塔设备强度设计计算
塔器设计与计算中几个常见问题的浅谈
塔器设计与计算中几个常见问题的浅谈摘要:本文阐述了塔器设计中几个常见问题,通过对比SW6与标准算例的计算结果,分析了SW6塔器检修工况下塔顶振幅结果的来源;阐述了塔器计算中阻尼比的取值方法;讨论了裙座、地脚螺栓的选材,如何考虑环境温度,并对比了不同标准对环境温度的定义;最后通过某项目复合板技术规格书的技术要求,讨论了不锈钢复合板塔器基层名义厚度在强度计算时需要注意的问题。
关键词:裙座和地脚螺栓环境温度自振周期塔器塔顶振幅阻尼比复合板基层 SW6一、SW6计算书中的塔器“检修工况下塔顶振幅”是怎么来的?我们知道,在SW6塔器计算书中给出了两个振幅——操作工况下塔顶振幅、检修工况下塔顶振幅,乍看可能有会点困惑,“操作工况下塔顶振幅”对应的是哪个自振周期?“检修工况下塔顶振幅”又是如何计算出来的?我们以《NB/T47041-2014〈塔式容器〉释义及算例》中的“例题3”为例,用SW6软件对“例题3”进行校核,所得自振周期计算结果与算例对比见表(一)。
表(一)单位SW6算例立式容器自振周期s 3.88 3.8289(第一振型)第二振型自振周期s0.620.6109第三振型自振周期s0.220.2202临界风速(第一振m/s 3.41 3.453型)m/s21.2421.64临界风速(第二振型)设计风速m/s30.1530.12由表(一)可见两者自振周期结果十分接近,误差在可接受范围。
(因有些参数《释义及算例》未说明具体取多少,所以用SW6算的时候会存在误差)。
由于“设计风速”均大于一、二阶自振周期对应的临界风速,通过共振判别,可知应同时考虑第一振型和第二振型的振动要考虑共振。
塔顶振幅计算结果与算例对比见表(二)。
表(二)单位SW6算例操作工况下塔顶振幅mm31.3475检修工况下塔顶振幅mm53.6067检修工况下自振周期s 2.92863第一振型的横向风塔顶振幅(第一振型时取阻尼比0.01)m0.03178通过比较表(二)两者数据可以看出,SW6计算书中“操作工况下塔顶振幅”就是“第一振型振幅”,对应的是第一振型自振周期。
塔设备计算实例讲解
《化工设备设计基础》课程设计计算说明书学生姓名:学号:所在学院:专业:设计题目:指导教师:2006 年月日目录一.设计任务书 (2)二.设计参数与结构简图 (4)三.设备的总体设计及结构设计 (5)四.强度计算 (7)五.设计小结 (13)六.参考文献 (14)一、设计任务书1、设计题目根据《化工原理》课程设计工艺计算内容进行填料塔(板式塔)设计。
各个同学按照自己的工艺参数确定设计题目:填料塔(板式塔)DNXXX设计。
设计题目:例:精馏塔(DN1800)设计2、设计任务书2.1设备的总体设计与结构设计(1)根据《化工原理》课程设计,确定塔设备的型式(填料塔、板式塔);(2)根据化工工艺计算,确定塔板数目(或填料高度);(3)根据介质的不同,拟定管口方位;(4)结构设计,确定材料。
2.2设备的机械强度设计计算(1)确定塔体、封头的强度计算。
(2)各种开孔接管结构的设计,开孔补强的验算。
(3)设备法兰的型式及尺寸选用;管法兰的选型。
(4)裙式支座的设计验算。
(5)水压试验应力校核。
2.3完成塔设备装配图(1)完成塔设备的装配图设计,包括主视图、局部放大图、焊缝节点图、管口方位图等。
(2)编写技术要求、技术特性表、管口表、明细表和标题栏。
3、原始资料3.1《化工原理》课程设计塔工艺计算数据。
3.2参考资料:[1] 董大勤.化工设备机械基础[M].北京:化学工业出版社,2003.[2] 全国化工设备技术中心站.《化工设备图样技术要求》2000版[S].[3] GB150-1998.钢制压力容器[S].[4] 郑晓梅.化工工程制图化工制图[M].北京:化学工业出版社,2002.[5] JB/T4710-2005.钢制塔式容器[S].4、文献查阅要求设计说明书中公式、内容等应明确文献出处;装配图上应写明引用标准号。
5、设计成果1、提交设计说明书一份。
2、提交塔设备(填料塔、板式塔)装配图一张(A1)。
二. 设计参数与结构简图1、设计参数本课程设计的工艺条件由化工原理课程设计计算而得。
填料塔的简单介绍及其相应计算教材
目录一、塔设备的概述 (2)1.1 填料塔 (3)1.2 板式塔 (4)1.3填料塔与板式塔的比较 (5)二、塔设备设计的基本步骤 (6)三、塔设备的强度和稳定性计算 (6)3.1塔设备的载荷分析和设计准则 (6)3.2 质量载荷 (8)3.3地震载荷 (8)3.4偏心弯矩 (8)3.5最大弯矩 (8)3.6 圆筒轴向应力核核 (9)3.6.1 圆筒轴向应力 (9)3.6.2 圆筒稳定校核 (9)3.6.3 圆筒拉应力校核 (10)3.7裙座轴向应力校核 (10)3.7.1 裙座底截面的组合应力 (10)4.7.2裙座检查孔和较大管线引出孔截面处组合应力 (11)4.8轴向应力校核条件 (12)五、心得体会 (13)一、塔设备的概述塔设备是石油化工、化学工业、石油工业等生产中最重要的设备之一。
它可使气(汽)液或液液相之间进行充分接触,达到相际传热及传质的目的。
在塔设备中能进行的单元操作有:精馏、吸收、解吸,气体的增湿及冷却等。
表1中所示为几个典型的实例。
表1 塔设备的投资及重量在过程设备中所占的比例实现气(汽)—液相或液—液相之间的充分接触,从而达到相际传质和传热的目的。
