电工基础_第一章_电路的基本概念和基本定律讲解
《电工学》电路的基本概念与基本定律

(2) 说明功率的平衡关系。
I
解:(1) 对于电源
+++
U= E1 U1= E1 IR01
E1
–
即 E1= U + IR01 = 220 +50.6 = 223V R01
U = E2 + U2 = E2 + IR02
U
–
–E2
R02
即 E2= UIR02 = 220 50.6 = 217V
(2) 功率的平衡关系 E1 = E2 + IR01 + IR02
+ (d)
解: (a) 电流从“+”流出,故为电源;
(b) 电流从“+”流入,故为负载;
(c) 电流从“+”流入,故为负载 ;
(d) 电流从“+”流出,故为电源。
例2:已知:U1 = 9V,I = -1A,R = 3Ω
求:元件1、2分别是电源还是负载,并验证
电路功率是否平衡? I R
解:因为U2 = -RI + U1 = 12V
I1 a I2
对回路1:E1 = I1 R1 +I3 R3
R1
R2
或 I1 R1 +I3 R3 –E1 = 0
E1 1 I3 R3 2 E2 对回路2:E2= I2 R2+I3 R3
b
或 I2 R2+I3 R3 –E2 = 0
基尔霍夫电压定律(KVL) 反映了电路中任一
回路中各段电压间相互制约的关系。
所以电流从元件1的“+” 流入,从元件2的“+”流
1 U1
U2 2
出,
故元件1为负载,元件2为电源。 电源产生功率: P2 =︱U2I︱= 12W
电工技术电路的基本概念和基本定律优秀课件

1.3.1 电压源与电流源及等效变换
电工技术 电路的基本概念和基本定律优秀
(2)特性曲线与符号
i=iS 流过电流为is,与电源两端电压无关,由电源本身确定,电压任意,由外电路确定。
2.理想电流源
(1)伏安关系
电工技术 电路的基本概念和基本定律优秀
1.3.2 实际电源的两种模型
理想电路元件主要有电阻元件、电感元件、电容元件和电源元件等。
电工技术 电路的基本概念和基本定律优秀
例1: 手电筒电路
电工技术 电路的基本概念和基本定律优秀
手电筒的电路模型
R
+
Ro
E
–
S
+
U
–
I
电池
导线
灯泡
开关
电池是电源元件,其参数为电动势 E 和内阻Ro;
灯泡主要具有消耗电能的性质,是电阻元件,其参数为电阻R;
负载
EBA
UAB
导线
电源
电工技术 电路的基本概念和基本定律优秀
电动势是衡量外力即非静电力做功能力的物理量。外力克服电场力把单位正电荷从电源的负极搬运到正极所做的功,称为电源的电动势。
电动势的实际方向与电压实际方向相反,规定为由负极指向正极。
电工技术 电路的基本概念和基本定律优秀
US
R4
R3
R2
R1
D
C
B
A
R5
电工技术 电路的基本概念和基本定律优秀
在分析和计算电路时,电压和电流参考方向的假定,原则上是任意的。但为了方便起见,元件上的电压和电流常取一致的参考方向,这称为关联参考方向。
I
R
A
B
U
U= IR
电工基础——电路的基本概念和定律

教学方法
通过自学的方法引入参考方向的定义
思考题
1. 为什么要在电路图上规定电流的参考方向? 请说明参考方向与实际方向的关系?
2.电压参考方向都有哪些表示方法?
1.3 电功率和电能
目的与要求
或
i Gu
5.功率
在电流和电压关联参考方向下, 任何瞬
时线性电阻元件接受的电功率为
u 2 p ui Ri Gu R
2
2
线性电阻元件是耗能元件。
6.焦耳定律
如果电阻元件把接受的电能转换成热能, 则从 t0到t时间内。电阻元件的热[量] Q, 也就是 这段时间内接受的电能W为
Q W
负, 故 P=16+32-24=24W
Ⅳ、教学方法
讲授法
Ⅴ、思考题
1.当元件电流,电压选择关联参考方向时,什么情 况下元件接受功率?什么情况下元件发出功率?
2.有两个电源,一个发出的电能为1000kW.h,另一 个发出的电能为500kW.h。是否可认为前一个电源 的功率大,后一个电源的功率小?
A B A B
+
u
-
u
(a)
(b)
图1.3 电压的参考方向
1.2.2 电压及其参考方向(四)
4.若电压的参考方向与实际方向一致,电压为正。
若电压的参考方向与实际方向相反,电压为负。
5.分析电路时,首先应该规定电流电压的参考方 向。
1.2.2 电压及其参考方向(五)
6.元件的电压参考方向与电流参考方向是一致的, 称为关联参考方向。
1.1.1 电路(一)
1. 电路是电流的流通路径, 它是由一些电气设 备 和元器件按一定方式连接而成的。复杂的 电路呈网状, 又称网络。 电路和网络这两个术 语是通用的。
电工电子学课件_______第一章

