《固体物理基础教学课件》第3章共37页文档

合集下载

《固体物理基础教程》课件第3章

《固体物理基础教程》课件第3章

图3.5 一维双原子链
值得注意的是,该一维双原子链模型实际上反映的是 NaCl结构的〈100〉晶向或者CsCl结构的〈111〉晶向原子 排列的情况。如果晶格模型稍加改变,比如,基元中含有两 个质量相同的原子,但原子间平衡间距d≠a/2,则反映的是 金刚石结构〈111〉晶向原子排列的情况;如果基元中很有 两个质量不同的原子,且原子间平衡间距d≠a/2,则反映的 是闪锌矿结构〈111〉晶向原子排列的情况。对于这两种晶 格模型,由于原子间距不同,因此原子间的相互作用(化学 键)也不同,在数学推导时就必须采用不同的弹性系数β1、β2 来反映。读者可以根据本节下面的推导过程,任选这两种晶 格模型之一加以推导。同时还可以思考下面的问题:如果在 一维双原子链模型中,基元中含有两个质量相同的原子,且 原子间平衡间距d=a/2,则情况会发生怎样的变化?
图3.1 一维单原子链模型
经过上面的分析,就可以根据牛顿第二定律直接建立第
n个原子的运动状态方程,即
m
d2n
dt 2
fn1
fn1
(n1 n ) (n1 n )
(n1 n1 2n )
(3.1)
每一个原子对应一个这样的方程,因此式(3.1)实际上代 表着N个联立的线性奇次方程,该方程组应该有N个独立解, 而独立解的个数也称为自由度,即一维单原子链的自由度为
基于如下的物理考虑:首先,晶体的宏观热性质取决于 组成晶体的绝大多数原子的运动状态;其次,晶体边界(表 面)原子的数目远小于晶体内部原子数目,因此对晶体热性 质的影响很小;第三,按照近邻作用近似,边界原子对内部 原子运动状态的影响很小。于是,玻恩-卡曼提出了这样的 周期性边界条件:假定由数目巨大的N个原子组成的一维单 原子链首尾衔接(间距也为a),构成一个如图3.3所示的半径 很大的圆环,局部范围内原子沿环方向的振动仍然可以看做

固体物理课件

固体物理课件

e 2 晶体中有3N个振动模 晶体中有 个振动模 C = k ( ∑ B k T ) (eℏω j / kBT − 1)2 V 1) 爱因斯坦模型 ) j =1 B 假设N个原子构成的晶体 个原子构成的晶体, 假设 个原子构成的晶体,
所有的原子以相同的频率 ω0振动 2) 德拜模型 ) 以连续介质的弹性波来代表格 波,将晶格看作是各向同性的 连续介质
V (r + R) = V (r )
布洛赫定理
具有晶格周期性时, 布洛赫定理 —— 势场 V ( r ) 具有晶格周期性时,电子的波 函数满足薛定谔方程 ℏ2 2 [− ∇ + V ( r )]ψ ( r ) = E ψ ( r ) 2m —— 方程的解具有以下性质
ψ ( r + Rn ) = e ik ⋅R ψ ( r )
ω = 2

− i (ωt − naq )
2
β
m
ω
aq sin m 2
−π a
β
π π < q ≤ a a
q=
µn = µn+ N 2π
Na
× h —— h为整数 为整数
π a o 晶格振动波矢的数 目=晶体的原胞数 晶体的原胞数
能量本征值 ε n = ( n q + 1 ) ℏ ω q
q
晶格振动的能量量子; 声子 —— 晶格振动的能量量子;或格波的能量量子 当这种振动模处于 系统能量本征值
原子的振动 —— 晶格振动在晶体中形成了各种模式的波
模型 运动方程 试探解
m µ n = − β (µ n − µ n−1 ) − β (µ n − µ n+1 )
..
一维晶格振动 一维无限长原子链, , , 一维无限长原子链,m,a,β