塔设备广泛用于蒸馏、吸收、介吸、萃取、气体的洗涤、增湿及冷却等单元操作中,它的操作性能好坏,对整个装置性能好坏、对整个装置的生产,产品产量、质量、成本以及环境保护、“三废”处理等都有较大的影响。
因此对设备的研究一直是工程界所关注的热点。
随着石油、化工的发展,塔设备的合理造型及设计将越来越受到关注和重视。
为了使塔设备能更有效、更经济的运行,除了要求它满足特定的工艺条件,还应满足以下基本要求。
①满足特定的工艺条件;②气—液两相能充分接触,相际传热面积大;③生产能力大,即气、液处理量大;④操作稳定,操作弹性大,对工作负荷的波动不敏感;⑤结构简单、制造、安装、维修方便,设备投资及操作成本低;⑥耐腐蚀,不易堵塞。
为了便于研究和比较,人们从不同的角度对塔设备进行分类。
塔设备机械设计说明
第一章绪论1.1塔设备概述塔设备是石油、化工、轻工等各工业生产中仅次与换热设备的常见设备。
在上述各工业生产过程中,常常需要将原料中间产物或粗产品中的各个组成部分(称为组分)分离出来作为产品或作为进一步生产的精制原料,如石油的分离、粗酒精的提纯等。
这些生产过程称为物质分离过程或物质传递过程,有时还伴有传热和化学反应过程。
传质过程是化学工程中一个重要的基本过程,通常采用蒸馏、吸收、萃取。
以及吸附、离子交换、干燥等方法。
相对应的设备又可称为蒸馏塔、吸收塔、萃取塔等。
在塔设备中所进行的工艺过程虽然各不相同,但从传质的必要条件看,都要求在塔内有足够的时间和足够的空间进行接触,同时为提高传质效果,必须使物料的接触尽可能的密切,接触面积尽可能大。
为此常在塔内设置各种结构形式的内件,以把气体和液体物料分散成许多细小的气泡和液滴。
根据塔内的内件的不同,可将塔设备分为填料塔和板式塔。
在板式塔中,塔内装有一定数量的塔盘,气体自塔底向上以鼓泡喷射的形式穿过塔盘上的液层,使两相密切接触,进行传质。
两相的组分浓度沿塔高呈阶梯式变化。
不论是填料塔还是板式塔,从设备设计角度看,其基本结构可以概括为:(1)塔体,包括圆筒、端盖和联接法兰等;(2)内件,指塔盘或填料及其支承装置;(3)支座,一般为裙式支座;(4)附件,包括人孔、进出料接管、各类仪表接管、液体和气体的分配装置,以及塔外的扶梯、平台、保温层等。
塔体是塔设备的外壳。
常见的塔体是由等直径、等壁厚的圆筒及上、下椭圆形封头所组成。
随着装置的大型化,为了节省材料,也有用不等直径、不等壁厚的塔体。
塔体除应满足工艺条件下的强度要求外,还应校核风力、地震、偏心等载荷作用下的强度和刚度,以及水压试验、吊装、运输、开停车情况下的强度和刚度。
另外对塔体安装的不垂直度和弯曲度也有一定的要求。
支座是塔体的支承并与基础连接的部分,一般采用裙座。
其高度视附属设备(如再沸器、泵等)及管道布置而定。
它承受各种情况下的全塔重量,以及风力、地震等载荷,因此,应有足够的强度和刚度。
第八章-塔设备的机械设计
Fi hi
i 1
对于等直径、等壁厚塔器的底截面 地震弯矩为:
M
00 E
16 35
1m0
gH
(N mm)
风载荷
风对塔体的作用之一是造成风弯矩,在迎风面的塔壁 和裙座体壁引起拉应力,背风面一侧引起压应力;作 用之二是气流在风的背向引起周期性旋涡,即卡曼涡 街,导致塔体在垂直于风的方向产生周期振动,这种 情况仅仅出现在H/D较大,风速较大时比较明显,一般 不予以考虑。
M
ii max
/
0.785Di2
S
e
2
式中M
ii max
maxM M
ii W
ii E
Me
25%M
ii W
M e
稳定条件:
组合轴向压应 力要满足:
ii m a x压
[ ]cr
KB
minK[ ]t
式中K——载荷组合系数,取K=1.2; B——见书p172。
4 塔体拉应力验算
依前述,假设一有效壁厚Se3。 计算σ1,σ2,σ3,并进行组合,满足如下强度条件:
m0 m01 m02 m03 m04 m05 ma me
(8-1)
塔设备在水压试验时的最大质量
mmax m01 m02 m03 m04 mw ma me (8-2)
塔设备在吊装时的最小质量
mmin m01 0.2m02 m03 m04 ma me (8-3)
地震载荷
(5)水压试验验算。
8.2 裙座设计
四个部分: 1.座体---承受并传
递塔体载荷。 2.基础环---将载荷
传递到基础上。 3.螺栓座---固定塔
于基础上。 4.管孔---人孔、排
气孔、引出管孔。
塔设备强度计算 裙座基础环和螺栓计算
㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截面的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为:(4-69)式中:A b-基础环面积,mm2;W b-基础环的截面系数,mm3;(1)基础环板上无筋板基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷σbmax的作用下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许用应力,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。