uab
b
13
关联参考方向与非关联参考方向 对一个元件,电流参考方向和电压参考方向 可以相互独立地任意确定,但为了方便起见,常 常将其取为一致,称关联参考方向;如不一致, 称非关联参考方向。 i
a
i u
b a
+
−
u
+
b
(a)关联参考方向
(b)非关联参考方向
如果采用关联参考方向,在标注时标出一种即可。 如果采用非关联参考方向,则必须全部标注。
b (b)
三、电路中的功率
定义: 单位时间内元件吸收(消耗)或发出(释 放)的电能。 dw 数学表达式: p dt 单位:瓦特 W 方向:在电压、电流取关联参考方向下,p=ui 表 示的是该元件吸收(消耗)功率的大小。即为:
i i
w
+ u
w
+ u
p>0
18
p<0
第一章 电路的基本概念、定律与分析方法
34
第一章 电路的基本概念、定律与分析方法
实际电压源 I + − Rs Us
U Us
RL
0 理想电压源 实际电压源
U
I
电源内阻,表 示内部损耗 U = Us – IRs
Rs越小 特性曲线越平坦
当Rs = 0 时,实际电压源模型就变成电压源模型
35
第一章 电路的基本概念、定律与分析方法
2.电流源
Uab
15
第一章 电路的基本概念、定律与分析方法
Uab是否表示a端的电位高 于b端的电位?
a
Uab 元件
b
Uab只表示a、b两端电位的参考 方向为由a指向b。实际两点电 位哪点高,要看是Uab>0,还是 Uab<0。若Uab>0,则a端电位高 于b端电位。反之, b 端电位高 于a端电位。
电工学 1 电路的基本概念和基本定律

U = Uab = Uac+ Ucb = US– IR
I US U R
(2) 一段有源电路欧姆定律
I a
U
b (b)
c 。 US
R
U = Uab = Uac+ Ucb = US + IR
I U S U R
1.4 电路的基本工作状态
1、 通路
S
开关闭合,
+
接通电源与负载 特征:
US -
I
US
I=0 U1 = US P= 0
电源端电压 ( 开路电压 ) 负载功率
3、短路
I
电源外部端子被短接 特征:
+ FU
US
- U1
R0
FU
I US R0
短路电流(很大)
U1 = 0
电源端电压
P= 0
负载功率
Rl RL
Rl
PUs = P = I²R0 电源产生的能量全被内阻消耗掉
电气设备的额定值
1.2 电路的主要物理量
(1) 电流
定义:电路中电荷的定向有规则运动形成电流。
大小:单位时间内通过导体横截面的电荷量定 义为电流强度,简称电流,用 i 表示。
如果电流强度不随时间变化,则这种恒定电流 简称为直流,用大写字母 I 表示。 单位: 安培(A), 千安(kA), 毫安(mA),微安(μA) 实际方向:正电荷运动的方向
b
单位: 伏(V),千伏 (kV),毫伏 (mV),微伏(μV)
实际方向:电源内部从低电位指向高电位。
(电位升方向)
(4) 电功率
根据焦耳定律可以推导出电功率等于电压和电流
的乘积,即
P U I
单位: MW, kW, W,mW等
电工基础电路的基本概念和基本定律教案

