环己酮发展概况

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环己酮的发展概况

1前言

环己酮是一种重要的有机化工产品,具有高溶解性和低挥发性,可以作为特种溶剂,对聚合物如硝化棉及纤维素等是一种理想的溶剂;也是重要的有机化工原料,是制备己内酰胺和己二酸的主要中间体。1893年A. Bayer采用庚二酸和石灰(庚二酸钙)干馏首先合成了环己酮。1943年德国I.G.Farben公司建成了苯酚加氢法合成环己酮生产装置。1960年德国BASF 公司采用环己烷氧化法建成大型环己酮生产装置,使环己烷氧化技术得以迅速发展,并导致聚酰胺纤维的大规模发展。

早期,国内环己酮只是己内酰胺的中间产品,厂家的环己酮生产能力与己内酰胺装置相匹配,只有很少量的商品环己酮供应市场。环己酮作为一个独立的行业成长和发展起来,主要有两个原因:一是由于环己酮的用途不断扩大,特别是作为一种高档的有机溶剂,在涂料、油墨、胶粘剂等行业被广泛应用,形成了较大的商品市场;二是国产化己内酰胺存在着装置规模、工艺技术、产品质量、生产成本等问题,导致国产化己内酰胺装置步履艰难。目前,除巨化公司的己内酰胺还在勉强维持生产外,其它厂家只生产商品环己酮。不少厂相继对环己酮装置进行了扩能改造,扩大了环己酮商品量,形成了相当规模的行业,成为一种大宗石油化工产品。

2环己酮的生产工艺及开发进展

2.1 环己酮的传统生产工艺

世界上环己酮工业生产工艺主要有两种:环己烷液相氧化法和苯酚加氢法,目前90%以上的环己酮是采用环己烷液相氧化法生产的。

(1)环己烷液相氧化法

目前工业生产中环己烷液相氧化法有两条氧化工艺路线,一种为催化氧化工艺,另一种为无催化氧化工艺。催化氧化工艺主要是采用钴盐、硼酸或偏硼酸为催化剂。

钴盐催化氧化法一般采用环烷酸钴为催化剂,环己烷在钴盐催化作用下与空气发生氧化反应,该过程首先是环己烷与氧气通过自由基反应形成环己基过氧化氢,然后该过氧化物在催化剂作用下受热分解,生成环己酮、环己醇。环己烷转化率一般在5%左右,停留时间小于50min,温度在160℃左右,压力1.1MPa左右,其停留时间较短,设备要求低、利用率较高,环己醇、环己酮的选择性在80%左右,但该反应过程中产生的羧酸易与催化剂反应,生成羧酸钴盐,残留在设备及管道上,结渣堵塞管道和阀门,使装置开车周期降低,且环己醇、环己酮的选择性较低,消耗增高。

硼酸催化氧化法是以硼酸或偏硼酸为催化剂的环己烷空气氧化法,可以提高环己烷转化率和醇酮的选择性。在氧化时,硼酸与环己基过氧化氢生成过硼酸环己醇酯,然后转变为硼酸环己醇酯。硼酸也可以直接和环己醇反应生成硼酸环己醇酯和偏硼酸环己醇酯。环己醇成酯以后具有抗氧化性和热稳定性,防止了进一步氧化。硼酸催化氧化可提高环己烷转化率到10%~12%,醇酮选择性提高到90%。硼酸氧化反应温度165~170℃,压力0.9~1.2lMPa,反应时间120min。硼酸氧化法增加了水解工序和硼酸回收工序。在水解工序中硼酸环己醇酯分解为环己醇和硼酸,形成两相,硼酸留在水相中。两相分离后,水相送到硼酸回收工序,使硼酸结晶出来再经热处理转化为偏硼酸循环用于氧化反应。硼酸氧化的反应产物十分复杂,水解后的有机相也必须经过进一步处理去除杂质,工艺复杂,因此逐渐被冷落。

无催化氧化法是由法国Rhone-Ponlene公司首先开发的,其特点是反应分为两步,第一步为环己烷在160~170℃的条件下,直接被空气氧化为环己基过氧化氢,第二步为在碱性条件和催化剂作用下,环己基过氧化氢分解为环己醇和环己酮。该工艺的优点是反应分步进行,

