力、信噪比、缺陷检出率等方面具有一定的优越性。
探头电子控制
电子脉冲延迟(图有错)
斜波束
聚焦波束
线阵探头-线性扫查
线性探头-扇形扫查
连续或环形扫查
波束的形成原理
常规波束形成
常规UT探头角度偏转(发射): -根据惠更斯原理产生超声波束 -在发射过程中斜楔块引入适当的延迟,产生一
个带角度波束。
斜波束
常规波束形成
常规UT探头控制波束(接收) -根据惠更斯原理楔块内产生波束 -在接收过程中斜楔块引入延迟,使“同相位”的
对晶片位置)
波束聚焦
非聚焦波束 波束近场区和自然扩散角取决于孔径A和波长λ。 近场区 扩散角(半扩散角θ,在-6dB) 波束尺寸(在深度Z)
波束聚焦
聚焦的波束: 聚焦系数(K)定义为: 此处F=聚焦距离
N=近场区
指定焦距的波束偏转平面上的波束尺寸 (dst)为:
波束聚焦理论
线性探头晶片间隙1mm,频率5MHz, 声速1480m/s
曲线的,圆锥形的,椭圆形的….
普通的探头几何形状
1D线性阵列
2D线性阵列
常用的探头几何形状
1D环形阵列
2D环形阵列
常用的探头几何形状
菊花探头数据
楔块参数
楔块参数 楔块声速(vw) 楔块角度(ω) 第一个晶片高度(h1) 第一个晶片的偏移
(x1) 楔块常用的材料是一
种专利材料Rexolite
相控阵优缺点
为什么使用相控阵?
不需要移动工件,实现高速电子扫查
通过软件控制波束特征提高检测性能 单个电子控制的相控阵探头实现多角度检
测 多种配置:P/E, T/R, TOFD, 串列扫查 对于复杂几何体的检测更具灵活性 -最佳的聚焦 -最佳的波束角度
相控阵技术能够电子修改超声探头的特征。 探头修改是通过在阵列探头中单个晶片的
相控阵探头设计参数
超声相控阵探头由一系列独立的晶片构成, 每个晶片都有各自的接头,延时电路和A/D 转换器
晶片之间彼此声绝缘 根据预先计算好的时间延迟触发晶片组中
的每一个晶片,比如“相位”
1D线性阵列
许多线性探头设计 探头可以在次轴上形成聚焦 PA和探头技术允许探头加工成各种形状,平的,
阵探头中。
波束偏转
偏转能力与阵列中单个晶片的宽度有 关
通过公式计算出最大偏转角(-6dB) 斜楔块可以改变角度偏转范围
波束偏转能力取决于相邻进片产生波 束后的相互干涉。
不能增加灵敏度,只是增加视觉上的分辨率 在采集数据时使用,不能做为后处理功能
动态深度聚焦
波束偏转
能够修改阵列探头产生波束的折射角的能 力。
单个探头可以进行多角度检测。 使用不对称的(比如线性)聚焦法则。
扇形扫查图解
扇形扫查
扇形扫查有能力扫查整个工件截面,而无须移动 探头。
用于检测复杂的或检测空间受限的几何工件。 把宽波束和/或多焦点探头的优势集中在一个相控
晶片数量
10
孔径(mm)
10
N 菲涅耳距离 84 (mm)
聚焦深度(mm) 84
K D(聚焦深度mm)
0.99 2.49
16 16 216
84 0.39 1.55
32 32 865
84 0.10 0.78
以上结果基于水尽方法。
波束剖面
动态深度聚焦
DDF是以单脉冲检测深工件的理想方式。光速在 返回时重新电子聚焦。
基本阵列设计
线性阵列(1D)基 本上是一个长的常 规探头。
切割成许多可以单 独激发的小晶片。
阵列探头的设计参数
探头参数: 频率(f) 阵列中晶片的数量(n) 控制或激活方向上总的孔径(A) 高度,在机械轴或次轴方向上的孔径(H) 间距,两个相邻晶片的中心间距(p) 单个晶片的宽度(e)
缺点
探头制造复杂,国内目前不能制作 探头一般尺寸较大,受现场条件限制 对检测人员要求高 并不能解决所有问题,也不是进行一次扫
查就能发现所有缺陷
相控阵探头
相控阵探头是一种晶片的激发时间可以单 独调节,以控制声束轴线和焦点等参数的 晶片阵列。根据晶片阵列型式不同,主要 有1维线性阵列,2维线性阵列, 1维环形 阵列,2维环形阵列四种形式。
斜波束-接收一侧
相控阵波束形成
相控阵探头波束偏转(接收): -在接收过程中施加合适的电子延迟。 -只有信号“满足”延迟法则达到同相位,合并后
才会产生有效信号。
相控阵波形成
相控阵信号处理总图 出于经济考虑,脉冲发生器通常采用多路输出。
Omniscan 16/128是指仪器具有16个脉冲发生 器,通过多路输出得到128个超声通道。
波束形成
聚焦波束-接收侧
聚焦法则产生
聚焦法则计算器
本机工具 -TomoView -Omniscan “编程探头”
EPRI 工作手册 PASS,CIVA, 等.