电工基础-电路的基本概念和基本定律教案第一章:电路的基本概念1.1 电流定义:电流是电荷的流动,单位是安培(A)电流的产生:电压使电荷发生移动形成电流1.2 电压定义:电压是电场力推动电荷移动的能力,单位是伏特(V)电压的产生:电源提供电压,使电荷在电路中流动1.3 电阻定义:电阻是电路对电流阻碍作用的大小,单位是欧姆(Ω)电阻的计算:R = V/I,其中V为电压,I为电流第二章:电路的基本元件2.1 电源定义:电源是提供电压的装置常见电源:电池、发电机、电源适配器等2.2 负载定义:负载是电路中消耗电能的装置常见负载:电灯、电动机、电阻等2.3 开关定义:开关是控制电路通断的装置常见开关:手动开关、自动开关等第三章:基本电路定律3.1 欧姆定律定义:电流I与电压V成正比,与电阻R成反比,公式为I = V/R 应用:计算电路中的电流、电压和电阻3.2 基尔霍夫电压定律(KVL)定义:电路中任意闭合回路电压的代数和等于零应用:分析电路中的电压关系,解决电压问题3.3 基尔霍夫电流定律(KCL)定义:电路中任意节点流入电流的代数和等于流出电流的代数和应用:分析电路中的电流关系,解决电流问题第四章:简单电路分析4.1 串联电路定义:电路中元件依次连接,电流相同,电压分配特点:电流相同,电压分配应用:计算串联电路中的电流、电压和电阻4.2 并联电路定义:电路中元件并行连接,电压相同,电流分配特点:电压相同,电流分配应用:计算并联电路中的电流、电压和电阻第五章:电路测量与实验5.1 测量工具电流表:测量电路中的电流电压表:测量电路中的电压电阻表:测量电路中的电阻5.2 实验步骤与方法实验设计:确定实验目的、电路连接方式等实验操作:按照实验步骤进行测量和数据记录实验分析:根据测量数据进行分析,得出结论第六章:电路的进阶概念6.1 交流电与直流电定义:交流电是电压和电流方向周期性变化的电,直流电是电压和电流方向不变的电特点:交流电有频率和相位,直流电稳定6.2 频率与周期定义:频率是单位时间内交流电变化的次数,周期是一次完整变化所需的时间关系:f = 1/T,其中f为频率,T为周期6.3 相位差定义:交流电中两个电压或电流波形的相对时间差应用:分析电路中波形的相位关系第七章:电路图的绘制7.1 电路图符号电源符号:电池、发电机等负载符号:电灯、电动机、电阻等开关符号:手动开关、自动开关等7.2 电路图绘制规则清晰:符号清晰,连线准确简洁:简化电路,删除多余部分一致:符号一致,电压方向一致7.3 电路图的解读与绘制解读:分析电路元件和连接方式,理解电路功能绘制:根据电路元件和连接方式,绘制电路图第八章:电路仿真软件的使用8.1 电路仿真软件概述定义:电路仿真软件是一种用于电路分析和设计的工具作用:模拟电路运行,验证电路设计,分析电路性能8.2 常见的电路仿真软件Multisim:功能强大,操作简单,广泛应用于电路设计和实验教学Proteus:界面友好,兼容性好,支持多种硬件描述语言LabVIEW:基于图形化编程语言,适用于复杂电路系统的研究和开发8.3 电路仿真软件的使用方法打开软件,创建新项目绘制电路图,添加元件设置参数,运行仿真分析结果,优化电路设计第九章:磁路与电磁感应9.1 磁路定义:磁力线在电路中的路径磁阻:磁路对磁力线的阻碍作用磁通量:磁场穿过磁路的面积与磁场强度之积9.2 电磁感应定义:磁通量变化时,产生感应电动势法拉第电磁感应定律:ε= -dΦ/dt,其中ε为感应电动势,Φ为磁通量,t为时间楞次定律:感应电流的方向是阻碍磁通量变化的方向第十章:电机的工作原理与控制10.1 直流电机工作原理:电流通过电枢产生磁场,与磁极相互作用产生转矩控制方式:电压控制、电流控制、转速控制等10.2 交流电机工作原理:电流通过线圈产生磁场,与磁极相互作用产生转矩控制方式:电压控制、频率控制、转速控制等10.3 电机控制系统定义:通过控制电机的工作原理和运行参数,实现对电机的控制应用:电动汽车、工业、风力发电等第十一章:电力电子技术11.1 电力电子器件定义:用于电力转换和控制的电子器件常见器件:二极管、晶体管、晶闸管、GTO、IGBT等11.2 电力电子电路定义:利用电力电子器件实现电能转换和控制的电路应用:变频调速、整流、逆变、斩波等11.3 电力电子技术的应用定义:电力电子技术在电力系统和电气设备中的应用应用领域:电源、电机控制、电力系统、可再生能源等第十二章:电气设备12.1 概述定义:用于发电、输电、变电、配电和用电的设备分类:发电设备、输电设备、变电设备、配电设备、用电设备12.2 发电设备定义:将机械能、热能等转化为电能的设备常见设备:汽轮机、水轮机、风力发电机、太阳能光伏板等12.3 输电设备定义:将电能从发电站输送到用户的设备常见设备:输电线路、变压器、断路器等第十三章:电力系统分析13.1 电力系统的基本组成部分定义:电力系统由发电、输电、变电、配电和用电五个部分组成作用:实现电能的生产、传输、分配和消费13.2 电力系统的稳定性分析定义:分析电力系统在受到扰动时的稳定运行能力稳定性指标:暂态稳定性、静态稳定性、暂态过程中的电压稳定性等13.3 电力系统的经济性分析定义:分析电力系统的运行成本和效率经济性指标:发电成本、输电损耗、用电成本等第十四章:电力系统的保护与控制14.1 电力系统的保护定义:对电力系统进行故障检测和隔离,保护设备和人员安全保护装置:继电保护、差动保护、距离保护等14.2 电力系统的控制定义:对电力系统的运行参数进行调节和控制,保证系统稳定运行控制方法:开关控制、调节控制、最优控制等14.3 电力系统自动化定义:利用计算机技术和自动化装置实现电力系统的运行控制和管理应用:发电控制、输电控制、变电控制、配电控制等第十五章:可再生能源与电力系统15.1 可再生能源概述定义:指在自然界中不断补充的能源,如太阳能、风能、水能等优点:清洁、可再生、减少化石能源依赖等15.2 可再生能源并网技术定义:将可再生能源发电装置接入电力系统,实现电能的互补和利用技术难点:波动性、不稳定、电能质量等15.3 电力系统的可持续发展定义:在满足人类需求的保证电力系统的长期稳定和发展措施:发展可再生能源、提高能源利用效率、减少环境污染等重点和难点解析本文主要介绍了电工基础-电路的基本概念和基本定律,包括电路的基本概念、基本元件、基本电路定律、简单电路分析、电路测量与实验、电路的进阶概念、电路图的绘制、电路仿真软件的使用、磁路与电磁感应、电机的工作原理与控制、电力电子技术、电气设备、电力系统分析、保护与控制以及可再生能源与电力系统等方面的知识。
电工基础周绍敏优质课件

