简述数字微波通信技术
数字微波通信技术特点应用
数字微波通信技术特点应用数字微波通信技术特点应用数字微波通信技术特点应用【1】摘要:SDH数字微波通信技术是时代发展下所形成并发展的一种通信手段,该项技术的有效应用,推动了光通信技术的整体发展,本文SDH数字微波通信技术的特点进行简要分析,在此基础上对其在现代社会的实际应用情况进行探讨,仅供相关人员参考。
关键词:SDH数字微波通信技术;现代通信;传输质量;应用1 SDH数字微波通信系统概述1.1 SDH数字微波通信系统的传输从SDH数字微波传输系统的整体情况来看,数字微波传输是一个复杂的过程,在这其中枢纽站发挥着重要的作用,我们可以发现,枢纽站在数字微波的吃散户过程中始终起到一定的调节作用,并且数字微波传输是由一个终端发送出来到达另一个终端站,这期间需要结合实际情况对传播线路进行调整,那么数字微波中继站和分路站在其中发挥着不可或缺的作用。
具体来讲,数字微波信号从一个终端站传送出来时,要经过合理的数字压缩处理,在进行调节和处理后,形成标准规格的数字中频调制信号,以确保信号发送的顺利和便捷。
在此基础上将这些处理过的信号输送到发射设备中,并进行射频调制,通过一系列的数字处理环节,促进微波信号的形成,在确保发射载体安全可靠的基础上,方能够向中继站发送微波信号,而中继站对微波信号进行处理后,方能够发送至收端站。
可见数字微波信号的传输是一个复杂的过程,在传输过程中数字微波信号不断深化处理,从而使得通信质量得到可靠的保证。
1.2 SDH微波通信过程中微波终端站的功能就总体情况来看,微波终端站的功能具有多样化和独特化,这就在一定程度上加大了通信网络管理的难度,相关资料显示,微波终端站在承担通信网络管理工作的同时,其他个站将微波通信信息发送到微波终端站,微波终端站还需要在收集各项微波信息的同时,监督和管理各项传输线路的运行质量,除此之外还需要具备合理的置换功能,实际工作任务两较大。
从整体情况来看,数字微波通信技术的发送端和收信端在实际工作中存在明显的差异性,就发送端的工作内容来看,围绕信号调制工作进行多元化的纠错编码以及扰码等工作,与此同时还包含SDH开销等工作内容。
SDH数字微波通信关键技术及应用
SDH数字微波通信关键技术及应用
探讨SDH数字微波通信的关键技术及应用摘要:本文主要介绍了sdh 数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
关键词:现代通信sdh数字微波关键技术
一.引言
sdh微波通信是新一代的数字微波传输体制。
在sdh数字微波通信中,微波只是作为一种载体,其主要任务就是传送数字信息到终端站,因其具有直线空间传输的特点,因此,sdh微波通信又称为视距数字微波中继通信。
本文主要介绍了sdh数字微波通信系统的组成及其采用的关键技术,同时探讨了现代通信中数字微波的应用。
二.sdh数字微波通信系统的组成
数字微波中继通信线路示意图如图1所示,其中直线表示数字微波中继通信线路的主干线,其长可以达到几千公里;短划线表示中继线路的支线,在一条主干线上会出现若干条支线,而一条数字微波中继通信线路就是由主干线、若干支线、线路两端的终端站、大量中继站和分路站构成。
数字微波传输线路的组成形式也可以是一个微波枢纽站向若干方向分支。
微波站可分为数字微波终端站、数字微波中继站、数字微波分路站,但若微波站具有2个以上方向的上、下话路,则可称为数字微波枢纽站,这些都是由其工作性质的不同而分类的。
sdh 数字微波终端站具有相当多的功能,具体有:公务联络方。
数字微波中继通信技术
第20章 数字微波中继通信技术
将信号放大到上变频器所需旳功率电平,然后与 发信机本振信号进行上变频,输出载频为f2旳微波信号。 该信号经微波功放、天馈系统后,向中间站旳另一通 信方向发送出去。信号从中间站旳某一中继机旳收信 机转接到另一中继机旳发信机时,接口频带为中频, 所以称作中频转接,中频转接省去了调制、解调器, 简化了设备,但中频转接不能上、下话路,不能消除 噪声积累。
第20章 数字微波中继通信技术