《固体物理基础概论》PPT课件

《固体物理基础概论》PPT课件

组成晶态固体的粒子在空间周期性排列,具 有长程序,它的对称性是破缺的。
非晶体与晶体相反,其组成粒子在空间的 分布是完全无序或仅仅具有短程序,具有高度 的对称性。
准晶介于晶体和非晶体之间,粒子在空间 分布有序,但不具有周期性,仅仅具有长程的 取向序。
固体物理的研究对象以晶体为主。
准晶
2 . 固体物理学的基本任务:是企图从微观上 去解释固体材料的宏观物性,并阐明其规律。
到了期末,接近考试了,此时介绍晶体结合 、晶体缺陷等学生材内容和学时分配 第一章 金属自由电子费米气体模型(10学时) 第二章 晶体的结构 (19学时) 第三章 能带论 (23学时) 第四章 晶格振动 (10学时) 第五章 输运现象 (5学时) 第六章 晶体的结合、晶体缺陷和相图(5学时)
曼彻斯特大学最近公布的波纹式的石墨烯薄片示意图
Ultra-Thin Material
超导磁悬浮
Magnetic Domains by Magneto-optical Effect
包钴氧化铁 钡铁氧体
铁合金
CrO2
m
计算机的硬盘
计算机的硬盘
2007年诺贝尔 物理学奖---巨 磁电阻效应 (GMR)
4.基泰尔(C.Kittel 5th edition)著,杨顺华等 译,固体物理导论,科学出版社,1979
5.方可,胡述楠,张文彬 主编;固体物理学,重庆大 学出版社,1993
6.陈金福 主编 固体物理学—学习参考书 高等 教育出版社,1986 7.
8.阎守胜. 2000. 固体物理基础. 北京:北京大学 出版社
7.教学要求
1) 掌握金属自由电子模型的内容并学会利用该模型对 金属的电、热、光等物性进行分析; 2) 掌握晶体的结构特点、晶格的特征、晶体对称性 和分类、倒格子以及X射线衍射;

固体物理课件

固体物理课件

复式晶格
sc + 双原子基元
fcc + 双原子基元
由同种原子构成的金刚石晶格也是复式晶格。
A类碳原子的共价键方向 B类碳原子的共价键方向
hcp也是复式晶格。 复式晶格包含多个等价原子,不同等价原子的简单晶格相同。复式晶格是由等价原子的简单晶格嵌套而成。
二、基矢和原胞
在晶格中取一个格点为顶点,以三个不共面的方向上的周期为边长形成的平行六面体作为重复单元,这个平行六面体沿三个不同的方向进行周期性平移,就可以充满整个晶格,形成晶体,这个平行六面体即为原胞,代表原胞三个边的矢量称为原胞的基本平移矢量,简称基矢。
黄昆,韩汝琦.《固体物理》,高教出版社.
01
Charles Kittel. Introduction to solid state physics. (中文版第8版)
02
方俊鑫,陆栋. 《固体物理学》(上), 上海科学技术出版社.
03
阎守胜.《固体物理基础》, 北京大学出版社.
04
主要参考书
凝聚态:由大量粒子组成,并且粒子间有很强相互作用的系统。
介于液态和固态之间的凝聚相:液氦、液晶、熔盐、液态金属、电解液
液体:
凝聚态物理学:是从微观角度出发,研究由大量粒子(原子、分子、离子、电子)组成的凝聚态的结构、动力学过程及其与宏观物理性质之间的联系的一门学科。
固体: 晶体、非晶体、准晶体
稠密气体
凝聚态物理研究对象:
绪 论
研究固体结构及其组成粒子(原子、离子、电子)之间的相互作用与运动规律以阐明其性能与用途的学科。
1.晶面
(1)平行的晶面组成晶面族,晶面族包含所有格点; 晶面方位
晶面的法线方向(法线方向与三个坐标轴夹角)

固体物理学 ppt课件

固体物理学  ppt课件
第1章 晶体的结构
阐明晶体中原子排列的几何规律性
PPT课件
1
内 容
1.1 晶体的特征 1.2 空间点阵 1.3 晶格的周期性、基矢 1.4 密勒指数 1.5 倒格子 1.6 晶体的特殊对称性、对称操作 1.7 晶系、布喇菲原胞 1.8 密堆积、配位数 1.9 X射线衍射方程、反射球
PPT课件 2
1.1 晶体的特征
问题一 体心立方晶胞中含有几个原子? 原子引基矢。 问题二 体心立方原胞如何选取? 问题三 问题四
8 1 2 个原子 以体心原子为顶 8 点,分别向三个顶角
1 3 a1 a 2 a 3 a 原胞的基矢形式? 2
a1
k
a a 1 ( i j k ) 原胞体积? 2 a a 2 (i j k ) 2 a a 3 (i j k ) 2
1.3.3 三维情况
布喇菲格子:最小重复单元(原胞)只含有一个原子的晶格 复式格子:原胞中含有两个或两个以上原子的晶格
(1)三维布喇菲晶格原胞:是三边长等于各方向基矢, 结点为顶点的平行六面体。基矢(a1,a2 ,a3 )
a3 a2 a1
PPT课件
20

