坐标系统与投影变换及在ARCGIS中的应用讲解
地理坐标系与投影坐标系的转换方法与应用实例
地理坐标系与投影坐标系的转换方法与应用实例地理坐标系和投影坐标系是地图制图中常见的两种坐标系统。
地理坐标系使用经纬度来表示地球上的位置,而投影坐标系将三维地球表面投影到二维平面上。
在本文中,我们将探讨地理坐标系与投影坐标系之间的转换方法以及它们的应用实例。
一、地理坐标系的转换方法地理坐标系使用经度(longitude)和纬度(latitude)来表示地球上的位置。
经度表示东西方向上的位置,纬度表示南北方向上的位置。
经度的取值范围为-180度到180度,纬度的取值范围为-90度到90度。
地理坐标系与投影坐标系之间的转换需要采用数学模型。
目前常用的转换方法有:1. 艾尔伯斯等角投影法(Albers Equal-Area Conic Projection)该方法适用于大片区域的地图,可以保持地图上不同区域的面积比例。
转换时,需要指定标准纬线和两个标准经线。
通过投影公式,将地理坐标系中的经纬度转换为投影坐标系中的x和y坐标。
2. 等距投影法(Equidistant Projection)该方法适用于需要保持地图上不同位置之间的距离比例的情况。
转换时,需要指定中央子午线和标准纬线。
通过投影公式,将地理坐标系中的经纬度转换为投影坐标系中的x和y坐标。
3. 麦卡托投影法(Mercator Projection)这是一种常见的投影方法,用于将地球表面投影到平面上。
然而,麦卡托投影会在高纬度地区产生面积扭曲的问题。
转换时,需要指定标准经线。
通过投影公式,将地理坐标系中的经纬度转换为投影坐标系中的x和y坐标。
二、投影坐标系的应用实例投影坐标系在地图制图中有广泛的应用。
以下是几个应用实例:1. 地图测量和导航投影坐标系可以将地球表面上的位置转换为平面上的坐标,从而实现地图测量和导航功能。
航空和航海领域广泛使用投影坐标系来确定位置和航向。
此外,GPS导航系统也使用投影坐标系来实现导航功能。
2. 地图叠加和分析投影坐标系可以实现不同地图的叠加和分析。
【VIP专享】ARCGIS中坐标转换及地理坐标、投影坐标定义
ARCGIS中坐标转换及地理坐标、投影坐标定义1、动态投影(ArcMap)所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据!2、坐标系统描述(ArcCatalog)大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键->Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的.aux文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下!但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换!因此大家要更正一下对 ArcCatalog中数据属性中关于坐标系统描述的认识!3、投影变换(ArcToolBox)上面说了这么多,要真正的改变数据怎么办,也就是做投影变换!在ArcToolBox->Data Management Tools->Projections and Transformations下做!在这个工具集下有这么几个工具最常用:1、Define Projection2、Feature->Project3、Raster->Project Raster4、Create Custom Geographic Transformation当数据没有任何空间参考时,显示为Unknown!时就要先利用Define Projection来给数据定义一个Coordinate System,然后在利用Feature->Project或Raster->Project Raster工具来对数据进行投影变换!由于我国经常使用的投影坐标系统为北京54,西安80!由这两个坐标系统变换到其他坐标系统下时,通常需要提供一个Geographic Transformation,因为Datum已经改变了!这里就用到我们说常说的转换3参数、转换7参数了!而我们国家的转换参数是保密的!因此可以自己计算或在购买数据时向国家测绘部门索要!知道转换参数后,可以利用Create Custom Geographic Transformation工具定义一个地理变换方法,变换方法可以根据3参数或7参数选择基于GEOCENTRIC_TRANSLATION和 COORDINATE_方法!这样就完成了数据的投影变换!数据本身坐标发生了变化!当然这种投影变换工作也可以在ArcMap中通过改变Data 的Coordinate System来实现,只是要在做完之后在按照Data 的坐标系统导出数据即可!方法一:在Arcmap中转换:1、加载要转换的数据,右下角为经纬度2、点击视图——数据框属性——坐标系统3、导入或选择正确的坐标系,确定。
ArcGIS坐标系基础和投影变换
135度) 纬度为3度-53度
分带范围
看:2\分带范围.xls,2\带号和经纬度转换.exe
3度分带、6度分带对应平面XY 规定
高斯- 克吕格投影是按分带方 法各自进行投影,故各带坐标成独 立系统。以中央经线投影为纵轴 (Y), 赤道投影为横轴(X),两轴交 点即为各带的坐标原点。纵坐标以 赤道为零起算,赤道以北为正,以 南为负。我国位于北半球,纵坐标 均为正值。横坐标如以中央经线为 零起算,中央经线以东为正,以西 为负,横坐标出现负值,使用不便。
3度分带、6度分带对应平面XY 规定