2.中频转接方式 如图20―4(b),中间站把来自某一通信方向载 频为f1旳接受信号经相应中继机(微波收发信机)旳天 馈系统,将发信端输出旳微波信号经过高频馈线送至 天线,经天线变换为无线电波朝通信方向发射出去, 再经微波低噪声放大器后,与该中继机接受机本振信 号混频,混频输出信号经中放后转接到该中间站旳另 一中继机旳发信机功率中放,
图20―4 微波中继转接方式
第20章 数字微波中继通信技术
1.基带转接方式 中间站把来自某一通信方向载频为f1旳接受信号经 相应中继机(微波收发信机)旳天馈系统(天线馈线 系统),传送到收信机。再经微波低噪声放大器后, 与该中继机旳接受机本振信号混频,混频输出信号经 中放后送到解调器解调并输出基带信号,对基带信号 进行判决再生,再生后旳信码序列进行中频数字载波 调制(图20―4(a)只示出了前一种情况)。
第20章 数字微波中继通信技术
C B
中继站 中继站
A 终端站
终端站
图20―1 微波中继通信示意图
第20章 数字微波中继通信技术
可能有人会问:“为何要采用中继通信方式呢?” 对于地面上旳远距离微波通信,采用中继方式旳直接 原因有两个:一是微波传播具有视距传播特征,即电 磁波是沿直线传播旳,而地球表面是个曲面,所以若 通信两地之间距离较长,且天线所架高度有限,则发 信端发出旳电磁波就会受到地面旳阻挡,而无法到达 收信端。所以,为了延长通信距离,需要在通信两地 之间设置若干中继站,进行电磁波转接;另一种原因 就是微波在传播过程中有损耗,在远距离通信时有必 要采用中继方式对信号逐段接受、放大和发送。
SDH数字微波通信技术的特点及其应用
SDH数字微波通信技术的特点及其应用摘要:SDH是当今世界高速发展下所形成的一种通信技术,它的成功运用促进了整个通信技术的发展。
本文通过对 SDH数字微波技术特性的简单剖析,进而讨论 SDH技术在当今世界的具体运用,关键词:SDH数字微波通信技术;技术特征;运用特点引言:SDH的数字微波技术是为了适应当前的发展和对通信技术的需要而产生的。
SDH微波技术在实际中具有很优秀的传输能力和良好的传输性能,目前已广泛用于广播电视产业,可以在基站建设、微波网络建设、信号传输网络建设等各个领域提高信号传输的稳定性。
它能很好地弥补现有微波技术的缺陷,使当代社会通信的品质得到了显著的提升。
一、SDH数字微波通信技术概述1.1 SDH通信的数据传送.从 SDH系统总体上分析,数字微波的传送是一个非常繁琐的环节,它在这个系统中扮演着非常关键的角色,它在接收信号的同时也扮演着很重要的角色,而数字微波的发射是通过一个端向下一个端发射,这个过程中要根据具体的情况对传播线进行相应的调整,所以在这个环节中,数字微波中继和分支台就扮演了很关键的角色。
详细地说,从一个终端接收到一个数字微波信号,需要进行合理的数字压缩,然后再对其进行调整、加工,最终得到一个规范的中频数字调制,保证了传输过程的顺畅和方便。
然后,将接收到的数据传输到传输装置中,经过一系列的数字加工,以保证传输介质的安全性,然后将微波信号传输给中继站,再将微波信号传输给接收台。
可见微波信号的传递是一个非常繁琐的环节,它需要对其进行进一步的深度加工,以确保通信的品质。
二.SDH技术应用的关键特点2.1XPIC的交叉极化技术SDH是利用 XPIC交叉极化技术来实现减少对数字传输的干扰,从而消除了对数字传输的负面影响。
XPIC的交叉极化技术的实施,要求采用技术人员对多态系统进行适当的调整,提高系统的频域利用率,提高系统的频谱利用率,从而提高系统的传输能力。
XPIC的交叉极化技术的主要工作是在信号经过交叉极化后,去除了发送时的正交信号,减少了发送信号的冗余,减小了干扰信号的目标体积,减小了干扰信号的信号强度。
数字微波通信概述