第三节 电 阻
一、电阻元件 二、电阻与温度旳关系
一、电阻元件
电阻元件是对电流呈现阻碍作用旳耗能元件,例如灯泡、
电热炉等电器。
电阻定律
R l
S
——制成电阻旳材料电阻率,国际单位制为欧姆·米 ( ·m) ;
l ——绕制成电阻旳导线长度,国际单位制为米 (m) ;
S ——绕制成电阻旳导线横截面积,国际单位制为平方米 (m2) ;
四、电功率与电能
电功率是电路元件或设备在单位时间内吸收或发出旳电能, P = UI 。
电能是指在一定旳时间内电路元件或设备吸收或发出旳电能 量,W = P ·t =UIt
1度(电) = 1 kW ·h = 3.6 106 J
为了确保电气设备和电路元件能够长久安全地正常工作,都 要求了额定电压、额定电流、额定功率等铭牌数据。
到 t2 时电阻值为 R2 ,则该电阻在 t1 ~ t2 温度范围内旳(平均)温度
系数为
R2 R1
R1( t2 t1 )
值伴随假温如度R2旳>升R高1 ,而则增大>;0假,如将
R R2
称为正温度系数电阻,即电阻
电路的基本概念和基本定理

对于交流电路电压、电流的真实方向随时间变化,要简 单的用一个函数或用一条曲线描述电流、电压需要假设电流、 电压的方向。
第一章. 电路的基本概念和基本定理
假设的电流方向就称为电流的参考方向。
电流的参考方向与电流的真实方向一致,电流取正值; 电流的参考方向与电流的真实方向相反,电流取负值。 利用电流值(大于零或小于零)并结合参考方向,就能 够确定电流的真实方向。 电压和电动势同理。 在以后的电路分析中,如果没有特别声明,所涉及的电 流、电压的方向,都是参考方向,电压、电流的值均为代数 值。
如果将上式中的 i3 移到等号左边,则有
i1 i2 i3 0
基尔霍夫电流定律则可以叙述为: 流进任一节点的电流的代数和为零。 同样
流出任一节点的电流的代数和为零。
i 0
第一章. 电路的基本概念和基本定理
基尔霍夫电流定律不仅对任意一个节点来说是成立 的,而且还可以推广到包围着多个节点的闭合面(广义 节点)。
三. 电路中的功率 电功率的定义: 平均功率: 在直流情况下
p ui
1 P T
T
0
1 pdt T
T
uidt
0
P UI
I
电压和电流的参考方向为关联参考方向
P UI
P 0
表示吸收功率 吸收功率 发出功率
P0
P 0
U R
P 0
电压和电流的参考方向为非关联方向
P
第一章. 电路的基本概念和基本定理
一.基尔霍夫电流定律(KCL)
对于电路中任意的一个节点,由于电荷是不会产生、 消灭和积累的,所以任意时刻流进节点的电荷一定等于流 出节点的电荷,也即:
流进节点的电流之和一定等于流出节点的电流之和。
4-第一章 电路的基本概念及基本定律分析

第一章 电路的基本概念及基本定律第一节 电路的概念、组成和作用一、电路的概念电路是电流的通路,是为了某种需要而由一些电工设备或元件按照一定方式联接而成的闭合回路。
二、电路的组成电路由电源、负载和中间环节三个基本部分组成的(一)电源电源是供应电能的设备。
它把其他形式的能量转化为电能。
(二)负载负载,是对取用电能设备的统称。
(三)中间环节中间环节是指联接电源和负载的部分.三、电路的作用(一)电路能够实现电能的传输、分配和转换。
(二)电路能够实现信号的传递和处理。
四、电路的激励与响应激励(输入):作用在电路上的电源或信号源的电压或电流.响应(输出):由于激励在电路各部分产生的电压和电流。
第二节 电路的基本物理量一、电流(一)电流的概念把电荷有规则的定向运动现象,称为“电流”。
(二)电路的大小和种类所谓电流强度就是单位时间内通过导体横截面的电量。
电流分直流电流和交流电流两种。
1.直流电流大小和方向都不随时间的变化而变化的电流,称为直流电流.2.交流电流大小和方向都随时间的变化而变化的电流,称为“交流电流.对于直流,其电流强度(I )等于单位时间(t )内通过导体横截面的电量(Q )。
I=tQ (1-1) (三)电流的单位在国际单位制中,电流(I)----安(A );电量(Q )----库仑(C );时间(t )----秒(s )(四)电流的方向习惯上规定正电荷运动的方向为电流的方向。
二、电压(一)电压的概念定义:a 、b 两点间的电压U ab 在数值上等于把单位正电荷从a 点移到b 点,电场力所作的功。
(二)电压的大小和单位用公式表示为(1-2) 上式说明:(1)a 、b 两点间的电压U ab 在数值上等于电场力把单位正电荷从a点移到b 点所作的功,也就是单位正电荷从a 点到b 点所失去的能量。
(2)电路中任意两点间的电压等于这两点的电位之差,所以电压又叫做“电位差”。
(三)电压的方向电压方向规定为高电位点指向低电位点。
电工技术--第一章电路的基本概念与基本定律