规定将坐标X轴东移500公里当作起始轴,凡 是带内的横坐标值均加 500公里。由于高斯-克吕 格投影每一个投影带的坐标都是对本带坐标原点 的相对值,所以各带的坐标完全相同,为了区别 某一坐标系统属于哪一带,在横轴坐标前加上带 号,如
(21655933m,4231898m),其中21即为带号。
UTM • UTM投影全称为“通用横轴墨卡托投影”,是等角横轴割 圆柱投影(高斯-克吕格为等角横轴切圆柱投影),圆柱 割地球于南纬80度、北纬84度两条等高圈,该投影将地球 划分为60个投影带,每带经差为6度,已被许多国家作为 地形图的数学基础。UTM投影与高斯投影的主要区别在南 北格网线的比例系数上,高斯- 克吕格投影的中央经线投 影后保持长度不变,即比例系数为1,而UTM投影的比例系 数为0.9996。UTM投影沿每一条南北格网线比例系数为常 数,在东西方向则为变数,中心格网线的比例系数为 0.9996,在南北纵行最宽部分的边缘上距离中心点大约 363公里,比例系数为 1.00158。高斯-克吕格投影与UTM 投影可近似采用 Xutm=0.9996 * X高斯,Yutm=0.9996 * Y高斯进行坐标转换。
ArcGIS中的坐标系统和投影变换
得出投影坐标系所必须的条件是: 1、球面坐标 2、将球面坐标转换成平面坐标的过程(投影) GCS=椭球体+大地基准面 PCS = GCS + 投影过程
ArcGIS中北京54坐标系的描述
在Coordinate systems\Coordinatesystems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可 以看到四种不同的命名方式:
投影变换即是实现不同坐标系之间的转换,如 WGS84与BJ54是两种不同的大地基准面,不同 的参考椭球体,因而两种地图下,同一个点的坐 标是不同的,无论是三度带六度带坐标还是经纬 度坐标都是不同的。当要把GPS接收到的点 (WGS84坐标系统的)叠加到BJ54坐标系统的 底图上,那就会发现这些GPS点不能准确的在它 该在的地方,即“与实际地点发生了偏移”。这 就要求把这些GPS点从WGS84的坐标系统转换 成BJ54的坐标系统了。
首先让我们来看看ArcGIS产品中对于北京54投影坐标系统的定义参数:
Projection: Gauss_Kruger Parameters: False_Easting: 500000.000000 False_Northing: 0.000000 Central_Meridian: 117.000000 Scale_Factor: 1.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Name: GCS_Beijing_1954 Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000
坐标系统与投影变换及在ARCGIS中的应用
坐标系统与投影变换及在ARCGIS中的应用概述:本文共可分为如下几个部分组成:地球椭球体(Ellipsoid)大地基准面(Geodetic datum)投影坐标系统(Projected Coordinate Systems )坐标系统和投影变换在桌面产品中的应用一、World files文件GIS处理的是空间信息,而所有对空间信息的量算都是基于某个坐标系统的,因此GIS中坐标系统的定义是GIS系统的基础,正确理解GIS中的坐标系统就变得尤为重要。
坐标系统又可分为两大类:地理坐标系统、投影坐标系统。
本文就对坐标系和投影及其在ArcGIS 桌面产品中的应用做一些简单的论述。
GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。
二、地球椭球体(Ellipsoid)众所周知我们的地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面。
假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。
地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。
因此就有了地球椭球体的概念。
地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。
f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。
由此可见,地球椭球体的形状和大小取决于a、b、f 。
因此,a、b、f被称为地球椭球体的三要素。
ArcGIS(ArcInfo)桌面软件中提供了30种地球椭球体模型;常见的地球椭球体数据见下表:对地球椭球体而言,其围绕旋转的轴叫地轴。
地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。
ArcGIS坐标系统与投影变换
投影带号中(央N经)线::24~46 λ0=(3N)°
投中影央带经号线(:Nλ)0:=(61N1~-3)2°2
ArcGIS坐标变换
坐标系变换
• 相同椭球体:
-北京54地理坐标北京54投影坐标 -西安80地理坐标西安80投影坐标 -WGS84地理坐标WGS84投影坐标
• 不同椭球体
-北京54地理坐标——西安80地理坐标 -西安80地理坐标——西安54地理坐标 -WGS84地理坐标——西安80地理坐标 -WGS84地理坐标——北京54地理坐标
XX尺平旋度移转因、、子YY平旋移转、、ZZ旋平转移
同一椭球不同坐标系统 西安80地理坐标西安80高斯投影平面坐标
(BL ) ( xy)