氧化阶段不采用催化剂,避免了氧化反应器结渣的问题,使装置在设备允许的条件下连续运行,且氧化过程中环己基过氧化氢的收率可达95%以上。其缺点是环己基过氧化氢分解过程中环己醇、环己酮的选择性仅88%以下,且需要大量的碱,由于该工艺环己烷单程转化率较低,使工艺流程长,能耗较高。

(2)苯酚加氢法

苯酚合成环己酮工艺是最早应用于工业化生产环己酮的工艺,该工艺早期分为两步:第一步苯酚加氢为环己醇,第二步环己醇脱氢生成环己酮。20世纪70年代开发成功了一步加氢法合成环己酮的新工艺。苯酚一步加氢有气相和液相两种方式。工业上主要是采用气相法,该工艺采用3~5个反应器串联,温度为140~170℃、压力0.1MPa,反应完全,收率可达95%。苯酚加氢法生产的环己酮质量较好,安全性高,但由于苯酚价格昂贵,并使用了贵金属催化剂,使环己酮的生产成本较高,因此该工艺的应用受到了很大的限制。

2.2 现有工艺技术的改进

针对上述环己酮生产工艺存在的不足,许多生产企业与研究部门对环己酮生产技术进行了多方面的改进。

(1)延长开车周期。钴盐法的优点是反应条件温和、温度低、压力低、停留时间短,对设备要求不严格。但钴盐法最大的难题是反应过程中生成的羧酸钴盐残留在设备及管道上,结渣堵塞管道和阀门。为了解决此难题,各国都进行了大量的研究。工艺方面,氧化后未反应的环己烷被分离后循环使用,在氧化前的水用共沸蒸馏等方法除去,避免了反应器的结渣。反应器方面,捷克斯洛伐克专利提出环己烷液相氧化采用卧式反应器,以垂直挡板将其分割成几个反应器。挡板上装有水平方向的挡板置于气体分布器的两边,以增强气液混合及减少树脂状副产沉淀(结渣),延长了反应器两次清洗之间的操作周期。催化剂方面,美国杜邦公司用酸性磷酸酯作助催化剂,具有涂壁功能,使氧化开车周期为4-6个月。我国采用HEDP 异辛酯,自1989年4月实施以来尚未发现任何结渣现象,解决了环己烷催化氧化的结渣难题。

(2)催化分解技术的改进。传统的分解或DSM公司开发的低温分解技术是以钴盐为催化剂,碱性条件下进行的,这种工艺的特点是环己基过氧化氢转化率高,但存在明显的缺点,由于在碱性环境下,醇酮进一步缩合,导致收率降低,同时产生大量的废碱液,给后续处理带来很大的困难。工艺方面改进将原一步加碱改为两步加碱,降低反应温度,调整相比和碱浓度,既降低碱耗,又保持较高的醇酮收率;催化剂方面改用分子筛催化剂,促进环己基过氧化氢定向分解,同时可大大减少废碱液的生成。

(3)控制烷蒸馏系统带碱。氧化粗产物经分解、废碱分离后有机相中仍夹带少量的碱水,进入烷蒸馏系统,造成再沸器结垢,需定期停车清洗,严重时生产周期不到半个月。在废碱分离系统增加水洗和油水聚结分离工序,将碱降到5ppm以下,大大延长了开车周期,并减少停车清洗时烷和醇酮的损失。

2.3 新工艺技术的开发

(1)环己烯水合法。20世纪80年代日本旭化成开发了环己烯水合制环己醇工艺。该工艺是以苯为原料,在100~180℃、3~10MPa、钌催化剂的条件下进行不完全加氢反应制备环己烯,苯的转化率50%~60%,环己烯的选择性为80%,20%的副产物为环己烷,在高硅沸石ZSM-5催化剂作用下,环己烯水合生成环己醇,环己烯的单程转化率10%~15%,环己醇的选择性可达99.3%。该工艺消耗低,且有效避免了环己烷氧化工艺过程中产生的废碱液,减少了环保压力,具有明显的前景。

(2)仿生催化氧化法。1979年,Groves等人提出了亚碘酰苯-金属卟啉-环己烷模拟体系,进行了细胞色素P-450单充氧酶的人工模拟反应,实现了温和条件下高选择性与高转化率催化烷烃羟基化反应。国内湖南大学等单位近几年对金属卟啉催化环己烷氧化进行了系列研究,

相关文档
最新文档