晶格周期性:设r为重复单元中任意一处的位矢
简立方(SC)
体心立方(BCC) 面心立方(FCC)
PPT课件
22
简立方(Simple Cubic,简称 SC )

三个基矢等长并且互相垂直。
a3
a a2

原胞与晶胞相同。
a1
a 1 ai a 2 aj a 3 ak
PPT课件
23
体心立方(Body Centered Cubic, 1 BCC)

《固体物理基础教学课件》第3章

《固体物理基础教学课件》第3章
原子n离开平衡位置位移μn 原子n和原子n+1间相对位移
n1 n
平衡位置 非平衡位置
a 3
3-1 原子作用力的处理:简谐近似
忽略高阶项,简谐近似考虑原子 V 振动,相邻原子间相互作用势能
v(a)12(ddr2v2)a2
相邻原子间作用力
O
a
r
f ddv, (d dr2v2)a
只考虑相邻原子的作用,第n个原
第2n+1个M原子的方程 M d2 dt2 2n1(22n12n22n)
ቤተ መጻሕፍቲ ባይዱ 第2n个m原子的方程 mdd 2t22n(22n2n12n1)
解也具有平面波 的形式
两种原子振动的 振幅(m取A, M取B)一般来说 是不同的
a 13
3-2 声学波与光学波
色散关系有不同的两种
2(m m M M ) 11(m 4 m M M )2sin2aq12
a 2
3-1 一维单原子链模型
一维单原子链:最简单的晶格模型
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的研究方法:
计算原子之间的相互作用力 根据牛顿定律写出原子运动方程,并求解方程
一维单原子链模型:
平衡时相邻原子间距为a (即原胞体积为a)
原子质量为m 原子限制在沿链方向运动
声子
0.1
1 100 10000
a 11
3-2 一维双原子链模型
一维双原子链模型 声学波与光学波 声学波与光学波的长波极限 长光学波的特性
a 12
3-2 一维双原子链模型
两种原子m和M (M > m) 构成一维复式格子 M原子位于2n-1, 2n+1, 2n+3 … m原子位于2n, 2n+2, 2n+4… 晶格常数、同种原子间的距离:2a