坐标系变换
• ArcGIS中坐标系变换:
– –
针针对对栅矢格量
不同椭球体坐标变换原理
• 常用变换方式
三参数通(过x偏一移个,已y知偏坐移标,点z偏推移算)
七参数
适用30km范围内的数据
x通偏过移三,个y偏已移知,坐z标偏点移推,算x旋(转布,尔y莎旋模转型,)z旋转,比例因子
严密的转换过程,结果精确
• 地心坐标系统
– 由卫星数据得到 – 使用地球的质心作为原点 – 使用最广泛的是 WGS 1984
• 参心坐标系统
– 特定区域内与地球表面吻合 – 大准地面原相点切:的参点考。椭球与大地水 , – Beijing54 Xian80
Global Ellipsoid
Local Ellipso
地理坐标系(大地坐标系)
2000国家大地坐标系 (54北现京行系坐、标西系安80系)
坐标系类型 地心坐标系
参心坐标系
如何进行地理坐标系与投影坐标系的转换
如何进行地理坐标系与投影坐标系的转换地理坐标系与投影坐标系的转换是地理信息系统(GIS)领域中一个重要的话题。
在GIS中,地理坐标系用经度和纬度表示地球上的位置,而投影坐标系则通过将地球的曲面投影到平面上来表示。
本文将从基础概念开始,介绍如何进行地理坐标系与投影坐标系之间的转换。
一、地理坐标系与投影坐标系的基本概念地理坐标系是基于地球的椭球体来定义的,通过经度(Longitude)和纬度(Latitude)来表示地球上的位置。
经度是指从地球中心引出的经线,在东经0度和西经0度之间取值,范围为-180度到180度;纬度是指从地球中心引出的纬线,在赤道和两极之间取值,范围为-90度到90度。
投影坐标系是将地球的曲面投影到平面上来表示地球上的位置,使得较大范围的地理信息能够在平面上得到合理的表示。
投影坐标系是二维的,使用直角坐标系来表示地球上的位置。
常见的投影方式有墨卡托投影、等经纬度投影、兰伯特等角投影等。
二、地理坐标系到投影坐标系的转换方法在GIS中,经常需要将地理坐标系转换为投影坐标系,以适应不同的应用需求。
下面介绍几种常见的转换方法。
1. 坐标参照系统(Coordinate Reference System,简称CRS)的设定CRS是地理信息数据的基础,它定义了地理坐标系和投影坐标系之间的关系。
在进行转换之前,首先需要确定数据使用的CRS。
2. 数据预处理在转换之前,需要对待转换的数据进行预处理。
这包括检查数据质量、确定数据坐标系,并进行必要的数据清洗和转换。
3. 地理坐标系到投影坐标系的转换转换地理坐标系到投影坐标系可以通过数学计算来实现。
通过使用已知的转换公式和参数,将经纬度坐标转换为直角坐标。
4. 空间插值和逆变换进行地理坐标系到投影坐标系的转换后,往往需要进行空间插值或逆变换来处理不同投影坐标系之间的差异。
空间插值方法可以校正因投影而引入的形变和失真。
三、常见的地理坐标系与投影坐标系的转换工具在实际应用中,有许多工具可以用来进行地理坐标系与投影坐标系的转换。
坐标系统和投影变换基础知识及其在ArcGIS桌面产品中的应用
坐标系统和投影变换基础知识及其在ArcGIS桌面产品中的应用(二)2011-01-24 10:52 5555人阅读评论(4) 收藏举报产品transformation工作工具system坐标系统和投影变换在ArcGIS桌面产品中的应用在我们了解了坐标系统和投影的定义和其内在的联系后,本文着重总结一下坐标系统和投影变换在桌面产品(版本9.2)中的应用(分ArcMap、ArcCatalog、ArcToolBox三大主要应用模块)。
1、动态投影(ArcMap)所谓动态投影指:改变ArcMap中的Data Frame(工作区)的空间参考或是对后加入到ArcMap工作区中数据的投影变换。
ArcMap的Data Frame (工作区)的坐标系统默认为第一个加载到当前Data Frame(工作区)的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不同,则ArcMap 会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示,但此时数据文件所存储的实际数据坐标值并没有改变,只是显示形态上的变化!因此叫动态投影。
表现这一点最明显的例子就是在Export Data时,用户可以选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data Frame (当前工作区的坐标系统)导出数据。
关于ArcMap的这种动态投影机制,我们可以利用一个北京54投影坐标系数据(乡镇.shp)和<ArcGIS InstallationDirectory>/DeveloperKit/SamepleCom/data/World/目录下的world30.shp数据来做一个实验说明。
乡镇.shp数据的坐标系统为北京54投影坐标系(Krasovsky_1940_Transverse_Mercator)。
在ArcMap或ArcCatalog中预览形态如图7所示:图7 北京54投影坐标系数据单独显示几何形态world30.shp数据的坐标系统为WGS84坐标系(GCS_WGS_1984)。
ArcGIS中坐标转换及地理坐标、投影坐标的定义
1.ARCGIS
1.1
所谓动态投影指,ArcMap中的Data的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在ExportData时,会让你选择是按thislayer'ssourcedata(数据源的坐标系统导出),还是按照theData(当前数据框架的坐标系统)导出数据!