第一章电路的基本概念与基本定律知识要点一、内容提要直流电路的基本概念和基本定理是分析和计算电路的基础和基本方法。
这些基础和方法虽然在直流电路中提出,但原则上也适用于正弦交流电路及其它各种线性电路。
并且,这些方法也是以后分析电子线路的基础。
本章重点讲述电路中几个基本物理量、参考方向、电路的工作状态及基本定律。
二、基本要求1.了解电路模型及理想电路元件的意义;2.能正确应用电路的基本定侓;3.正确理解电压、电流正方向的意义;4.了解电路的有载工作、开路与短路状态,并能理解电功率和额定值的意义;5.熟练掌握分析与计算简单直流电路和电路中各点电位的方法。
三、学习指导本章重点讲述了三个问题:电压、电流和参考方向。
同时,对克希荷夫定律和电路中电位的概念及计算进行了详细的分析推导和计算。
虽然这些问题都比较简单,但由于它们贯穿电工学课程始终,所以读者应通过较多的例题和习题逐步建立并加深这些概念,使之达到概念清晰,运用自如灵活,能解决实际问题的目的。
1.1 电路的组成及作用在学习本课程中,首先应掌握电路的两大作用(即强电电路电的传输、分配和转换;弱电电路中是否准确地传递和处理信息),及其三大组成部分(即电源、中间环节、负载)。
要特别注意信号源与一般电源的概念与区别:信号源输出的电压与电流的变化规律取决于所加的信息;电源输出的功率和电流决定于负载的大小。
1.2 电路模型由理想电路元件组成的电路;其中理想电路元件包括电阻元件、电感元件、电容元件和电源元件等。
电源的电压或电流称为激励;激励在各部分产生的电压和电流称为响应。
1.3 电路的几个基本物理量若要正确地分析电路,必须先弄清楚电路中的几个基本物理量。
因为电流、电压和电动势这些物理量已在物理课中讲过,但是本章主要讨论它们的参考方向(正方向)和参考极性。
在本章学习的过程中应注意两点:第一,在分析任何一个电路中列关系式时,必须首先在电路图上标明电压、电动势和电流的参考方向和参考极性;第二,考虑电压和电流本身给定的正负,即要注意两套正负符号。
电工第一章

+
Φ
ψ
O i
1.3.2 电感元件 用导线绕制的线圈, ·电感线圈 — 用导线绕制的线圈,通 时可产生磁场,磁通为Φ; 过电流 i 时可产生磁场,磁通为 ;
i
常用单位: 常用单位: mH = 10-3 H, µH =10-6 H • 电感中电流、电压的关系: 电感中电流、电压的关系: u、i 取ARD,且u与e的RD一致时 , 与 的 一致时
1.2.1 电流 i (电流强度) 电流强度) 定义:单位时间内通过导体横截面的电荷量。 ① 定义:单位时间内通过导体横截面的电荷量。 dq 定义式: 定义式: i ( t ) = dt i 的大小和方向均不随时间变化 — 直流电(DC) 大小和方向均不随时间变化 直流电( ) i 的大小和方向按正弦规律变化 — 交流电(AC) 的大小和方向按正弦规律 正弦规律变化 交流电( ) 单位:安培A 库仑 库仑/秒 ② 单位:安培 (库仑 秒) — 简称安
p 恒大于 ,故电阻 为耗能元件。 恒大于0, 电阻R为耗能元件。 ·电气设备的额定值与实际值 ① 额定值:使电气设备能正常运行而规定的允许值。 额定值:使电气设备能正常运行而规定的允许值。 额定电压U 额定电流I 额定功率P 如:额定电压 N、额定电流 N、额定功率 N=UNIN等。 实际值:电气设备实际工作条件下的值。 ② 实际值:电气设备实际工作条件下的值。 电压U、电流I、功率P等 如:电压 、电流 、功率 等。 实际值不一定等于 额定值。 额定工作状态。 额定值。实际值等于额定值 — 称额定工作状态。
(1-11)
u Φ _ e
电感线圈可储存磁场能。 电感线圈可储存磁场能。 可储存磁场能 N 匝线圈的磁通链 = NΦ。 匝线圈的磁通链 磁通链Ψ 。
第1章 电路的基本概念与基本定理