相Hale Waihona Puke Baidu阵波束的特点
波束聚焦
把超声能量聚集到一个焦点的能力 使用一个探头可以把波束聚焦在不同深度 对称(比如抛物线)聚焦法则(时间延迟
合成探头技术
PA探头基于合成技术, 从合成探头获得的信噪比 比压电陶瓷材料高10-30dB。
压电合成探头使用薄陶瓷棒放在聚合体内而制成。
合成探头技术
一个薄金属层放在压电合成体上。在这个 金属层内设计的晶片确保压电材料统一激 发。
探头制造:外壳
探头的结构与常规探 头相似
声匹配 压电合成体 填充材料 多达128个共轴电线
信号发射(触发)和接收(回波)注入时 间延时来实现的。 任何用于缺陷检测和测量的UT技术都可用 相控阵探头完成
。
优点
相控阵最显著的特点是 可以灵活、便捷而有效地控制声 束形状和声压分布。 其声束角度、焦柱位置、焦点尺寸 及位置在一定范围内连续、动态可调;而且探头内可快速 平移声束。因此 ,与传统超声检测技术相比 ,相控阵技术 的 ,优势是 ①用单轴扇形扫查替代栅格形扫查可提高检测 速度。②不移动探头或尽量少移动探头可扫 100 % 扫查 厚大工件和形状复杂工件的各个区域 ,是解决可达性差和 空间限制问题的有效手段。③通常不需要复杂的扫查装 置 ,不需更换探头就可实现整个体积或所关心区域的多角 度多方向扫查 ,因此在核工业设备检测中可减少受辐照时 间。④优化控制焦柱长度、焦点尺寸和声束方向 ,在分辨 力、信噪比、缺陷检出率等方面具有一定的优越性。
探头电子控制
电子脉冲延迟(图有错)
斜波束
聚焦波束
线阵探头-线性扫查
线性探头-扇形扫查
连续或环形扫查
波束的形成原理
常规波束形成
常规UT探头角度偏转(发射): -根据惠更斯原理产生超声波束 -在发射过程中斜楔块引入适当的延迟,产生一
个带角度波束。
斜波束
常规波束形成
常规UT探头控制波束(接收) -根据惠更斯原理楔块内产生波束 -在接收过程中斜楔块引入延迟,使“同相位”的
对晶片位置)
波束聚焦
非聚焦波束 波束近场区和自然扩散角取决于孔径A和波长λ。 近场区 扩散角(半扩散角θ,在-6dB) 波束尺寸(在深度Z)
波束聚焦
聚焦的波束: 聚焦系数(K)定义为: 此处F=聚焦距离
N=近场区
指定焦距的波束偏转平面上的波束尺寸 (dst)为:
波束聚焦理论
线性探头晶片间隙1mm,频率5MHz, 声速1480m/s
曲线的,圆锥形的,椭圆形的….
普通的探头几何形状
1D线性阵列
2D线性阵列
常用的探头几何形状
1D环形阵列
2D环形阵列
常用的探头几何形状
菊花探头数据
楔块参数
楔块参数 楔块声速(vw) 楔块角度(ω) 第一个晶片高度(h1) 第一个晶片的偏移
(x1) 楔块常用的材料是一
种专利材料Rexolite
相控阵优缺点
为什么使用相控阵?
不需要移动工件,实现高速电子扫查
通过软件控制波束特征提高检测性能 单个电子控制的相控阵探头实现多角度检
测 多种配置:P/E, T/R, TOFD, 串列扫查 对于复杂几何体的检测更具灵活性 -最佳的聚焦 -最佳的波束角度
相控阵技术能够电子修改超声探头的特征。 探头修改是通过在阵列探头中单个晶片的
相控阵探头设计参数
超声相控阵探头由一系列独立的晶片构成, 每个晶片都有各自的接头,延时电路和A/D 转换器
晶片之间彼此声绝缘 根据预先计算好的时间延迟触发晶片组中
的每一个晶片,比如“相位”
1D线性阵列
许多线性探头设计 探头可以在次轴上形成聚焦 PA和探头技术允许探头加工成各种形状,平的,
阵探头中。
波束偏转
偏转能力与阵列中单个晶片的宽度有 关
通过公式计算出最大偏转角(-6dB) 斜楔块可以改变角度偏转范围
波束偏转能力取决于相邻进片产生波 束后的相互干涉。
不能增加灵敏度,只是增加视觉上的分辨率 在采集数据时使用,不能做为后处理功能
动态深度聚焦
波束偏转
能够修改阵列探头产生波束的折射角的能 力。
单个探头可以进行多角度检测。 使用不对称的(比如线性)聚焦法则。
扇形扫查图解
扇形扫查
扇形扫查有能力扫查整个工件截面,而无须移动 探头。
用于检测复杂的或检测空间受限的几何工件。 把宽波束和/或多焦点探头的优势集中在一个相控
晶片数量
10
孔径(mm)
10
N 菲涅耳距离 84 (mm)
聚焦深度(mm) 84
K D(聚焦深度mm)
0.99 2.49
16 16 216
84 0.39 1.55
32 32 865
84 0.10 0.78
以上结果基于水尽方法。
波束剖面
动态深度聚焦
DDF是以单脉冲检测深工件的理想方式。光速在 返回时重新电子聚焦。
基本阵列设计
线性阵列(1D)基 本上是一个长的常 规探头。
切割成许多可以单 独激发的小晶片。
阵列探头的设计参数
探头参数: 频率(f) 阵列中晶片的数量(n) 控制或激活方向上总的孔径(A) 高度,在机械轴或次轴方向上的孔径(H) 间距,两个相邻晶片的中心间距(p) 单个晶片的宽度(e)
缺点
探头制造复杂,国内目前不能制作 探头一般尺寸较大,受现场条件限制 对检测人员要求高 并不能解决所有问题,也不是进行一次扫
查就能发现所有缺陷
相控阵探头
相控阵探头是一种晶片的激发时间可以单 独调节,以控制声束轴线和焦点等参数的 晶片阵列。根据晶片阵列型式不同,主要 有1维线性阵列,2维线性阵列, 1维环形 阵列,2维环形阵列四种形式。