第一章数字微波通信概述本章主要内容:➢微波和微波通信的概念➢微波通信的常用频段➢数字微波通信的特点➢微波通信的分类➢微波通信的应用➢微波站的分类➢数字微波的中继方式➢数字微波通信系统的组成➢数字微波通信系统的技术指标重点:➢什么是微波和微波通信?➢微波通信的分类➢微波站的作用➢中继方式➢数字微波通信系统的组成1.1 数字微波通信的概念本节需要掌握的内容:➢微波通信的概念➢微波通信的频段➢微波的视距传播特性➢微波通信的分类一、微波与微波通信什么是微波?频率在300MHz到300GHz(波长为1m到1mm)范围内的电磁波。
什么是微波通信?利用微波作为载波来携带信息并通过电波空间进行传输的一种无线通信方式。
模拟微波通信和数字微波通信。
与其他通信系统一样,都由模拟微波通信发展为数字微波通信。
微波通信的起源和发展。
微波技术是第二次世界大战期间围绕着雷达的需要发展起来的,由于具有通信容量大而投资费用省、建设速度快、安装方便和相对成本低、抗灾能力强等优点而得到迅速的发展。
20世纪40年代到50年代产生了传输频带较宽,性能较稳定的模拟微波通信,成为长距离大容量地面干线无线传输的主要手段,其传输容量高达2700路,而后逐步进入中容量乃至大容量数字微波传输。
80年代中期以来,随着同步数字序列(SDH)在传输系统中的推广使用,数字微波通信进入了重要的发展时期。
目前,单波道传输速率可达300Mbit/s以上,为了进一步提高数字微波系统的频谱利用率,使用了交叉极化传输、无损伤切换、分集接收、高速多状态的自适应编码调制解调等技术,这些新技术的使用将进一步推动数字微波通信系统的发展。
因此,数字微波通信和光纤通信、卫星通信一起被称为现代通信传输的三大支柱。
我国第一条微波中继通信线路是60年代初开始建立的。
目前已试制成功2,4,6,8,11GHz等多个频段的各种容量的微波通信设备,并正在向数字化、智能化、综合化方向迅速发展。
二、微波通信的常用频段微波既是一个很高的频率,同时也是一个很宽的频段,在微波通信中所使用的频率范围一般在1GHz~40GHz,具体来讲,主要有以下几个频段:L波段 1.0——2.0GHz C波段 4.0——8.0GHzS波段 2.0——4.0GHz x波段8.0——12.4GHzKu波段12.4——18GHz K波段18——26.5GHz三、微波的传播特性微波除了具有电磁波的一般特性外,还具有一些自身的特性,主要有:1.视距传播特性微波的特点和光有些相似。
数字微波原理
随着传输速率的提升,数字微波设备在信号处理、调制解 调等方面面临技术挑战。解决方案包括采用先进的信号处 理算法和优化硬件架构。
多径衰落的挑战
在复杂环境中,多径衰落成为影响数字微波传输性能的关 键因素。解决方案包括采用先进的信号合成技术和动态信 道分配策略。
高成本与设备尺寸的挑战
随着技术的进步,数字微波设备正朝着更小尺寸、更低成 本的方向发展,以满足大规模部署的需求。
低功耗设计
在节能减排的背景下,数字微波设备的低功耗设计成为重要的发展 趋势,通过优化硬件架构和采用先进的制程技术来实现。
智能化处理
借助人工智能和大数据技术,数字微波系统将实现智能化信号处理, 自动优化传输性能,提高网络可靠性。
数字微波技术在5G网络中的应用
01
5G回传
数字微波技术作为5G回传的重要手段,能够提供大带宽、高速率的传
02
数字微波收发信机通常由调制解调器、中频处理单元、射频收发单元和电源等 部分组成。
03
调制解调器负责对数字信号进行调制和解调,中频处理单元负责对信号进行变 频和滤波等处理,射频收发单元负责信号的发送和接收,电源提供设备所需的 电能。
数字微波中继站
数字微波中继站是数字微波通信系统中的重要组成部分,它负责将数字信号从一个站点传输到另一个 站点。
解码
在接收端,数字微波信号需要通过相应的解码方式还原为原 始数据。解码过程与编码过程相反,需要根据不同的编码方 式采用相应的解码算法,如相干检测、非相干检测等。
数字微波信号的频谱压缩与展宽
频谱压缩
为了提高数字微波信号的传输效率,可以采用频谱压缩技术。频谱压缩技术通 过改变信号的调制方式和编码方式,将信号的频谱压缩,从而在相同的带宽内 传输更多的数据。
SDH数字微波通信技术特点及应用
SDH数字微波通信技术特点及应用
SDH(Synchronous Digital Hierarchy)数字微波通信技术是