第1章电路的基本概念与基本定理电路理论是电工与电子技术的基本理论。
本章着重介绍电流和电压的参考方向、基尔霍夫定律及电路等效原理等。
通过本章内容的学习可了解和掌握电路中的基本概念和定律,为后续分析复杂电路打下一个基础。
1.1电路的基本概念在高中,我们学过电压、电流、电动势、功率以及欧姆定律等电路的基本概念。
但高中所学的这些电路理论往往解决不了一些复杂电路。
本节将进一步讲解其有关知识。
1.1.1电路的组成人们在日常生活中广泛地使用着各种电器,如热水器、电扇等。
要用电首先要有电源,然后用导线、开关和用电设备或用电器连接起来,构成一个电流流通的闭合路径。
这个电流通过的路径就叫电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
其中电源的作用是为电路提供能量,如发电机利用机械能或核能转化为电能,蓄电池利用化学能转化为电能,光电池利用光能转化为电能等;负载则将电能转化为其他形式的能量加以利用,如电动机将电能转化为机械能,电炉将电能转化为热能等;中间环节用作电源和负载的联接体,包括导线、开关、控制线路中的保护设备等。
图1-1所示的手电筒电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
1.1.2 电路模型实际电路由各种作用不同的电路元件或器件所组成。
实际电路元件尽管外形和作用千差万别,种类繁多,但在电磁性质方面却可以归为几大类。
有的元件主要是提供电能的,如发电机、电池等;有的元件主要是消耗电能的,如各种电阻器、电灯、电炉等;有的元件主要是储存电场能量,如各种电容器;有的元件主要是储存磁场能量,如各种电感线圈。
为了便于对电路进行分析的计算,我们常把实际元件加以理想化,忽略其次要的因素用以反映它们主要物理性质的理想元件来代替。
这样由理想元件组成的电路就是实际电路的电路模型,简称电路。
手电筒电路的电路模型如图1-2所示。
用来表征上述物理性质的理想电路元件(今后理想两字常略去)分别称为恒压源U S 、恒流源I S 、电阻元件R 、电容元件C 、电感元件L 。
电工基础知识

3、如果电路的复阻抗为: Z= R + jX 若已知电路的复导纳为 Y = G + jB
4 、三种基本元件的阻抗和导纳,电路的相量模型
七、单相正弦交流电路的功率 1、瞬时功率
2、有功功率 有功功率指瞬时功率在一个周期内的平均值。
3、无功功率 无功功率反映了电路中的电抗元件(电感和电容)与电源之间互换能量
五、正弦交流电作用下的电容元件
XC
1 C
1 2fC
六、复阻抗、复导纳及其等效互换 1 .复阻抗
在关联参考方向下端口电压相量与电流相量的比值定义为网络的等效 复阻抗,即
2 .复导纳 在关联参考方向下端口电流相量与电压相量的比值定义为网络的等效
复导纳。即
G 称电路的电导; B 、 BL 、 BC分别为电路的电纳、感纳和容纳。 它们的单位为西门子,用符号 S 表示。
F=BILsinα ; 4、磁路欧姆定律: 5、电磁感应
M=BISsinα
NI
Rm1 Rm2 ... Rmn
导体切割磁力线—右手定则:e=Bvlsinα
线圈的磁通量变化—楞次定律:
e N
t
6、自感与互感: 7、同名端、涡流、磁滞损耗
eL
L
i t
eM 2
M
i1 t
二、安培环流定律
磁感应强度沿任一闭合环路的环量,等于穿过该环路电流强度代数和的 μ0倍。或者说,磁场强度矢量沿任何闭合路径的线积分,等于贯穿由此路 径所围成面的电流在代数和。
二、支路电流法
三、回路电流法
四、节点电压(位)法
对于两个节点的电路:
UAB=(U1/R1+U2/R2+U3/R3+…)/(1/R1+1/R2+1/R3+…)
《电工基础(第2版)》陈菊红第01章 电路的基本概念和基本定律

用规定的电路符号表示各种理想元件而得到的电路模 型图称为电路原理图,简称电路图。
电工基础
第一节 电路和电路模型
三.实际电路的分类
实际电路可分为“集中参数电路”和“分 布参数电路”两大类。当一个实际电路的几何 尺寸远小于电路中电磁波的波长时,称为“集 中参数电路”。否则就称为“分布参数电路”。
电工基础
第二节 电路的基本物理量
实用中还常用千瓦小时(KW·h)俗称“度”
的电能单位,即
1度电=1kW • h 103 W 3600 s 3.6106 J
电工基础
第三节 电阻元件和欧姆定律
一.电阻元件
1. 电阻元件的伏安特性
电阻元件是反映电路器件消耗电能这一物理性能的一 种理想元件。
它有两个端钮与外电路相联接,是一个二端元件。 描述各种理想元件的端电压与电流之间的关系称为元件约 束关系,简称VCR。
电工基础
第二节 电路的基本物理量
2.特点:
uAB A B
说明: 电路中A点、B点间的电压是A点与B点电位之差,
因此,电压又叫电位差。
电工基础
第二节 电路的基本物理量
三. 电动势
1.定义:电源力把单位正电荷从电源的负极移
到正极所做的功,称为电源的电动势,用e表
示,即
e dwBA dq
电动势的方向是电源力克服电场力移动正电荷 的方向,是从低电位指向高电位的方向。
电工基础
第二节 电路的基本物理量
(i>0)
(i<0)
图1-2 电流的参考方向与实际方向
图1-3 电压的参考方向与参考极性的表示方 法
电工基础
第二节 电路的基本物理量
(4)关联参考方向: 对于同一元件或同一段电路的电流和电压参考方向,
电工第一章电工学