此时,可将基础环板简化为一受均布载荷σbmax作用的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。
无论无筋板或有筋板的基础环厚度均不得小于16mm。
㈢地脚螺栓地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。
在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。
塔设备在基础面上由螺栓承受的最大拉应力为:(4-72)式中:σB-地脚螺栓承受的最大拉应力,MPa。
当σB≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹小径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹小径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
塔设备强度计算-裙座基础环和螺栓计算
塔设备强度计算-裙座基础环和螺栓计算㈡基础环板设计1. 基础环板内、外径的确定裙座通过基础环将塔体承受的外⼒传递到混凝⼟基础上,基础环的主要尺⼨为内、外直径(见下图),其⼤⼩⼀般可参考下式选⽤(4-68)式中:D ob-基础环的外径,mm;D ib-基础环的内径,mm;D is-裙座底截⾯的外径,mm。
2. 基础环板厚度计算在操作或试压时,基础环板由于设备⾃重及各种弯矩的作⽤,在背风侧外缘的压应⼒最⼤,其组合轴向压应⼒为:(4-69)式中:A b-基础环⾯积,mm2;W b-基础环的截⾯系数,mm3;(1)基础环板上⽆筋板基础环板上⽆筋板时,可将基础环板简化为⼀悬臂梁,在均布载荷σbmax的作⽤下,基础环厚度:(4-70)式中:δb-基础环厚度,mm;[σ]b-基础环材料的许⽤应⼒,MPa。
对低碳钢取[σ]b=140MPa。
(2)基础环板上有筋板基础环板上有筋板时,筋板可增加裙座底部刚性,从⽽减薄基础环厚度。
此时,可将基础环板简化为⼀受均布载荷σbmax作⽤的矩形板(b×l)。
基础环厚度:(4-71)式中:δb-基础环厚度,mm;M s-计算⼒矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较⼤者,M x、M y按表4-35计算,N·mm/mm。
⽆论⽆筋板或有筋板的基础环厚度均不得⼩于16mm。
㈢地脚螺栓地脚螺栓的作⽤是使设备能够牢固地固定在基础底座上,以免其受外⼒作⽤时发⽣倾倒。
在风载荷、⾃重、地震载荷等作⽤下,塔设备的迎风侧可能出现零值甚⾄拉⼒作⽤,因⽽必须安装⾜够数量和⼀定直径的地脚螺栓。
塔设备在基础⾯上由螺栓承受的最⼤拉应⼒为:(4-72)式中:σB-地脚螺栓承受的最⼤拉应⼒,MPa。
当σB≤0时,塔设备可⾃⾝稳定,但为固定塔设备位置,应设置⼀定数量的地脚螺栓。
当σB>0时,塔设备必须设置地脚螺栓。
地脚螺栓的螺纹⼩径可按式(4-73)计算:(4-73)式中:d1-地脚螺栓螺纹⼩径,mm;C2-地脚螺栓腐蚀裕量,取3mm;n-地脚螺栓个数,⼀般取4的倍数;对⼩直径塔设备可取n=6;[σ]bt-地脚螺栓材料的许⽤应⼒,选取Q-235-A时,取[σ]bt=147MPa;选取16Mn时,取[σ]bt=170MPa。
塔设备计算机辅助强度计算及校核
图 2 材 料 许 用 应 力 的 选 取
图 1 简体、 封头壁厚计 算
需要指 出的是 , 进行壁 厚计算时需要 用到设计压力 , 而界 面 中用 户输入 的是工作压力 , 设计 压力 的确定是根据工作压力
收 稿 日期 :0 7 0 — 3 2 0 — 8 2
图 3焊 缝系数 的选取
起的圆筒轴 向应力校核 , 裙座壳轴 向应力校核及塔器压力试验 时的应力校核 。为了便于操作 , 本软件将 塔体各危险截面的校
测比例后单击“ 确定 ” 后显示结果 , 并在图 1 所示界 面 自动显示 查 询结果 。采用这种查询方式 , 避免 了用户另外查 阅资料 的麻 烦, 给用户 的操作带来了极大 的方便。 封头包括标准椭 圆封头 、 锥形封头 、 碟形封头等型式 。 封头 参数的确定由两种方式 , 一种方式是根据用户输入 的参数直接 由公式计算 , 并将结果显示在相应的文本框 中。另一种是采用 与确定材料许用应力相 同的方 式将 国家标准规定 的封 头的相
1 塔设 备计 算机 辅助 强度 计算
11 简体 、 . 封头的壁厚计算 进行简 体厚度计算需要先 在如图 1 所示对 话框 中输 入相 关参数 , 如工作压力 、 简体直径等 , 然后单 击“ 确定” 钮 , 按 程序 开始简体壁厚计算 , 并将计算结果显示 出来 。同样 , 单击“ 上封 头 ” 下封头 ” 或“ 也可 以在此界 面中很方便 的得 到上 、 下封 头的
作者简介 : 吴俊飞( 9 8 ) , 16 一 男 青岛科 技大学研 究生处副处 长 , 学博 士, 工 副教授 , 硕士生导师, 主要研究方向 : 化工设备安全技术 , 高压技术 ; 超
付 平( 9 1 )女 , 17 一 , 青岛科 技大学 机电学院 , 硕士 , 授, 副教 主要研究方 向: 计算机辅助参数化设计 。
精馏塔强度计算实例