在CoordinateSystems\ProjectedCoordinateSystems\GaussKruger\Beijing1954目录中,我们可以看到四种不同的命名方式:
Beijing1954(Xian1980)3DegreeGKCM117E
北京54(西安1980)3度带无带号
Beijing1954(Xian1980)3DegreeGKZone25
2.1..2
将球面坐标转化为平面坐标的过程称为投影。投影坐标系的实质是平面坐标系统,地图单位通常为米。投影坐标系在二维平面中进行定义。与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定。投影坐标系始终基于地理坐标系,即:
“投影坐标系=地理坐标系+投影算法函数“。
我们国家的投影坐标系主要采用高斯-克吕格投影,分为6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。具体分带法是:6度分带从本初子午线(primemeridian)开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,中国跨13-23带;3度投影带是从东经1度30分经线(1.5°)开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带,中国跨25-45带。
ARCGIS中坐标系的定义及投影转换方法
ARCGIS中坐标系的定义及投影转换方法ArcGIS是一款广泛应用于地理信息系统(GIS)的软件。
在ArcGIS 中,坐标系的定义和投影转换方法是非常重要的,它们用于描述和处理地理空间数据。
坐标系的定义:坐标系是用来描述地球上其中一点在二维或三维空间中的位置的一种系统。
在ArcGIS中,常用的坐标系有地理坐标系和投影坐标系。
地理坐标系:地理坐标系是由经纬度确定的,在地理空间中以角度为单位描述位置的坐标系。
经度是从西经0度到东经180度,纬度是从赤道0度到北极90度或南极-90度。
地理坐标系在球面上描述地理位置,但在计算时会引入高度误差。
投影坐标系:为了在平面上准确描述地理位置,需要采用投影坐标系。
投影坐标系将地理空间中的位置投影到一个平面上,以米或英尺为单位。
ArcGIS提供了各种投影坐标系以满足不同地区和任务的需要。
常见的投影坐标系包括等角圆柱投影、等面积圆锥投影和兰勃托投影等。
投影转换方法:在ArcGIS中,进行坐标系的投影转换可以通过以下方法实现:1.工具栏转换:在ArcGIS的工具栏中,有许多工具可以用于投影转换。
例如,“投影”工具可以将地理坐标系转换为投影坐标系,而“定义坐标系”工具可以定义、更改和转换数据的投影坐标系。
2.批量转换:ArcGIS中的“批量投影”工具可以用于将多个数据一次性地从一个坐标系转换为另一个坐标系。
这对于处理大量数据和保持一致性非常有用。
3.手动转换:有时,需要手动转换坐标系。
在ArcGIS中可以通过在数据的属性中手动定义或更改坐标系,然后将其转换为新的投影坐标系。
4.预定义转换:ArcGIS提供了一系列预定义的转换方法,可以将数据从一种坐标系转换为另一种坐标系。
这些预定义的转换方法可以根据需要进行调整和优化。
总结:在ArcGIS中,坐标系的定义和投影转换方法是地理空间数据处理的重要环节。
通过合理选择合适的坐标系和使用正确的投影转换方法,可以确保数据的准确性和一致性,为地理分析和空间研究提供可靠的支持。
ArcGIS中坐标转换及地理坐标、投影坐标的定义
ARCGIS中坐标转换及地理坐标、投影坐标的定义1.ARCGIS中坐标转换及地理坐标、投影坐标的定义1.1动态投影(ArcMap)所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据!1。
2坐标系统描述(ArcCatalog)大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键—>Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的。
aux文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下!但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换!因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识!1.3投影变换(ArcToolBox)上面说了这么多,要真正的改变数据怎么办,也就是做投影变换!在ArcToolBox—>Data Management Tools->Projections and Transformations下做!在这个工具集下有这么几个工具最常用:1、Define Projection2、Feature—〉Project3、Raster->Project Raster4、Create Custom Geographic Transformation当数据没有任何空间参考时,显示为Unknown!