三. 短路工作状态
当电源两端由于某种原因而联 在一起时,称电源被短路。
IS a
c
短路时,可将电源外电阻视 E
R
为零,电流有捷径流过而不 通过负载。
R0
由于R0很小,所以此时电流
b
d
很大,称之为短路电流 Is 。
U=0
电路短路时的特征为
I = Is = E / R0
P = P = I2 R0
§1-6 基尔霍夫定律
大小:a、b两点间电压 Uab 在数值上等于电场力把单位正电荷 从a点移到b点所作的功。也就是单位正电荷在移动过程中所 失去的电能。
方向:正电荷在电场的作用下,从高电位向低 电位移动。规定这时正电荷的的移动方向为电 压的正方向。
在分析电路之前,可以任意选择某一方向为电 压的参考方向。当实际电压方向与参考方向一 致时,电压值为正,反之为负。
为维持导体中的电流能够连续不断地流 过,且应使得导体a、b两端的电压不致 丧失,就要将b端的正电荷移至a端。但 电场力的作用方向恰好与此相反,因此 就必须要有另一种力去克服电场力而使 b端的正电荷移至a端。电源中必须具有 这种力——电源力(非静电力)。
I
a+
Eab b
Uab _
电源力
大小:电源电动势Eab的数值等于电源力把单位正电荷 从电源的低电位b端经电源内部移到电源高电位a端所 作的功,也就是单位正电荷从电源低电位端移到高电 位端所获得的能量。
如图中的ab、acb 及adb共3条支路。
一条支路中各部分都流过一个相 同的电流,称为支路电流。
如图中的I1、 I2 及I3共3个电流。 2. 节点:电路中三条或三条以上 的支路相联结的点称为节点。
I1 c
第一章 电路的基本概念和基本定律