一种高速、可靠、安全、灵活的通信技术。
它采用同步时隙复用技术,通过将多路低速数字信号进行同步、逐时隙复用,形成高速数
字信号,实现了基于光纤、微波、卫星等传输介质的大容量、高质
量数字通信。
SDH技术具有以下特点:
1. 高速可靠:SDH技术能够提供高速传输和高质量服务,最高
传输速率可达到155Mbps、622Mbps、2.5Gbps等级,传输速度和质
量十分稳定可靠,可满足各种应用场景的需求。
2. 灵活性强:SDH技术支持多种接口和拓扑结构,非常灵活,
满足不同应用需求。
SDH技术可与其他技术相结合,如ATM、IP等,形成更为完善的通信网络。
3. 安全性高:SDH技术具有较高的数据安全性,可提供多种加
密和保护机制,确保数据传输的安全性和完整性。
4. 维护管理方便:SDH技术具有完善的远程维护和管理功能,
操作简单,可随时监测网络运行状况,及时发现和处理故障和问题,提高网络的可靠性和稳定性。
SDH技术广泛应用于各种通信场景,如城市通信网、传输网、
接入网、移动通信网络、广播电视网等。
在提升传输带宽和质量、
增强网络安全性、提高网络的可靠性和维护管理效率方面,都发挥
着重要作用。
SDH数字微波通信技术是一种高速、可靠、安全、灵活的通信技术,有着广泛的应用前景和发展空间。
通信技术概论第五章数字微波通信系统
5.2 微波的视距传播特性
发射天线
h1
d
d1
hc d 2
d
R 1
接收天线
h2
d’——直视距离 hc——余隙 d ——最大通信距离(最 大视距传播距离或最大 传播距离)
发射天线
接收天线
d
hc
h1
h2
d
(a)实际
(b)简化
5.2.1 视距与天线高度的关系
5.2 微波的视距传播特性
图5.2.1中,发射天线和接收天线之间的连线表示它们之 间的直视路径,其长度为直视距离(d );
波段名称 K V Q M E N D
频率范围(GHz) 18~26.5 26.5~40 33~50 50~75 60~90 90~136 137~143
5.1 数字微波通信概述
5.1.3 微波通信的概念
♣ 微波通信(microwave communication ):是一种利用 微波作为载波传送信息的通信手段,即载波频率是微波。也可 以说,凡是利用微波传播进行的通信均为微波通信。
5.1 数字微波通信概述
♣ 我国微波通信的发展 我国第一条微波中继通信(试验)电路是北京-方庄- 杨村-天津,该电路于1960年4月开通。 1976年,我国以北京为中心连通全国20多个省市建成了 大规模的微波通信干线。 20世纪80年代,随着数字信号处理技术和大规模集成 电路的发展,微波通信系统得到迅速发展。 20世纪90年代后出现了容量更大的数字微波通信系统
5.1.2 微波的概念
♣ 微波(microwave):微波是一种电磁波,是全部电 磁波频谱的一个有限频段。即波长介于1毫米到1米,或频率 介于300MHz~300GHz之间的电磁波。
【注】“微”,就是该无线电波的波长相对于周围物体的 几何尺小很小的意思。
数字微波通信技术的发展及应用
数字微波通信技术的发展及应用数字微波通信技术的发展及应用数字微波通信技术的发展及应用摘要:数字微波通信技术具备多方面的作用,可以实现电话信号的传输,同时也可以实现数据信号及图像信号的传输,具备非常广泛的应用前景。
本课题笔者在分析数字微波通信技术的特点及发展的基础上,进一步对数字微波通信技术的应用进行了探究,希望以此为数字微波通信技术的完善提供依据。
关键词:数字微波通信技术;发展;应用微波属于通信的一种传输方式,对于数字微波通信技术来说,便是以微波为途径,然后完成对数字信息的传输。
同时,通过对电波空间的利用,可以对各类不具关联性的信息实现传送。
发展至今,数字微波通信技术成为了一项应用广泛的技术。
该技术具备多方面的作用,比如完成电话信号、数据信号及图像信号的传输等。
鉴于此,本课题对“数字微波通信技术的发展及应用”进行分析与探究具有较为深远的意义。
一、数字微波通信技术的发展微波通信技术问世已半个多世纪,它是在微波频段通过地面视距进行信息传播的一种无线通信手段。