时就要先利用Define Projection来给数据定义一个Coordinate System,然后在利用Feature-〉Project或Raster—〉Project Raster工具来对数据进行投影变换!由于我国经常使用的投影坐标系统为北京54,西安80!由这两个坐标系统变换到其他坐标系统下时,通常需要提供一个Geographic Transformation,因为Datum已经改变了!这里就用到我们说常说的转换3参数、转换7参数了!而我们国家的转换参数是保密的!因此可以自己计算或在购买数据时向国家测绘部门索要!知道转换参数后,可以利用Create Custom Geographic Transformation工具定义一个地理变换方法,变换方法可以根据3参数或7参数选择基于GEOCENTRIC_TRANSLATION和COORDINATE_方法!这样就完成了数据的投影变换!数据本身坐标发生了变化!当然这种投影变换工作也可以在ArcMap 中通过改变Data 的Coordinate System来实现,只是要在做完之后在按照Data 的坐标系统导出数据即可!方法一:在Arcmap中转换:1、加载要转换的数据,右下角为经纬度;2、点击视图——数据框属性——坐标系统;3、导入或选择正确的坐标系,确定.这时右下角也显示坐标.但数据没改变;4、右击图层-—数据-—导出数据;5、选择第二个(数据框架),输出路径,确定;6、此方法类似于投影变换。
Arcgis投影变换原理与应用讲解
投影选择
根据不同的应用需求选择合适的 投影类型,如制作世界地图时通 常选择等面积投影,制作地形图 时通常选择等角投影。
投影变换方法
参数变换法
数字变换法
通过已知的参数和公式将地理坐标转 换为地图坐标,需要确定参数的准确 性和适用范围。
利用性和分析精度。
06 总结与展望
投影变换的未来发展方向
投影变换算法优化
随着计算机技术的发展,未来投 影变换算法将进一步优化,提高
变换的准确性和效率。
多源数据融合
随着地理信息数据的多样化,未来 投影变换将更多地应用于多源数据 的融合处理,提高数据的一致性和 可比性。
动态地图投影
为了满足实时性和动态性的需求, 未来投影变换将更多地应用于动态 地图的生成和处理。
投影变换基本概念
01
02
03
投影变换
将地理坐标转换为地图坐 标的过程,包括地图投影 和坐标变换两个步骤。
地图投影
将地球表面上的点映射到 平面上的过程,需要选择 合适的投影方法和参数。
坐标变换
将地理坐标转换为地图坐 标的过程,需要建立地理 坐标系和地图坐标系之间 的转换关系。
投影分类与选择
投影分类
案例三:空间数据整合中的投影变换
总结词
空间数据整合是地理信息技术的重要应用之一,通过投影变换可以实现不同来源和格式 的空间数据的整合。
详细描述
在空间数据整合中,不同来源和格式的空间数据可能采用不同的坐标系和投影方式。为 了实现空间数据的整合和分析,需要进行坐标系之间的转换。ArcGIS的投影变换功能 可以将不同来源和格式的空间数据转换为统一的坐标系和投影方式,提高空间数据的可
ArcGIS10.2坐标系定义投影说明
ArcGIS10.2坐标系定义投影说明坐标系定义投影说明1、坐标系基础知识坐标系分为地理坐标系与投影坐标系。
1.1、地理坐标系常见地理坐标系:国家2000(CGCS2000);西安80(Xian_1980).地理坐标系坐标值为经纬度格式,如下:1.2、投影坐标系常见投影坐标系:高斯-克吕格投影(Gauss_Kruger);UTM投影.投影坐标系必须设定在某一个地理坐标系的基础上,其作用是使用某种投影方法将经纬度坐标转换为平面坐标。
投影坐标系按照坐标值的格式分为有代号和无代号两种。
有代号坐标值格式为8-7;(Y值是8位,X值是7位)无代号坐标值格式为6-7,(Y值6位,X值是7位)有代号示例:西安80高斯克吕格39带坐标值格式:无代号示例,西安80高斯克吕格117度坐标值格式:2、坐标系定义坐标系定义原则:必须定义为待定义文件本身真实正确的坐标系。
如不知道其真实坐标系,一般不能直接定义。
定义操作不会改变坐标值,因此如定义错误,可重新定义覆盖。
坐标系定义一般发生在以下情况下:已知某SHP文件坐标系是“西安80高斯投影无代号117”,但此SHP坐标系未定义,如下图,需要定义之后才能与其他文件、影像套和,或进行投影操作。
定义方法:在目录中双击文件,出现属性窗口。
在坐标系页面选择相应坐标系。
3、坐标系投影坐标系投影可以将某标系的文件转换成另一坐标系的文件。
投影注意事项投影之前,必须先正确定义待投影文件的坐标系投影会改变文件的坐标值,转换后其坐标值格式会发生变化。
例如可以将有代号(38带)转换成无代号,转换后坐标值由8-7格式转为6-7格式CGCS2000_3_Degree_GK_Zone_38转CGCS2000_3_Degree_GK_CM_114E 或将38带转为39带,转换后坐标值由38开头转为39开头CGCS2000_3_Degree_GK_Zone_38转CGCS2000_3_Degree_GK_Zone_39 投影方法:。