《固体物理教案》课件

《固体物理教案》课件

《固体物理教案》课件第一章:固体物理概述1.1 固体物理简介介绍固体物理的基本概念和研究内容强调固体物理在材料科学和工程领域的重要性1.2 固体的基本性质介绍固体的分类和晶体结构讲解固体的弹性、塑性、硬度和导电性等基本性质1.3 固体材料的制备和characterization介绍固体材料的制备方法,如熔融、蒸发、溅射等讲解固体材料的表征技术,如X射线衍射、电子显微镜等第二章:晶体结构与晶体缺陷2.1 晶体结构的基本概念介绍晶体的定义和特征讲解晶体的点阵结构和空间群理论2.2 常见晶体结构介绍金属晶体、离子晶体、共价晶体和分子晶体的结构特点举例讲解不同晶体结构的代表性材料2.3 晶体缺陷介绍晶体缺陷的类型和性质讲解晶体缺陷对材料性能的影响第三章:固体的电子性质3.1 电子分布与能带理论介绍电子分布的基本概念讲解能带理论的基本原理和应用3.2 半导体的电子性质介绍半导体的能带结构和导电机制讲解半导体的掺杂和器件应用3.3 金属的电子性质介绍金属的能带结构和导电机制讲解金属的电子迁移率和电子束效应等性质第四章:固体的热性质4.1 热传导的基本概念介绍热传导的定义和方式讲解热传导的微观机制4.2 热膨胀和热容介绍热膨胀和热容的概念讲解热膨胀系数和热容的计算方法4.3 超导现象介绍超导现象的发现和基本原理讲解超导体的特性和应用第五章:固体材料的力学性质5.1 弹性和塑性介绍弹性和塑性的定义和区别讲解弹性模量和塑性变形的微观机制5.2 硬度和磨损介绍硬度的概念和测量方法讲解磨损的机制和防止方法5.3 断裂和强度介绍断裂的类型和强度概念讲解断裂韧性和疲劳强度的计算方法第六章:固体的磁性质6.1 磁性的基本概念介绍磁性的定义和分类讲解磁化强度、磁化率和磁化曲线等基本概念6.2 晶体磁性介绍顺磁性、抗磁性和铁磁性等晶体磁性的基本特性讲解磁晶场的概念和磁畴结构的形成6.3 磁性材料及其应用介绍软磁性材料和硬磁性材料的特点和应用讲解磁性材料在电机、传感器和存储器等领域的应用第七章:固体的光学性质7.1 光的传播与折射介绍光的传播原理和折射定律讲解光在不同介质中的传播特性7.2 光的吸收与发射介绍光的吸收和发射现象讲解能级跃迁和量子亏损等基本概念7.3 固体的发光性质介绍固体的发光机制和分类讲解LED和激光器等固体发光器件的原理和应用第八章:固体的电性质8.1 电导率和电阻率介绍电导率和电阻率的定义和计算方法讲解电子散射和载流子浓度的关系8.2 半导体器件介绍半导体器件的基本原理和分类讲解晶体管、二极管和光电器件等半导体器件的结构和特性8.3 介电材料介绍介电材料的分类和介电常数的概念讲解介电材料的电容和绝缘性能等特性第九章:固体的声性质9.1 声波的基本概念介绍声波的定义和传播原理讲解声速和声波的衰减等基本特性9.2 固体的声学性质介绍固体的声速和声波的传播特性讲解声波在固体中的散射和衰减现象9.3 声波的应用介绍声波在通信、医学和材料检测等领域的应用讲解声波传感器和声波换能器等器件的原理和应用第十章:固体物理实验技术10.1 固体物理实验基本方法介绍固体物理实验的基本技术和设备讲解样品制备、表征和测量等实验方法10.2 实验数据分析方法介绍实验数据的误差分析和信号处理方法讲解数据拟合和参数估计等数据分析技术10.3 固体物理实验案例分析分析固体物理实验的实际案例讲解实验结果的物理意义和应用价值重点和难点解析1. 固体物理的基本概念和研究内容,以及其在材料科学和工程领域的重要性。

(完整版)固体物理课件ppt完全版

(完整版)固体物理课件ppt完全版

布拉伐格子 + 基元 = 晶体结构
③ 格矢量:若在布拉伐格子中取格点为原点,它至其

他格点的矢量 Rl 称为格矢量。可表示为
Rl

l1a1

l2a2

l3a3

a1,
a2 ,
a3为
一组基矢
注意事项:
1)一个布拉伐格子基矢的取法不是唯一的
2
4x
·
1
3
二维布拉伐格子几种可能的基矢和原胞取法 2)不同的基矢一般形成不同的布拉伐格子
2·堆积方式:AB AB AB……,上、下两个底面为A
层,中间的三个原子为 B 层
3·原胞:
a, 1
a 2
在密排面内,互成1200角,a3
沿垂直
密排面的方向构成的菱形柱体 → 原胞
B A
六角密排晶格的堆积方式
A
a
B c
六角密排晶格结构的典型单元
a3
a1
a2
六角密排晶格结构的原胞
4·注意: A 层中的原子≠ B 层中的原子 → 复式晶格
bγ a
b a
b a
b a
简六体心底正简单三面心正单方底心单心交 立斜交斜 方 简单立方体心正交面立方简四体心四方简单正交简单菱方简单单斜单方
二 、原胞
所有晶格的共同特点 — 具有周期性(平移对称性)

用原胞和基矢来描述


位置坐标描述

1、 定义:
原胞:一个晶格最小的周期性单元,也称为固体物理 学原胞
a1, a2 , a3 为晶格基矢
复式晶格:
l1, l2 , l3 为一组整数
每个原子的位置坐标:r l1a1 l2a2 l3a3