第六部分 塔内件机械强度设计及校核6.1精馏塔筒体和裙座壁厚计算选用16MnR 钢板,查《化工设备机械基础》表9-4得:,MPa 170][t =δ焊接采用双面焊100%无损探伤检查,焊接接头系数00.1=ϕ,则由筒体的计算厚度为:[]0.111823000.76()2217010.1118c i p D c mm t p δσϕ⨯===-⨯⨯-查《化工设备机械基础》表9-10得mm C 8.01=,加上壁厚附加量C=2mm ,并圆整,还考虑刚度、稳定性及多种载荷等因素,取筒体、封头和裙座的名义厚度Sn 为8mm ,则有效厚度 826mm e n C δδ=-=-=()应力校核:采用水压试验,试验压力为[][]1701.25 1.250.11180.14170T tp pMPa σσ==⨯⨯=() 压力试验时的薄膜应力()eT δδσ2D p e i T +=故()0.142300626.9()26T MPa σ⨯+==⨯查表9-4,16MnR 的MPa s 345=σ故0.90.91345310.5()26.9MP s T MPa a ϕσσ=⨯⨯==> 所以满足水压试验要求。
封头采用标准椭圆封头 6.2精馏塔塔的质量载荷计算 6.2.1塔壳和裙座的质量圆筒质量塔体圆筒总高度Z 8m =()1422iD -D Z m πρ=()2232.316 2.300137.85105916.554kg π=-⨯⨯⨯=6.2.2封头质量查的DN2300,壁厚8mm 的椭圆形封头的质量为251kg ,则kg 5022251m 2=⨯=6.2.3 裙座质量 圆筒裙座尺寸:23002316is os D mm D mm ==,。
()钢πρs 2is 2os 3H D -D 4m =2232.312 2.327.85106824kg π=-⨯⨯⨯=() 011233640.955026824825m m m m kg =++=++=6.2.4塔内构件质量塔盘单位质量为175.59kg02175.59152633.9m kg =⨯=6.2.5人孔、法兰、接管与附属物质量010.250.2548251206.3a m m kg ==⨯=6.2.6保温材料质量03m '为封头保温层质量,查《化工工艺设计手册》选用硅酸钙制品,厚度为150mm()2203000203224s m D D H m δρ⎡⎤'=+-+⎣⎦π ()()222.31620.15 2.3161330020.5870.3983004643.204π⎡⎤=⨯+⨯-⨯⨯+⨯-⨯=⎣⎦kg6.2.7平台、扶梯质量()()[]F F P 2s 02s 004H q nq 212D -B 22D 4m +⨯+++=δδπ()()2212.31620.120.9 2.31620.1221504012423376.1π⎡⎤=⨯+⨯+⨯-+⨯⨯⨯⨯⨯+⨯⎣⎦=kg式中:P q ------平台单位质量,为;2m /kg 150 F H -----扶梯高度,为12m ;F q ------笼式扶梯的单位质量,为;m /0kg 4 n------平台数量。
塔设备04
系数α值,按图2查取;
αmax——地震影响系数α的最大值,按表4选取;
图2
1.0α
α
max
Ⅰ类场地土 Ⅱ类场地土
0.2 max
0.3 max T
T
Ⅲ类场地土
0.2α
max
0.7 max T
0
0.2 0.3 0.7 1.0
1.5
2.0
3.0
3.5T1s
Ⅰ类 微风化和中等风化的基石; Ⅱ类 除Ⅰ、Ⅲ类之外的一级稳定土; Ⅲ类 饱和松沙、淤泥和淤泥质土、冲填土、杂填土等;
i
——系数,按表3选取;
T1——塔设备的基本自振周期,s;由式(A)或(B) 计算; li——计算段的长度,mm;
Dei——塔设备各段的有效直径,mm;当笼式扶梯与进出 口管布置成180°时, ei Doi 2 si K 3 K 4 d 0 2 ps D
当笼式扶梯与进出口管布置成90°时,取下列二式中的
6
N
式中
q0 ——10 m高度处的基本风压值,按有关资料选取; fi ——风压高度变化系数,在100m以下时,按下式
计算或按表1选取: hit——塔设备第i段顶截面距地面的高度,m; K1——空气动力系数,取K1=0.7; K2i——风振系数, K 2i 1 i i
λi——系数,按表2求取;
塔设备任意危险截面I-I的最大弯矩按下面两式计 算取大值:
M max M W M e
I I I I
N mm
M max M E
I I I I
0.25M W M e
I I
首先按内压或外压圆筒及封头的设计方法,确定圆筒及 封头的有效厚度δe和δeh。再考虑制造、运输、安装的刚度要
论述内压塔塔体强度设计计算思路
论述内压塔塔体强度设计计算思路内压塔是一种用于储存压力容器中的气体或液体的设备。
在设计内压塔时,塔体的强度是一个重要的考虑因素。
塔体的强度设计计算思路涉及到确定塔体的结构类型、选择材料、计算荷载和应力分析等方面。
首先,确定塔体的结构类型是设计计算的基础。
常见的内压塔结构类型包括圆柱形、球形、圆锥形和矩形等。
根据具体的使用要求和场地条件,选择适合的结构类型。
其次,选择合适的材料对于塔体的强度设计非常重要。
常用的材料包括碳钢、不锈钢和铝合金等。
根据塔体的使用环境和具体要求,选择材料的抗压强度、抗蠕变性能和耐腐蚀性能等指标,确保材料满足设计要求。
接下来,计算内压塔的荷载是进行强度设计的关键步骤。