坐标系统与投影在ArcGIS系统中的应用
坐标系统与投影在ArcGIS系统中的应用摘要:本文对投影坐标系统的定义及分类进行了简要的说明,重点阐述了arcgis系统下,实施坐标投影变换的方法及应用,为各类测量成果、gis数据的坐标变换与可持续应用提供了参考。
关键词:坐标系统;投影;arcgis;应用中图分类号:p282.2 文献标识码:a 文章编号:0 引言gis处理的是空间数据信息,而所有对空间信息的量算都是基于某个坐标系统的,因此,gis中坐标系统的定义是gis系统的基础,正确理解gis中的坐标系统变得尤为重要。
我国自1954北京坐标系发布以来,又陆续发布了1980年西安坐标系、2000国家大地坐标系,每套坐标系统的应用,都会涉及大量的地图数据和坐标成果,如何切实有效地利用以往的数据资源,充分理解坐标系统和投影变换的原理,切实做好坐标系统和投影变换工作,逐渐成为现代gis 数据处理和应用的一项重要工作内容。
1 投影坐标系统(projected coordinate systems)1.1 地图投影及分类地球椭球体表面是个曲面,而我们日常生活中地图量测的空间通常是二维平面,因此在地图制图和线性量测时首先要考虑把曲面转化成平面。
由于球面上点的位置是用地理坐标(λ,ψ)表示的,而平面上的点的位置是用直角坐标(x,y)表示的,所以要想用地球表面上的点转换到平面上,必须采用一定的方法来确定地理坐标与平面坐标或极坐标之间的关系。
这种在球面和平面之间建立点与点之间函数关系的数学方法,就是地球投影方法。
从上述定义中可以看出,将球面坐标转化为平面坐标的过程便是投影过程,投影所需要的必要条件是:第一、任何一种投影都必须基于一个椭球(地球椭球体);第二、将球面坐标转换为平面坐标(投影算法);简单地说投影坐标系是地理坐标系+投影过程。
投影从根本上来说是一种数学变换方法,那么任何一种投影都会存在一定的变形,因此可以按照变形性质将投影方法分为:等角投影(conformal projection)、等积投影(equal area projection)、等距投影(equidistant projection)、方位角投影(true-direction projection)四种。
ArcGIS中的坐标系统和投影变换
本地基准面是将参考椭球体移动到更贴近当地地表形状 的位置,参考椭球体上的某一点必然对应着地表上的某一 位置,这个点就称作大地起算原点。大地起算原点的坐标 值是固定的,其他点的坐标值都可以由该点计算得到。本 地坐标系统的起始位置一般就不在地心的位置了,而是距 地心一定的偏移量。
三、空间参考(Spatial Reference)
一个空间参考包括了描述要素X,Y,Z位置的坐标系统 (Coordinate System),以及描述要素X,Y,Z值的分 辨率(resolution)和容限(tolerance)。 分辨率:分辨率反映了数据库中可以存储的坐标值的最 小地图单位长度。 容限:容限反映了数据的坐标精度,也就是坐标值之间 的最小距离,小于这个容限的将会被认为是同一个点。 对于以米为单位的投影坐标系统,默认的容限值是 0.001,也就是10倍的分辨率值。用户可以自定义容限 值,但是不要小于分辨率的2倍大小。 坐标系统(Coordinate System):分为地理坐标系统 (Geographic coordinate system)和投影坐标系统 (Project coordinate system)两种,分别用来表示 三维的球面坐标和二维的平面坐标。
Beijing Beijing Beijing Beijing 1954 1954 1954 1954 3 Degree GK CM 75E.prj 3 Degree GK Zone 25.prj GK Zone 13.prj GK Zone 13N.prj
三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标 前不加带号; 三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标 前加带号; 六度分带法的北京54坐标系,分带号为13,横坐标前加带号; 六度分带法的北京54坐标系,分带号为13,横坐标前不加带号。
arcgis投影变换原理与应用讲解
投影的分类及其特点
等轴投影
保持地球各个方向一致,适用于航空制图。
等角投影
保持地球上局部区域的角度不变,适用于导 航和定位。
等面积投影
保持地球上各个区域的面积比例,适用于统 计和分析。
圆锥投影
使用圆锥面将地球投影到平面上,适用于大 面积地图制作。
投影变换的原理
投影变换的原理是根据地球表面的形状和尺寸,将地理坐标转换为平面坐标的数学运算。通过投影算法, 将地球上的点映射到平面上的对应位置。
ArcGIS投影变换原理与应 用讲解
探索地图投影的定义、分类和特点,深入解析投影变换的原理、数据源和选 择标准,介绍常用的投影方法。欢迎踏上这个有趣而又实用的GIS之旅!
什么是地图投影?