最初的微波通信系统都是模拟制式的,它与当时的同轴电缆载波传输系统同为通信网长途传输干线的重要传输手段,随着技术的不断发展,除了在传统的传输领域外,数字微波技术在固定宽带接入领域也越来越引起人们的重视。
工作在28GHz频段的LMDS已在发达国家大量应用,预示数字微波技术仍将拥有良好的市场前景。
二、数字微波通信技术的特点分析数字微波通信技术具备多方面的特点,具体表现如下:1、抗干扰。
数字微波通信技术具备强烈的抗干扰能力,不会有线路噪声累积。
数字信号所具备的再生功能,可以使数字微波当中继通信的线路噪声避免逐站累积。
如果由于干扰让数字信号发生误码,则在以后传输中要想使误码问题得到有效解决,则非常困难。
因此,误码便会呈现逐站积累的趋势。
2、保密性。
数字信号极易进行加密,数字微波通信设备有扰码电路的应用,同时可以结合具体情况完成加密电路的设置。
并且,基于数字微波通信当中,所应用的天线具备非常强烈的方向性。
数字微波通信原理
数字微波通信原理
数字微波通信是一种利用微波频段进行数据传输的通信技术。
它通过将数据进行数字化处理,然后利用微波信号进行传输,实现远距离高速数据传输。
数字微波通信的原理主要包括数据数字化、调制解调和微波传输三个方面。
首先,数据数字化是指将传输的数据进行数字化处理,将其转换为数字信号。
这样可以减小信号的失真和干扰,提高数据的准确性和可靠性。
数字化处理通常包括采样、量化和编码等步骤。
其次,调制解调是指将数字信号转换为适合微波传输的调制信号。
调制通常采用调幅、调频或调相等技术,通过改变信号的幅度、频率或相位来传输数据。
解调则是将接收到的微波信号转换为数字信号,还原出原始数据。
最后,微波传输是指利用微波信号进行数据传输。
微波信号具有高频率、短波长、传输距离远等特点,可以实现高速传输和长距离传输。
传输过程中需要考虑信号的传播损耗、多径效应和干扰等问题,以保证数据的可靠传输。
总的来说,数字微波通信利用数字化处理、调制解调和微波传输等技术,可以实现远距离高速数据传输。
在现代通信领域中得到了广泛的应用,例如无线通信、卫星通信和雷达等领域。
智慧HW数字微波通信原理
用波道的系统兼作频率分集的情况较多。
f1
H
f2
空间分集(SD)
频率分集(FD)
Page 35
数字微波系统的抗衰落技术
频率分集 利用在空间传输中,不同频率信号的衰落特性不一样的特性, 采用两个或两个以上具有一定频率间隔的微波频率同时发送和接 收同一信息,然后进行合成或选择,以减轻衰落的影响,这种工 作方式叫频率分集。 优点是效果明显,只需要一副天馈线。缺点是频段利用率不高。
Page 25
问题
微波设备有哪些不同类别? 分体式微波由哪几部分构成,各自的功能? 如何调整天线? 天线的主要指标有哪些? ODU收发信机的指标是哪些? 描述整个微波传输的信号流程?
Page 26
数字微波常用组网方式
Page 27
数字微波站型
• 数字微波站型主要分为:枢纽站,分路站,终端站和中继站等。
终端站
中继站
分路站
枢纽站
终端站
终端站
Page 28
中继站分类
中继站
无源 有源
• 背靠背天线 • 反射板
• 再生中继 • 中频中继 • 射频中继
Page 29
有源中继站
射频直放站:
射频直放站是一种有源、双向、无频移射频中继系统。由于它直接在 射频上将信号放大,所以称之为射频直放站。
再生中继站:
Page 4
微波通信与光纤通信特点的比较
微波通信
跨越空间能力强,占地少, 不受土地私有化 限制。
投资少,周期短,维护方便
具有很强的抗自然灾害能力, 易于快速恢复 频率资源有限,需要申请频率 执照
传输质量受气候和地形的影响大
传输容量有限
光纤通信
需要铺设光缆,占用土地。
微波信号数字化技术
微波信号数字化技术随着科技的不断发展,通信技术也在不断革新。
微波无线电通信技术作为当前最为先进的通信技术之一,已经广泛应用于军事通信、卫星通信、雷达探测等领域。
而微波信号数字化技术则是微波无线电通信技术的一种重要应用分支,它将微波信号数字化,大大简化了通信系统的复杂度,提高了通信效率和准确性,具有重要的实际意义。