塔体的内部压力是主要的荷载,通常以设计工作压力为准。
此外,还需要考虑塔体的温度、自重、地震荷载和风荷载等,以获取完整的荷载信息。
然后,进行应力分析是设计计算的核心内容。
通过应力分析,可以评估塔体的强度和稳定性,确保其能够承受设计荷载,并保证不会出现塑性变形、失稳或破坏等情况。
应力分析中涉及到的主要方法包括静力学分析、有限元分析和材料的损伤塑性理论等。
在进行应力分析时,需要考虑不同部位的应力集中情况。
塔体的连接部位、转角处和受力集中区域等容易出现应力集中的部位需要进行特殊的设计和计算。
最后,根据应力分析的结果,选择适当的安全系数进行设计计算。
安全系数是设计中的一个重要指标,它考虑了不确定性因素和材料的可靠性,确保塔体在使用过程中的安全性和可靠性。
除了上述提到的主要计算思路之外,塔体的设计还需要考虑其他因素,如焊接连接的设计、防震设计和防腐设计等。
这些设计因素都是为了保证内压塔的强度和安全性。
综上所述,内压塔塔体强度设计计算思路包括确定结构类型、选择材料、计算荷载、应力分析和选择安全系数等。
通过合理的设计计算,可以确保塔体在使用过程中具有足够的强度和稳定性,提高其安全性和可靠性。
塔设备强度设计计算概述
塔设备强度设计计算概述首先,塔设备强度设计计算需要对材料的强度特性进行分析和评估。
这包括了材料的抗拉强度、屈服强度、弹性模量等参数的确定,以及对材料的疲劳和断裂性能进行评估。
通过对材料性能的分析,可以确定塔设备所需的材料强度指标,并为后续的结构设计提供基础。
其次,塔设备强度设计计算还需要根据结构的特点和使用环境对其结构强度进行分析和计算。
这包括了对结构的受力情况、应力分布以及可能存在的疲劳破坏和变形情况进行评估。
通过对结构强度的计算,可以确定塔设备的结构形式和尺寸,以满足其强度要求。
另外,塔设备强度设计计算还需要进行荷载计算。
这包括了对塔设备受力情况的分析,根据其所承受的外部荷载和内部荷载进行计算,以确保其在使用过程中能够稳定和安全地工作。
总的来说,塔设备强度设计计算是一项复杂的工程计算工作,需要对材料强度、结构强度和荷载等多个方面进行综合分析和计算。
通过科学合理的设计计算,可以保证塔设备在使用过程中具有足够的强度和稳定性,为生产运行提供可靠的保障。
塔设备强度设计计算在工程领域中的重要性不言而喻。
塔设备通常用于支撑和承载各种重要设备和结构,如通讯设备、风力发电机、天线、烟囱等。
塔设备的稳定性和强度显然是至关重要的,因为如果塔设备结构设计不当或计算不准确,可能会导致结构破坏甚至倒塌,造成严重的人员伤亡和财产损失。
一般而言,塔设备的强度设计计算需要从结构设计、材料选取、受力分析、以及荷载计算等多个方面进行综合考虑。
首先,对于塔设备的结构设计,需要确保塔身、角钢、连接部位等都能够承受预期的荷载。
这需要对实际使用环境、风荷载、地震荷载等进行全面的分析和评估。
因此,在强度设计计算过程中,需要考虑各种极端和临界情况下的力学响应。
其次,材料的选取也是很重要的。
在塔设备强度设计计算中,需要选择合适的结构材料,例如碳钢、合金钢、铝合金等,以保证塔设备在受力状态下有足够的强度和刚度。
材料的强度参数、蠕变性能、疲劳性能等都必须得到足够的评估和证明。
塔体及裙座的强度计算(1)
3.1塔体及裙座的强度计算3.1.1适用范围本章计算适用于高度大于10m,且高度与直径之比大于5的裙座自支承式钢制塔设备。
塔设备的设计压力可以是内压或外压。
3.1.2引用标准JB 4710-92 “钢制塔式容器”、GB150-98 “钢制压力容器”。
3.1.3设计计算条件3.1.3.1塔设备的设计压力及设计温度设计压力系指在相应设讣温度下用以确定塔设计壳体厚度的压力,其值不得小于塔设备顶部可能出现的最高压力。
设计温度指塔壳体的设讣温度,系指塔设备在正常操作情况,并在相应设计压力下,设定的受压元件的金属温度,其值不得低于元件金属可能达到的最高金属温度。
裙座设讣温度一般取建塔地区室外计算温度(冬季),见表3-1。
3.1.3.2塔设备设汁应考虑的载荷⑴设讣压力;⑵液柱静压;⑶塔设备自重(包括内件和填料)以及正常操作条件下或试验状态下内容物的重力载荷;⑷附属设备及隔热材料、衬里、管道、扶梯及平台等重力载荷;⑸风载荷和地震载荷;必要时,应考虑以下载荷的影响:⑹连接管道和其它部件的影响;⑺山于热膨胀量不同而引起的作用力;⑻压力和温度变化的影响;⑼塔设备在运输或吊装时承受的作用力。
上述载荷中⑴〜⑹部分载荷在本章计算中予以考虑。
⑺〜⑼部分的载荷引起的机械汁算应采用其它相应的计算方法。
3.1.3.3塔设备壁厚⑴最小壁厚塔壳圆筒不包括腐蚀裕度的最小厚度,对于碳钢和低合金钢制塔设备为2%。
的塔内径,且不小于4mm;不锈钢制塔设备为3mm:裙座最小壁厚为6mm。
⑵计算厚度指按GB150及JB4710相应公式计算所得的厚度,不包括壁厚附加量。
⑶壁厚附加量、设计厚度、名义厚度及有效厚度详见JB4710第3章中的定义。
3.1.3.4材料及其许用应力⑴受压元件用钢的选用原则、钢材标准、热处理状态及许用应力等均按GB150 中的相关规定。
注:1 •本茨摘自TJ19-75 <T业企业采唆通风和空气调节设汁规范3 (试行}・茨中帯*数字系05通空调气象资料集》(增缩I鶴)中的数据.2・采暧室外计算温度为历年平均不保证5天的日平均温度.3 •冬季通风室外ilWifi度为累年册冷月(一月)的平均温度。