地图投影是将地球表面的曲面投影到平面上的过程。通过技术手段,将三维 的地球表面转换为二维的地图,帮助我们更好地理解和分析地理数据。
常用的投影方法
墨卡托投影
用于航海、导航和航空制图, 将经线和纬线直角坐标变换为 直线坐标。
兰伯特等面积投影
圆柱投影
保持地球各个区域的面积比例, 适用于统计和分析。
使用圆柱面将地球投影到平面 上,适用于大面积地图制作。
地图坐标系统的选用
选择合适的地图坐标系统有利于数据的整合和分析。常用的坐标系统包括经 纬度坐标和投影坐标,根据需求和数据特点选择最合适的坐标系统。
投影变换的数据源
1 椭球体
用于描述地球表面的数学模型。
3 大地ቤተ መጻሕፍቲ ባይዱ准面
确定地球的基准面和坐标系统。
2 椭球参数
定义椭球体的形状和大小。
投影变换的选择标准
选择合适的投影方法需要考虑地图的规模、用途、形状变形特点以及数据精 度等因素。根据不同需求,选择最适合的投影方法以保证地图数据的可靠性 和有效性。
ArcGIS中的坐标系统定义与投影转换
ArcGIS中的坐标系定义与投影转换坐标系统是GIS数据重要的数学基础,用于表示地理要素、图像和观测结果(如通用地理框架内的GPS 位置)的参照系统,坐标系统的定义能够保证地理数据在软件中正确的显示其位置、方向和距离,缺少坐标系统的GIS数据是不完善的,因此在ArcGIS软件中正确的定义坐标系统以及进行投影转换的操作非常重要。
1.ArcGIS中的坐标系统ArcGIS中预定义了两套坐标系统,地理坐标系(Geographic coordinate system)和投影坐标系(Projected coordinate system)。
1.1 地理坐标系地理坐标系(GCS) 使用三维球面来定义地球上的位置。
GCS中的重要参数包括角度测量单位、本初子午线和基准面(基于旋转椭球体)。
地理坐标系统中用经纬度来确定球面上的点位,经度和纬度是从地心到地球表面上某点的测量角。
球面系统中的水平线(或东西线)是等纬度线或纬线,垂直线(或南北线)是等经度线或经线。
这些线包络着地球,构成了一个称为经纬网的格网化网络。
GCS中经度和纬度值以十进制度为单位或以度、分和秒(DMS) 为单位进行测量。
纬度值相对于赤道进行测量,其范围是-90°(南极点)到+90°(北极点)。
经度值相对于本初子午线进行测量。
其范围是-180°(向西行进时)到180°(向东行进时)。
ArcGIS中,中国常用的坐标系统为GCS_Beijing_1954(Krasovsky_1940),GCS_Xian_1980(IAG_75),GCS_WGS_1984(WGS_1984),GCS_CN_2000(CN_2000)。
1.2 投影坐标系将球面坐标转化为平面坐标的过程称为投影。
投影坐标系的实质是平面坐标系统,地图单位通常为米。
投影坐标系在二维平面中进行定义。
与地理坐标系不同,在二维空间范围内,投影坐标系的长度、角度和面积恒定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标系统与投影变换及在ARCGIS中的应用概述:本文共可分为如下几个部分组成:地球椭球体(Ellipsoid)大地基准面(Geodetic datum)投影坐标系统(Projected Coordinate Systems )坐标系统和投影变换在桌面产品中的应用一、World files文件GIS处理的是空间信息,而所有对空间信息的量算都是基于某个坐标系统的,因此GIS中坐标系统的定义是GIS系统的基础,正确理解GIS中的坐标系统就变得尤为重要。
坐标系统又可分为两大类:地理坐标系统、投影坐标系统。
本文就对坐标系和投影及其在ArcGIS桌面产品中的应用做一些简单的论述。
GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。
二、地球椭球体(Ellipsoid)众所周知我们的地球表面是一个凸凹不平的表面,而对于地球测量而言,地表是一个无法用数学公式表达的曲面,这样的曲面不能作为测量和制图的基准面。
假想一个扁率极小的椭圆,绕大地球体短轴旋转所形成的规则椭球体称之为地球椭球体。
地球椭球体表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。
因此就有了地球椭球体的概念。
地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。
f=(a-b)/a为椭球体的扁率,表示椭球体的扁平程度。
由此可见,地球椭球体的形状和大小取决于a、b、f 。
因此,a、b、f被称为地球椭球体的三要素。
ArcGIS(ArcInfo)桌面软件中提供了30种地球椭球体模型;常见的地球椭球体数据见下表:图1 常见的地球椭球体数据表对地球椭球体而言,其围绕旋转的轴叫地轴。
地轴的北端称为地球的北极,南端称为南极;过地心与地轴垂直的平面与椭球面的交线是一个圆,这就是地球的赤道;过英国格林威治天文台旧址和地轴的平面与椭球面的交线称为本初子午线。
以地球的北极、南极、赤道和本初子午线等作为基本要素,即可构成地球椭球面的地理坐标系统(A geographic coordinate system (GCS) uses a threedimensional spherical surface to define locations on the earth.A GCS includes an angular unit of measure, a prime meridian,and a datum (based on a spheroid).)。
可以看出地理坐标系统是球面坐标系统,以经度/维度(通常以十进制度或度分秒(DMS)的形式)来表示地面点位的位置。
地理坐标系统以本初子午线为基准(向东,向西各分了1800)之东为东经其值为正,之西为西经其值为负;以赤道为基准(向南、向北各分了900)之北为北纬其值为正,之南为南纬其值为负。
地表任意位置的坐标值可由图2表达:图2地理坐标系统三、大地基准面(Geodetic datum)大地基准面(Geodetic datum),设计用为最密合部份或全部大地水准面的数学模式。
它由椭球体本身及椭球体和地表上一点视为原点间之关系来定义。
此关系能以6个量来定义,通常(但非必然)是大地纬度、大地经度、原点高度、原点垂线偏差之两分量及原点至某点的大地方位角。