第一章电路的基本概念和基本定律电路的基本概念和基尔霍夫定律是电工技术和电子技术的基础。
§1-1 电路中的物理现象和电路模型一、实际电路电路:由电气器件或设备,按一定方式连接起来,完成能量的传输、转换或信息的处理、传递。
组成:电源、负载和中间环节。
日光灯实际电路二、理想电路元件、电路模型实际电路的分析方法:用仪器仪表对实际电路进行测量,把实际电路抽象为电路模型,用电路理论进行分析、计算。
1、理想电路元件实际的电路是由一些按需要起不同作用的元件或旗舰所组成,如发电机、变压器、电动机、电池、电阻器等,它们的电磁性质是很复杂的。
例如:一个白炽灯在有电流通过时,如下图所示:为了便于分析与计算实际电路,在一定条件下常忽略实际部件的次要因素而突出其主要电磁性质,把它看成理想电路元件。
2、电路模型将实际电路中的元件用理想电路元件表示、连接,称为实际电路的电路模型。
如下图所示:U S三、电路的分类1、分布参数电路电路本身的几何尺寸相对于工作波长不可忽略的电路。
2、集中参数电路如果电路本身的几何尺寸l相对于电路的工作频率所对应的波长λ小的多,则在分析电路时可以忽略元件和电路本身几何尺寸。
例如:工作频率为50Hz,波长λ=6000km,所以在工频情况下,多数电路满足l<<λ,可以认为是集中参数电路。
集中参数电路分为:线性电路(元件参数为常数)★非线性电路(元件参数不为常数)§1-2电路中的基本物理量一、电流及电流的参考方向1、电流:带电粒子或电荷在电场力作用下的定向运动形成的电流。
dtdqi =(单位时间内通过某一截面的电荷量) 电流的单位:A (安培)、kA (千安)、mA(毫安)、μA (微安)A 10A 1 , A 10mA 1 , A 10kA 1-633===-μ2、电流的参考方向电流的实际方向:正电荷运动的方向或负电荷运动的反方向(客观存在) 电流的参考方向:任意假定。
实际方向(2A )(参考方向与实际方向相同)A)2( 0=>i i 实际方向(2A )(参考方向与实际方向相反)A)2( 0-=<i i二、电压、电位及电压的参考方向1、电位(物理中的电势)电场力把单位正电荷从一点移到参考点所做的功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习惯上把正电荷的定向运动方向规定为电流的方向。
当电流的大小和方向都不随时间变化时, 称为直流电流, 简称直
流。 直流电流常用英文大写字母 I 表示。
Iq t
大小和方向随着时间按周期性变化的电流, 称为交流电流, 常用
英文小写字母 I 表示。单位是安[培], 符号为A。常用的有千安
(kA), 毫安(mA), 微安(μA)等。
第一章 电路的基本概念和基本定律
第一节 电路和电路模型 第二节 电路的基本物理量 第三节 电阻元件和欧姆定律 第四节 电压源和电流源 第五节 基尔霍夫定律
第一节 电路和电路模型
1. 电路 电路是电流的流通路径, 它是由一些电气设备和元器
件按一定方式连接组合起来的电流通路而成的。由电源、 负载和中间环节3部分组成.复杂的电路呈网状, 又称网络。 电路和网络这两个术语是通用的。
(a) 关联方向
i
a
b
- u +
(b) 非关联方向
如果采用关联方向,在标示时标出一种即可。如果采用非关 联方向,则必须全部标示。
二、 电位
在电路中任选一点, 叫做参考点, 则某点的电位就是由该 点到参考点的电压。
Va U a 0
如果已知a、 b两点的电位各为Va, Vb, 则此两点间的电压
它的一种作用是实现电能的传输和转换。另一种作用 是实现信号的处理。电路中提供电能或信号的器件, 称为 电源,。 电路中吸收电能或输出信号的器件, 称为负载。 在电源和负载之间引导和控制电流的导线和开关等是传输 控制器件。
开关
干 电 池
(a)
小灯泡
S
Ri
+
R
Us
-
(b)
图1.1 电路的组成
2、电路模型
的电压、电流关系即伏安关系(VAR)来决定的。
第二节 电路的基本物理量
一、电流、 电压及其参考方向
1、电流及其参考方向
带电粒子(电子、离子等)的定向运动形成了电流。单位时间内通过导
体横截面的电荷量定义为电流强度,并用它来衡量电流的大小。用符号表
示, 即
i dq dt
dq
dt
为极短时间 内通过导体横截面的电荷量。
2、 电压及其参考方向
电路中A、 B两点间的电压是单位正电荷在电场力的作用下由A 点移动到B点所减少的电能或所做的功, 即
uAB
lim WAB q0 q
dWAB dq
式中, Δq为由A点移动到B点的电荷量, ΔWAB为移动过程中电
荷所减少的电能。
电压的实际方向是使正电荷电能减少的方向, 电压的SI单位是 伏[特], 符号为V。常用的有千伏(kV)、毫伏(mV)、 微伏
U ab U a0 U 0b U a0 U b0 Va Vb
即两点间的电压等于这两点的电位的差,
三、电动势
电源力把单位正电荷从电源的负极移到正极所做的功称
为电源的电动势,用 e 表示,即
e d BA
dq
电动势的实际方向与电
压实际方向相反,规定 为由负极指向正极。
四、功率与电能
1A 103mA 106 A
在分析与计算电路时, 常可任意规定某一方向作为电流的参考方 向或正方向。
i 参考方向
i
参考方向
实际方向
(a)
实际方向
(b)
a
b
a
b
iab
iba
(c)
(d)
图1.2 电流的参考方向
如果求出的电流值为正,说明参考方向与实际方向一 致,否则说明参考方向与实际方向相反。
(μV )等。
量值和方向都不随时间变化的直流电压, 用大写字母U 表 Βιβλιοθήκη 。交流电压, 用小写字母u 表示。
A
B
A
B
+ u-
u
(a)
(b)
图1.3 电压的参考方向
• 电压的实际方向规定 由电位高处指向电位 低处。
• 与电流方向的处理方 法类似,
• 可任选一方向为电压 的参考方向
a
ba
b
+ u1 -
• 为了便于对电路进行分析计算,常常将实际电路元件理想 化,也称模型化,即在一定条件下突出其主要的电磁性质,
忽略次要的因素,用一个足以表征其主要特性的理想元件
近似表示。由理想电路元件所组成的电路,称为电路模型。
常见的电路元件有电阻元件、电容元件、电感元件、电压 源、电流源。
•
电路元件在电路中的作用或者说它的性质是用其端钮
• P=UI=5×2=10W,
+ U=5V -
• P>0,吸收10W功率。
(a)
• (b)关联方向, • P=UI=5×(-2)=-10W,
I=- 2A
• P<0,产生10W功率。
• (c)非关联方向, • P=-UI=-5×(-2)=10W,
+ U=5V
(b)
-
• P>0,吸收10W功率。
I=- 2A
电能的SI主单位是焦[耳], 符号为J, 在实际生活中还 采用千瓦小时(kW·h)作为电能的单位,简称为1度电。
1kW h 103 3600 3.6 106 J
所有元件吸收的功率的总和为零。这个结论叫做“电 路的功率平衡”。
• 例:求图示各元件的功率.
I=2A
• (a)关联方向,
功率, 即计算所得功率为正值时, 表示支路实际发出功率; 计 算所得功率为负值时, 表示支路吸收功率。
在直流情况下
P UI
功率的单位为瓦[特], 简称瓦, 符号为W,常用的有千瓦
(kW)、兆瓦(MW)和毫瓦(mW)等。
从t0到t时间内, 电路吸收(消耗)的电能为
t
W pdt t0
直流时, 有 W P(t t0 )
+ U=5V -
(c)
例1-1 图1.5 所示为直流电路, U1=4V, U2=-8V, U3=6V, I=4A, 求各元件接受或发出的功率P1、 P2 和 P3, 并求整个电路的功率P。
- u2 +
例: 当ua =3V
ub = 2V时
u1 =1V
u2 =-1V
最后求得的u为正值,说明电压的实际方向与参考方向一致,
否则说明两者相反。
对一个元件,电流参考方向和电压参考方向可以相互独立地任 意确定,但为了方便起见,常常将其取为一致,称关联方向; 如不一致,称非关联方向。
i
a
b
+ u -
传递转换电能的速率叫电功率, 简称功率,用p 或P
表示。
i dq , u dw
dt
dq
p dw dw dq
dt
dq dt
p ui
如果电流、 电压选用关联参考方向, 则所得的p 应看成
支路吸收的功率, 计算所得功率为负值时, 表示支路实际发出 功率。
如果电流、 电压选择非关联参考方向, p 应看成支路发出的