化工设备设计基础塔设备强度设计计算
M M
ii W
ii E
Me
0.25M
ii W
Me
(取大值)
水压试验时间人为选定且时间较 短,在试验情况下最大弯矩取值
M ii max
0.3M
ii W
Me
最大弯矩在筒体中引起轴向应力
3
4M
ii max
Di2 ei
㈣ 筒体壁厚效核
1.最大轴向组合应力旳计算
内压塔设备
外压塔设备
正常操作 停修
正常操作
(1)水平风力旳计算
迎风面产生风压。与风速、
空气密度、地域和季节有关。
各地离地面10m处30年一遇
10分钟内平均风速最大值作为计算风压,
得到该地域旳基本风压q0,见表4-26。
风速随处面高度而变化。塔高于10m,应 分段计算风载荷,视离地面高度旳不同乘
以高度变化系数fi,见表4-27。
风压还与塔高度、直径、形状以及自振周 期有关。两相邻计算截面间旳水平风力为:
有多种振型,任意高度hK处集 中质量mK引起基本振型旳水平 地震力 FK1 Cza1hK1mK g
FK1-mK引起旳基本振型水平地震力 Cz-综合影响系数,直立圆筒Cz=0.5;
mK-距离地面hK处旳集中质量;
n
h1.5 K
mi
h1.5 i
hK1-基本振型参加系数, hK1
i 1
n
mi hi3
1、群座体与塔体对接焊缝
J-J截面旳拉应力校核
2、群座体与塔体搭接焊缝
J-J截面旳剪应力校核
思索题:
1.自支撑式塔设备设计时需要 考虑哪些载荷?
2.简述内压塔操作时旳危险工 况及强度校合条件。
一种是圆筒形, 一种是圆锥形。
塔设备强度设计计算概述
塔设备强度设计计算概述1. 引言塔设备强度设计计算是在塔式结构工程中十分重要的环节。
塔式结构广泛应用于电力、通信、航空等领域,在保障设备可靠性和安全性方面起着至关重要的作用。
本文将概述塔设备强度设计计算的基本原理和方法。
2. 设计目标塔设备的强度设计主要目标是确保设备在外部负荷作用下不发生破坏或失效。
一般而言,塔设备的设计目标包括以下几个方面:•承受外部荷载的能力:塔设备需要能够承受各种外部荷载,如风荷载、重力荷载、地震荷载等。
设计中需要考虑这些荷载的大小和方向,以确定设备的主要强度参数。
•抗震能力:特别是在地震频发地区,塔设备需要具备足够的抗震能力,以保护设备的安全运行。
•稳定性:塔设备需要保持稳定,不发生失稳现象。
在设计中需要考虑设备的结构刚度和形状参数。
3. 强度计算方法塔设备的强度计算通常基于力学原理和结构力学方法,常用的计算方法包括以下几种:•静力计算方法:根据外部荷载的大小和方向,通过应力分析和形变计算,确定设备的强度参数。
这种方法一般适用于静态荷载情况下的强度计算。
•动力计算方法:根据外部荷载的动态特性,通过振动分析和响应计算,确定设备的强度参数。
这种方法适用于考虑塔设备在地震或风荷载下的强度计算。
•有限元方法:利用有限元分析软件,在计算机上建立塔设备的有限元模型,通过数值求解得到设备的应力分布和形变情况。
这种方法适用于复杂的塔式结构和荷载情况。
4. 设计要点在塔设备强度设计计算中,需要注意以下几个要点:•荷载分析:对于各种可能的外部荷载,需要进行详细的分析和计算,确定荷载的大小和方向。
•强度参数选取:根据实际情况和设计要求,选取适当的强度参数,并结合设计规范进行计算。
•材料选择:塔设备所使用的材料需要具备足够的强度和韧性,能够满足设计要求。
•施工质量控制:在塔设备的施工过程中,需要严格控制质量,确保各个构件和连接部位的强度和稳定性。
5. 设计规范塔设备的强度计算需要遵循相应的设计规范,以确保设计的合理性和安全性。
塔强度计算-T0401强度说明书
计算单位 计算条件 塔型 设计压力 容 器 分 段 数(不 包 括 裙 座) 压力试验类型 压力试验计入液柱高度 H 试验压力 (立 试 ) 试验压力 (卧 试 ) mm MPa MPa 封头 上封头 材料名称 名义厚度 腐蚀裕量 焊接接头系数 封头形状 mm mm 下封头 MPa
合格
筋板许用应力
合格
盖板许用应力
合格
裙座与壳体的焊接接头校核 kg
37786.6
焊接接头截面上的最 大弯矩 搭接接头横截面 搭接接头抗剪断面模 数 搭接焊接接头在操作 工况下最大剪应力 搭接焊接接头在操作 工况下的剪应力许可 值 搭接焊接接头在试验 工况下最大剪应力 搭接焊接接头在试验 工况下的剪应力许可 值 搭接接头拉应力 校核结果
组合应力校核
16.62 71.66
15.37 71.66
7.88 79.84 24.15 372.60
全 国 化 工 设 备 设 计 技 术 中 心 站
5
过程设备强度设计计算书
σA4 许用值 σ 许用值 校核结果
SW6-98
23.60 71.66
22.95 71.66
4.78 79.84 78.61 310.50
0.00 7.86 7.51 7.86 0.00 20.68 2.27 113.00 59.71
20.43 6.48 5.60 2.28 25.54 3.08 1.70 170.00 66.53 19.55 204.00
20.43 6.48 5.60 2.28 25.54 3.08 1.70 170.00 66.53 19.55 204.00 7.88 79.84 24.15 372.60
mm mm ℃ mm mm mm
化工原理-板式塔及其设计计算