《固体物理基础教学课件》第一章

《固体物理基础教学课件》第一章

半导体的电子状态
半导体中的电子能级结构
半导体中的电子能级结构与金属不同,存在一个带隙,使得半导 体在一定温度下只能部分电子成为自由电子。
半导体的导电性
半导转变为导体。
半导体的光电效应
当光照射在半导体上时,半导体吸收光子后,价带上的电子跃迁到 导带,产生光电流。
晶体结构
80%
晶体结构的特点
晶体结构是指固体物质内部的原 子或分子的排列方式,具有周期 性、对称性和空间群特征。
100%
常见的晶体结构
常见的晶体结构有金刚石型、氯 化钠型、闪锌矿型等,它们在外 观和性质上都有所不同。
80%
晶体结构的分类
晶体结构可以根据原子或分子的 排列方式和空间群进行分类,有 助于理解其物理和化学性质。
核聚变能源
在核聚变能源领域,固体物理中的 高温高压等极端条件下的物理性质 研究为实验设计和设备制造提供了 重要依据。
在信息技术领域的应用
集成电路
集成电路的制造依赖于固体物理 中的半导体理论和热力学原理, 从芯片设计到制造工艺的每一个 环节都离不开固体物理的理论支
持。
存储技术
随着信息技术的快速发展,存储 技术也在不断进步。固体物理中 的磁学和光学理论在磁存储和光
推动高新技术产业的进步
固体物理学在信息技术、新能源等领域中有着广泛 的应用,如半导体技术、太阳能电池等,为高新技 术产业的进步提供了重要支撑。
对其他学科的交叉促进作用
固体物理学与化学、生物学、地球科学等学科有着 密切的联系,通过与其他学科的交叉融合,可以促 进相关领域的发展和创新。
02
固体物质的结构
复合材料
通过研究复合材料的微观结构和物理性质,可以设计和制备具有优异 性能的复合材料,广泛应用于航空航天、汽车、体育器材等领域。

固体物理教学课件:Chapt3-6

固体物理教学课件:Chapt3-6

3、格律乃森方程:
由热力学定律可知:
∑ P =

∂F ∂V
T
∑ ( ) = − dU 0 −
dV
= − dU 0
∂kBT −
qs
ln(1 − e−ωs (q)/kBT )
dV
∂V
e−ωs (q)/kBT dωs q
1− e qs
−ωs (q)/kBT
dV
∑ = − dU 0 dV

qs
ωs (q) 1
∂U V (T ,V
∂T
)
V
= γ CV
CV : 晶体定容比热
=
−V
∂P ∂V
T
1 V
∂V ∂T
P
= κα
κ : 体积弹性模量
α : 热膨胀系数
考虑热力学关系:
∂P ∂V ∂T = −1 ∂V T ∂T P ∂P V
γ = καV 1-3之间
CV
关于热力学关系
∂P ∂V
π
−∞
a
1
∫ ∫ 分母 ≈

e− fδ2
kBT (1 +
gδ3
)dδ

= e− fδ2 kBT dδ
−∞
kBT
−∞
=
πkBT f
2
δ
3 4
g f2
kBT
> 0,
线膨胀系数=α
1= dδ a dT
3 gkB , 4 f 2a
更高次项展开,膨胀系数将依赖于温度
M2
V = Na
q = 2πh , Na
qa = 2π h ,与a无关
N
γ = − d ln ωs (q) = − 1 d ln ω2 (q)

固体物理学讲义.(PDF)

固体物理学讲义.(PDF)