先抛开测绘学上这个晦涩难懂的概念,看看GIS系统中的基准面是如何定义的,GIS 中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出版的《城市地理信息系统标准化指南》第76至86页。
假设Xg、Yg、Zg表示WGS84地心坐标系的三坐标轴,Xt、Yt、Zt表示当地坐标系的三坐标轴,那么自定义基准面的7参数分别为:三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校正因子,用于调整椭球大小。
把地球椭球体和基准面结合起来看,如果把地球比做是“马铃薯”,表面凸凹不平,而地球椭球体就好比一个“鸭蛋”,那么按照前面的定义,基准面就定义了怎样拿这个“鸭蛋”去逼近“马铃薯”某一个区域的表面,X、Y、Z轴进行一定的偏移,并各自旋转一定的角度,大小不适当的时候就缩放一下“鸭蛋”,这样通过如上的处理必定可以达到很好的逼近地球某一区域的表面。
因此,每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。
我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体(IAG75)建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。
WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。
克拉索夫斯基(Krassovsky)、1975地球椭球体(IAG75)、WGS1984椭球体的参数可以参考常见的地球椭球体数据表。
椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。
地球椭球体和基准面之间的关系以及基准面是如何结合地球椭球体从而实现来逼近地球表面的可以通过图3一目了然。
图3 基准面定义椭球体拟合地表某一区域表面四、投影坐标系统(Projected Coordinate Systems )地球椭球体表面也是个曲面,而我们日常生活中的地图及量测空间通常是二维平面,因此在地图制图和线性量测时首先要考虑把曲面转化成平面。
由于球面上任何一点的位置是用地理坐标(λ,φ)表示的,而平面上的点的位置是用直角坐标(χ,у)或极坐标(r,)表示的,所以要想将地球表面上的点转移到平面上,必须采用一定的方法来确定地理坐标与平面直角坐标或极坐标之间的关系。
这种在球面和平面之间建立点与点之间函数关系的数学方法,就是地图投影方法。
接下来首先让我们来看看ArcGIS产品中对于北京54投影坐标系统的定义参数:Projection: Gauss_KrugerParameters:False_Easting: 500000.000000False_Northing: 0.000000Central_Meridian: 117.000000Scale_Factor: 1.000000Latitude_Of_Origin: 0.000000Linear Unit: Meter (1.000000)Geographic Coordinate System:Name: GCS_Beijing_1954Alias:Abbreviation:Remarks:Angular Unit: Degree (0.017453292519943299)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening: 298.300000000000010000从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System(地理坐标系统)。
那么我们从这一角度上解释一下投影和投影所需要的必要条件:将球面坐标转化为平面坐标的过程便是投影过程;投影所需要的必要条件是:第一、任何一种投影都必须基于一个椭球(地球椭球体),第二、将球面坐标转换为平面坐标的过程(投影算法)。
简单的说投影坐标系是地理坐标系+投影过程。
下面从透视法(地图投影方法的一种)角度来直观的理解投影,如图4:图4 透视法投影示意图几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。
如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上。
投影既然是一种数学变换方法,那么任何一种投影都存在一定的变形,因此可以按照变形性质将投影方法如下分类:等角投影(Conformal Projection)、等积投影(Equal Area Projection)、等距投影(Equidistant Projection)、等方位投影(True-direction Projection)四种。
每种投影根据其名称就可以知道其方法保证了数据的那些几何属性,在实际应用过程中应根据需求来选取某种投影。
如果按照投影的构成方法分类又可分为方位、圆柱、圆锥投影三种,在上述三种投影中由于几何面与球面的关系位置不同,又分为正轴、横轴和斜轴三种。
如图5-7:图5 正、横、斜圆柱投影示意图图6 正、横、斜圆锥投影示意图图7 正、横、斜方位投影示意图我国通常采用的投影——高斯—克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。
德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于1912年对投影公式加以补充,故名。
设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。
然后将圆柱面沿过南北极的母线剪开展平,即获高斯-克吕格投影平面。
高斯—克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。
高斯—克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。
按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。
分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。