塔板间距 HT,m 0.2-0.3
0.3-0.35
0.35-0.45 0.45-0.6
0.5-0.8
≥0.6
(2)塔径 确定原则: 防止过量液沫夹带液泛 步骤: 先确定液泛气速 uf (m/s);
然后选设计气速 u; 最后计算塔径 D。
① 液泛气速
uf C
L V V
C
C20
20
0.2
C:气体负荷因子,与 HT、 液体表面张力和两相接触状况有关。
②不均匀流动 液面落差(水力坡度):引起塔板上气速不均; 塔壁作用(阻力):引起塔板上液速不均,中间 > 近壁;
后果:使塔板上气液接触不充分,板效率降低。
3.3 塔内气、液两相异常流动
(1)液泛 如果由于某种原因,使得气、液两相流动不畅,使板上液
层迅速积累,以致充满整个空间,破坏塔的正常操作,称此现 象为液泛。
缺点:浮阀易脱落或损坏。
(4)多降液管(MD)塔板 优点:提高允许液体流量
3.5筛板塔化工设计计算
(1)塔的有效高度 Z 已知:实际塔板数 NP ; 选取塔板间距 HT;
有效塔高: ZHT Np
理论塔板数计算
塔体高度:有效高+顶部+底部+ 其它 选取塔板间距 HT :
塔板间距和塔径的经验关系
塔.8-1.6 1.6-2.0 2.0-2.4 >2.4
化工原理-板式塔及其设计计 算
3.1概述
高径比很大的设备称为塔 1.塔设备的基本功能和性能评价指标 ①使汽液两相充分接触,适当湍动,提供尽
可能大的传质面积和传质系数,接触后两 相又能及时完善分离 ②在塔内使汽、液两相具有最大限度的接近 逆流,以提供最大的传质推动力
塔设备设计
24
3.7 最大弯矩
塔设备任意计算截面 I-I 处的最大弯矩按下式计算:
I− M maxI I ⎧ MW− I + M e ⎪ = ⎨ I−I I M E + 0.25 MW− I + M e ⎪ ⎩
取其中较大值
塔设备底部截面 0-0 处的最大弯矩按下式计算:
0− 0 M max 0 ⎧ MW− 0 + M e ⎪ = ⎨ 0− 0 0− 0 ⎪ M E + 0.25 MW + M e ⎩
取其中较小值
FVh−h —— 仅在最大弯矩为地震弯矩参与组合时计入。
h− h h 0.3 MW− h + M e m max g ⎧ KB + ≤⎨ Z sm Asm ⎩ 0.9σ s
取其中较小值
Asb ——h-h截面处裙座的截面积,mm2 Z sb ——h-h截面处裙座壳截面系数,mm3
33
3.11 地脚螺栓座(基础环设计)
35
3.11 地脚螺栓座(地脚螺栓)
δ b ,max ——混凝土基础上的最大压力, MPa
0− 0 ⎧ M max m0 ⋅ g ⎪ Z + A ⎪ b b =⎨ 0 0.3 MW− 0 + M e mmax ⋅ g ⎪ + ⎪ Zb Ab ⎩
δ b ,max
取其中较大值
36
3.12 裙座与塔壳焊缝(搭接焊缝)
M
0− 0 W
l3 ⎞ l1 l2 ⎞ ⎛ ⎛ = P1 + P2 ⎜ l1 + ⎟ + P3 ⎜ l1 + l2 + ⎟ + LL 2 2⎠ 2⎠ ⎝ ⎝
23
3.6 偏心弯矩
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m2:内件质量; m3:保温材料质量; m4:平台、扶梯质量; m5:操作时塔内物料; ma:人孔、接管等附件; me:偏心质量; mw:液压试验塔内充液
M0=m1+m2+m3 +m4+m5+ma+me
设备最大质量 (水压试验时):
Mmax=m1+m2+m3 +m4+mw+ma+me
0.2m2:部分内件焊在塔体 设备最小质量:
n
? h1.5 K
mi
h1.5 i
? hK1-基本振型参与系数, h K1 ?
i?1
n
mi hi3
i?1
a 1-对应与塔基本自振周期T1的地震影响系数a值。
(2)垂直地震力
防烈度8度或9度的塔应考虑垂直地震力
塔底截面处垂直地震力:F?0?0 ? a ? maxmeq g
a vmax-垂直地震影响系数最大值, a vmax= 0.65a max
空塔吊装,如未装保温层、 mmin =m1+0.2m2
平除台m3和、m扶4。梯等,则mmin应扣
+m3+m4 +ma+me
3. 风载荷
室外自支承塔为悬臂梁。 产生风弯矩, 迎风面拉应力, 背风面压应力。
塔背后气流引起周期性旋涡,垂直于
风向的诱发振动弯矩。只在塔 H/D较
大、风速较大时较明显,一般可忽略。 考虑两弯矩矢量叠加。
Pi ? K1 K2i q0 fi Li Dei ? 10 ?6
Pi-水平风力; q0-基本风压值,见表4-26,但 均不应小于250N/m2; fi-风压高度变化系数,表4-27 Li-第计算段长度; Dei-塔各计算段有效直径; K1-体型系数,圆柱直立设备0.7 K2i-各计算段风振系数,
K2i-塔设备各计算段的风振系数,
计算地震载荷与计 算风载荷一样, 将全塔沿高度分 成若干段,每一 段质量视为集中 于该段1/2处
有多种振型,任意高度 hK处集 中质量mK引起基本振型的水平
地震力 FK1 ? Cza 1h K1mK g
FK1-mK引起的基本振型水平地震力 Cz-综合影响系数,直立圆筒Cz=0.5;
mK-距离地面hK处的集中质量;
meq-塔设备的当量质量, meq=0.75m0
任意质量i处垂直地震力:
? ? F?i?i ?