绪论一固体物理的研究对象固体物理是研究固体的结构及其组成粒子原子离子电子等之间相互作用与运动规律以阐明其性能与用途的学科 固体按结构分类取向对称晶体学上不允许的长程平移序和同时具有长程准周期性准晶准晶体短有序程无明确周期性非晶态非晶体长程有序规则结构晶态晶体:)(,:)(,:)( 二固体物理的发展过程人们很早注意到晶体具有规则性的几何形状还发现晶体外形的对称性和其他物理性质之间有一定联系因而联想到晶体外形的规则性可能是内部规则性的反映十七世纪C Huygens 试图以椭球堆集的模型来解释方解石的双折射性质和解理面十八世纪RJH 认为方解石晶体是由一些坚实的y ua &&相同的平行六面体的小基石有规则地重复堆集而成的到十九世纪费多洛夫熊夫利巴罗等独立地发展了关于晶体微观几何结构的理论系统为进一步研究晶体机构的规律提供了理论依据1912年劳埃首先提出晶体可以作为X 射线的衍射光栅索末菲发展了固体量子论费米发展了统计理论在这些研究的基础上逐渐地建立了固体电子态理论能带论和晶格动力学固体的能带论提出了导电的微观机理指出了导体和绝缘体的区别并断定有一种固体它们的导电性质介乎两者之间叫半导体四十年代末五十年代初以锗硅为代表的半导体单晶的出现并以此制成了晶体三极管进而产生了半导体物理这标志着固体物理学发展过程的又一次飞跃为了适应微波低噪音放大的要求曾经出现过固体量子放大器脉泽1960年出现的第一具红宝石激光器就是由红宝石脉泽改造而成的可以说固体物理学尖端技术和其他学科的发展相互推动相辅相成的作用反映在上述的固体新材料与新元件的发现和使用上新技术和其他学科的发展也为固体物理学提供了空前有利的研究条件三固体物理的学科领域随着生产及科学的发展固体物理领域已经形成了象金属物理半导体物理晶体物理和晶体生长磁学电介质包括液晶物理固体发光超导体物理固态电子学和固态光电子学等十多个子学科同时固体物理的本身内核又在迅速发展中主要有1研究固体中的元激发及其能谱以更深入更详细地分析固体内部的微观过程揭示固体内部的微观奥妙2研究固体内部原子间结合力的综合性质与复杂结构的关系掌握缺陷形成和运动以及结构变化相变的规律从而发展多功能的复合材料以适应新的需要3研究在极低温超高压强磁场强辐射条件下固体的性质4表面物理----在研究体内过程的基础上进入了固体表面界面的研究5非晶态物理----在研究晶态的基础上开始进入非晶态的研究即非晶体中原子电子的微观过程四固体物理的研究方法固体物理主要是一门实验性学科但是为了阐明所揭示出来的现象之间的内在的本质联系就必须建立和发展关于固体的微观理论实验工作与理论工作之间要相互密切配合以实验促进理论以理论指导实验相辅相成相得益彰第一章晶体结构固体的结构决定其宏观性质和微观机理本章主要阐明晶体中原子排列的几何规则性1-1 一些晶格的实例晶体组成微粒具有空间上按周期性排列的结构基元当晶体中含有多种原子多种原子构成基本的结构单元格点结点结构中相同的位子图1-1-1 结构中相同的位子点阵晶体中格点的总体又称为布拉菲点阵布拉菲格子这种格子的特点是每点周围的情况都一样如果晶体由完全相同的一种原子组成则这种原子所组成的网格也就是布拉菲格子和结点所组成的相同如果晶体的基元中包含两种或两种以上的原子则每个基元中相应的同种原子各构成和结点相同的网格不过这些网格相对地有位移而形成所谓的复式格子显然复式格子是由若干相同的布拉菲格子相互位移套构而成晶格通过点阵中所有节点的平行直线簇和平行平面簇构成的网格元胞反映晶格周期性的最小重复单元侧重最小重复单元每个元胞中只有一个格点晶胞晶体学单胞既反映晶格周期性又反映晶格的空间对称性的最小重复单元侧重空间对称性每个元胞可能不止一个格点一单原子组成的元素晶格1简单立方晶格图1-1-2 原子球的正方排列及其各层球完全对应层叠形成的简单立方晶格2体心立方晶格的典型单元及堆积方式图1-1-3体心立方晶格的典型单元及体心立方晶格的堆积方式3原子球最紧密排列方式与面心立方晶格和六角密排晶格图1-1-4原子球最紧密排列方式当层叠是ABABAB方式则构成六角密排晶格当层叠是ABCABCABC方式则构成面心立方晶格4金刚石类晶格金刚石类晶格是由面心立方单元的中心到顶角引8条对角线在其中互不相邻的4条对角线的中点各加一个原子就得到金刚石类晶格结构也可看成面心立方沿体对角线平移1/4体对角线套购而成除金刚石外半导体硅和锗也具有类似金刚石类晶格结构图1-1-5金刚石类晶格结构的典型单元二化合物晶体的结构1NCl类晶格结构其好似于简单立方晶格只是每一行相间地排列着正的和负的离子N