mi hi
n
F?0? 0 i ? 1,2,? , n
? mk ?hk
k?1
(3)地震弯矩
任意截面 i-i基本振型地震弯矩:
? ? ? n
M i?i Ei
?
FK1 hK ? h
i?1
M 0?0 Ei
?
16 35
3.最大弯矩在筒体内引起的轴向
应力
风弯矩
Me。
MW、地震弯矩
ME、偏心弯矩
最大平均风速和可能出现的最大地震
烈度,同时达到最大值的几率极小。
通常操作下最大弯矩按下式取值:
M i?i max
?
? ? ?
按第十五章 容器设计基础 中内压、外压容器的设计方法, 计算塔体和封头的有效厚度。
㈡ 塔设备所承受的各种载荷 计算
以下要讨论的载荷主要有: 操作压力; 质量载荷; 风载荷; 地震载荷; 偏心载荷。
1. 操作压力
?内压塔,周向及轴向拉应力; ?外压塔,周向及轴向压应力。 ?操作压力对裙座不起作用。
塔外附属设 塔顶冷凝器偏心安装 塔底外侧悬挂再沸器 偏心载荷引起轴向压
应力和轴向弯矩 Me,
Me ? me ge
㈢ 圆筒的应力
1.塔设备由内压或外压引起的轴向
应力
?1 ?
?
pc Di
4? ei
2.操作或非操作时,重量及垂直地
震力引起的轴向应力(压应力)
?2
?
m0i?i g
?
F i?i v
?Di? ei
塔设备强度设计计算
主要内容:
?了解塔所承受载荷的特点。 ?熟悉塔体和裙座承受的各项
载荷计算及强度校核步骤。 ?能够确定塔体和裙座体危险
截面,并掌握塔体壁厚的校 核方法。
一、塔体 强度计算
室外H/D较
大的塔, 操作压力、 质量载荷、 风载荷、 地震载荷 偏心载荷等
㈠ 按设计压力计算筒体及封 头壁厚
Pi ? K1K 2i q0 fi Li Dei ? 10 ?6
任意截面的风弯矩:
M i?i w
?
Pi
Li 2
?
Pi
?1
?? ?
Li
?
Li?1 2
?? ?
?
Pi?
2
?? ?
Li
?
Li ?1
?
Li? 2 ?? ? ? 2?
?
等直径、等壁厚塔体 和裙座,风弯矩最 大值为最危险截面。
变截面塔体及开有人 孔的裙座体,各个 可疑的截面各自进 行应力校核。
(1)水平风力的计算
迎风面产生风压。与风速、
空气密度、地区和季节有关。
各地离地面10m处30年一遇
10分钟内平均风速最大值作为计算风压,
得到该地区的基本风压q0,见表4-26。
风速随地面高度而变化。塔高于10m,应 分段计算风载荷,视离地面高度的不同乘
以高度变化系数fi,见表4-27。
风压还与塔高度、直径、形状以及自振周 期有关。两相邻计算截面间的水平风力为:
2. 质量载荷
塔设备质量包括:
m1:塔体和裙座质量; m2:内件;m3:保温材料; m4:平台、扶梯质量; m5:操作时塔内物料质量; ma:人孔、接管、法兰等附件质量; me:偏心;mw:液压试验时,塔内充液质量;
操作停修或水压试验等不同工况物料或充 水质量。
m1:塔体和裙座质量; 设备操作时质量:
C
za
1m0Βιβλιοθήκη gH等直径、等厚度塔的任意截面 i-i和底
截面0-0的基本振型地震弯矩:
? ? M i?i Ei
?
8Cza 1m0 g
175H 2.5
10H 3.5 ? 14H 2.5h ? 4h3.5
H/D>15,或高度大于等
于20m时,考虑高振型
M i?i E
?
1.25
M
i? Ei
i
5. 偏心载荷
当塔高H≤20m时,取 K2i=1.7;
当H>20m时,
K2i
?
1?
?vif
fi
zi
z -脉动增大系数,按表 4-28查取;
Vi-第i段脉动影响系数,按表 4-29查 f zi- 第i段振型系数,根据 Hi/H与m查表
4-30;
(2)风弯矩
一般习惯自地面起每 隔10m一段,风压定
值。求出风载荷 Pi
图中0-0、1-1、2-2各 截面都是薄弱部位, 可选为计算截面 。
4. 地震载荷
地震烈度七度及以上地区,设计 时必须考虑地震载荷。
地震波作用下: 水平方向振动、 垂直方向振动、 扭转
其中以水平方向振动 危害较大。
计算地震力时,仅考 虑水平地震力,并把 塔设备看成是悬臂梁。
(1)水平地震力
实际全塔质量按全 塔或分段均布。