a+和Cl-碱金属和卤族元素的化合物都具有类似的结构Cl类晶格结构2C其好似体心立方晶格只是体心和顶角是不同的离子3闪锌矿ZS类晶格结构和金刚石类晶格结构相仿只要在金刚石晶格立方单元的对角线位置上放置一种原子在面心立方位置上放置另一种原子441-2晶格的周期性对于晶格的周期性通常用元胞和基矢来描述图1-2-1 中除4外均为最小单元由此元胞的选取并不是唯一的但各种晶格元胞都有习惯的选取方式并用元胞的边矢量作晶格的基矢基矢之间并不都相互正交图1-2-1平面元胞示意图1 简单立方晶格的元胞三个基矢分别zy x e a a e a a e a v v v v v v ===32,,为a 13321a a a a =×⋅vv r2 面心立方晶格的元胞三个基矢分别为)(2),(2),(2321j i a a j i a a j i a a v v v v v v v v v +=+=+=43321a a a a =×⋅vv r3体心立方晶格的元胞三个基矢分别为)(2),(2),(2321k j i a a k j i a a k j i a a v v v v v v v v v v v v −+=+−=++−=23321a a a =×⋅v v r a)3322a l a l ++}设为元胞中任意一处的位子矢量r vQ代表晶体中的任一物理量则Q ()(11a l r Q r +=vv l 1l 2l 3为整数即任意两元胞中相对应的点的物理性质相同我们可以用表示一种空间点阵{a l a l a l v v v 321++即一组l 1l 2l 3的取值表示格子中的一个格点l 1l 2l 3所有可能的集合就表示一个空间格子实际晶体可以看成在上述空间格子的每个格点上放置一组基元可为多种原子这个空间格子表征了晶格的周期性称为布拉菲格子Cu 的面心立方晶格Si 的金刚石晶格和NaCl 晶格均具有相同的布拉菲格子—面心立方格子它们的晶格结构虽然不同但具有相似的周期性自然界中晶格的类型很多但只可能有十四种布拉菲格子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
naq是第n个原子的振动位相因子 A是原子振动振幅,为常数 ω是格波的角频率,为常数;q是格波的波数
ω和q满足以下的色散关系
2 4sin2(aq)
m2
连续介质中的波(如声波)可表示为
i
Ae
(t
2
x
),则可看出
格波和连续介质波具有完全类似的形式
一个格波表示的是所有原子同时做频率为ω的振动
m2
ω取正值,则有
2 sin(aq)
m2
频率是波数的偶函数
q
色散关系曲线具有周期性,
- -2 0 2
aa
aa
仅取简约布里渊区的结果即可
由正弦函数的性质可知,只有满足 02 /m的格波
才能在一维单原子链晶体中传播,其它频率的格波将被强 烈衰减
3-1 格波取值的长波极限
长波极限情况 (q 0, a)
相邻原子间作用力
O
a
r
f ddv, (d dr2v2)a
只考虑相邻原子的作用,第n个原
子受到的作用力
(n 1n )(nn 1 )
(n1n12n)
平衡位置
第n个原子的运动方程
md2n
dt2
(n1n12n)
非平衡位置
3-1 格波的物理意义
上式的解(原子振动位移)具有平面波的形式
n Aei(tnaq)
但如果用与其它原子不同的运动方程描述两端的少数原子, 则会导致相互联立的方程求解更加复杂
采用玻恩-卡曼周期性边界条件避免这种情况 含义:原子链首尾的振动情况必须复原 玻恩-卡曼周期性
边界条件限制波数 在简约布里渊区内 取均匀分布的N个 分立值
3-1 格波的色散关系
2 4sin2(aq)
(q)
中子的非弹性散射 可见光的非弹性散射
拉曼光谱 X射线的非弹性散射
3-3 确定晶格振动谱的实验方法
晶格振动谱可以利用中子、可见光光子或X光光子受晶格 的非弹性散射来测定。
声子含义:晶格振动(格波)的能量量子 声子是一种元激发,可与电子或光子发生作用 声子具有能量、动量,看作是“准粒子” 晶格振动的问题转化为声子系统问题的研究
20赫兹---20000赫兹,高于20000赫兹的叫超声波
能量(eV) 0.01
声子
0.1
1 100 10000
3-2 一维双原子链模型
一维双原子链模型 声学波与光学波 声学波与光学波的长波极限 长光学波的特性
3-2 一维双原子链模型
两种原子m和M (M > m) 构成一维复式格子 M原子位于2n-1, 2n+1, 2n+3 … m原子位于2n, 2n+2, 2n+4… 晶格常数、同种原子间的距离:2a
第2n+1个M原子的方程 M d2 dt2 2n1(22n12n22n)
即一维复式晶格中存在两种 独立的格波: 声学波(频率较低) 光学波(频率较高)
命名主要根据两种格波在长 波极限 ( q→0 ) 的性质
3-2 声学波的长波极限
频率q 0 , m 2 M sin (a q ) am 2 M q
两种原子振幅比值
B A
1
两种原子的振幅和位
第一章内容: 简约布里渊区内的全部波矢代 表了晶体中所有的状态,区外 的波矢都可通过平移倒格矢在 该区内找到等价状态点;讨论 固体性质时,可以只考虑第一 布里渊区。
3-1 边界条件
一维单原子晶格看作无限长,所有原子是等价的,每个原 子的振动形式都一样
实际的晶体为有限,形成的链不是无穷长,链两头的原子 不能用中间原子的运动方程来描述
相趋于一致,运动方
式没有差别
长声学波代表原胞质 心(原胞整体)振动
3-2 光学波的长波极限
频率
q0, 2
mM mM
两种原子振幅比值
B A
m M
同种原子振动位相一致,
相邻原子振动相反
长光学波代表原胞质心 保持不变的振动,原胞 中不同原子做相对运动
3-2 长光学波的特性
长声学波的频率正比于波数,相当于把一维原子链看做连 续介质时的弹性波,类似于声波
sin(aq)aq, a q
22
m
一维单原子格波相当于波速为 a / m 的连续介质波
相邻两个原子之间的位相差 趋于0,晶体内所有原子振动 情况相同
3-1 声子
晶格振动 可通过引入简正坐标进行量子化处理,其结论可 用“声子”描述
振动能量的本征值为 nq (nq 12)hq ,其中为nq声子数
一维单原子链模型:
平衡时相邻原子间距为a (即原胞体积为a)
平衡位置
原子质量为m
原子限制在沿链方向运动
原子n离开平衡位置位移μn
原子n和原子n+1间相对位移
n1 n
非平衡位置
3-1 原子作用力的处理:简谐近似
忽略高阶项,简谐近似考虑原子 V 振动,相邻原子间相互作用势能
v(a)12(ddr2v2)a2
长光学波代表晶格的高频振动,实际晶体中在1013~1014Hz, 对应于远红外光波
电磁波只与波数相同的格波 发生相互作用
长声学波的频率太低,无法 与电磁波作用
c c0q
长光学波可与远红外光作用
离子晶体中光学波的共振能引 起对远红外光的强烈吸收,可 应用于红外光谱学
3-3 确定晶格振动谱的实验方法
3-1 一维单原子链模型
一维单原子链模型 格波及其色散关系 简约布里渊区 长波极限下的格波 声子
3-1 一维单原子链模型
一维单原子链:最简单的晶格模型
晶格具有周期性,晶格的振动具有波的形式 —— 格波
格波的研究方法:
计算原子之间的相互作用力来自根据牛顿定律写出原子运动方程,并求解方程
aq取值任意加减2π的整数倍对所有原子的振动没有影响,所
以可将波数q取值限制为 q
a
a
3-1 简约布里渊区
aq取值任意加减2π的整数倍对 所有原子的振动没有影响
红线:q=π/2a
绿线:q=5π/2a
将波数q取值限制为 q
a
a
即波数q取值在简约布里渊区
(第一布里渊区)中
第2n个m原子的方程 mdd 2t22n(22n2n12n1)
解也具有平面波 的形式
两种原子振动的 振幅(m取A, M取B)一般来说 是不同的
3-2 声学波与光学波
色散关系有不同的两种
2(m m M M ) 11(m 4 m M M )2sin2aq12 2(m m M M ) 11(m 4 m M M )2sin2aq12
相关文档
最新文档