一、微波信号数字化技术的基本原理微波信号数字化技术是将传统的连续的模拟微波信号转化为离散的数字信号,并利用数字信号处理技术进行处理和传输的技术。
微波信号数字化技术的基本原理是利用采样定理,即将信号按照一定的间隔时间进行采样,将连续的信号转化为离散的数字信号。
通过数字信号处理技术,可以对数字信号进行过滤、调制、解调、编码、解码等处理,实现数字信号的传输、存储和处理等功能。
微波信号数字化技术主要由采样模块、模/数转换模块、数字信号处理器、数/模转换模块和通信接口等组成。
其中,采样模块用于将微波信号进行采样,模/数转换模块将模拟信号转化为数字信号,数字信号处理器用于对数字信号进行处理,数/模转换模块将数字信号转化为模拟信号,通信接口用于数字信号的传输和控制。
二、微波信号数字化技术的应用微波信号数字化技术具有广泛的应用领域。
它可以应用于军事通信、卫星通信、雷达探测、无线电广播、移动通信等领域。
在军事通信系统中,微波信号数字化技术可以实现抗干扰、抗窃听和抗干扰等功能,提高通信效率和保密性。
在卫星通信系统中,微波信号数字化技术可以实现高速传输和高质量通信,保障卫星通信的稳定性和可靠性。
在雷达探测系统中,微波信号数字化技术可以实现高精度探测和跟踪,提高雷达系统的探测效率和准确性。
在无线电广播和移动通信系统中,微波信号数字化技术可以实现高清晰度、高质量的音频和视频传输,提高广播和通信的效率和质量。
三、微波信号数字化技术的发展趋势微波信号数字化技术的发展趋势是不断提高技术的精度、速度和可靠性。
随着数字信号处理技术的不断发展,微波信号数字化技术将会实现更高的精度和更快的速度,同时也会更加稳定和可靠。
第3章 数字微波通信系统
对于严重衰落路由、由于出现深衰落的深度 深和概率大、因此利用衰落储备的办法己不足于
克服深衰落,从而使通信质量恶化。而继续增加
上的远距离通信,并且可以跨越沼泽、江河、湖
泊和高山等特殊地理环境。在遭遇地震、洪水、
战争等灾祸时,通信的建立、撤收及转移都较容 易,这些方而比电缆通信具有更大的灵活性。
(5)天线增益高、方向性强
点对点通信,采用定向天线。对定向天线, 当天线开口面积给定时,天线增益与工作波长的 平方成反比。由于微波中继通信的工作波长短。
(2)适用传输宽频带信号
相比长、中及短波通信设备,微波通信设备 工作在微波频段,在相同的相对通频带(绝对通 频带/载频)条件下,载频越高,绝对通频带越
宽。如:/=1%,若=40MHz,=0.4MHz;若
=4000MHz,=40MHz,几千个话路同时工作, 当然也可用于传输电视图像等宽频带信号。
(3)受外界干扰的影响小
因而容易制成高增益天线,降低发信机的输出功
率。另外,微波电磁波具有直线传播特性。可以 利用微波天线把电磁波聚集成很窄的波束,使微 波天线具有很强的方向性,减少通信中的相互干 扰 。
(6)投资少、建设快
在通信容量和质量基本相同的条件下,按话 路公里计算,微波中继通信线路的建设费用不到 同轴电缆通信线路的一半,还可以节约大量有色 金属,建设时间也比后者短
工业干扰、天电干扰及太阳黑子的活动对微 波频段通信的影响小(当通信频率高于100MHz 时,这些干扰对通信的影响极小),但它们严重 影响短波以下频段的通信,因此,微波中继通信 较稳定和可靠。 微波的单色性特点使其受季节、时辰、天候 和核爆炸等的影响较小,在视距范围内传播特性 相当稳定,因此微波通信的稳定性较好。
数字微波通信及大气激光通信
5.1.1数字微波通信发展简述
微波通信是一种先进的通信方式,它利用微波来携带信息,通过电波空 间同时传送若干相互无关的信息,并且还能进行再生中继。它具有传输 容量大、长途传输质量稳定、投资少、建设周期短和维护方便等特点, 得到了广泛的应用。而建立在微波通信和数字通信基础上的数字微波通 信,同时具有数字通信和微波通信的优点,更是受到各国的普通重视。 因此数字微波中继通信、光纤通信和卫星通信一起被称为现代通信传输 的三大主要手段。
④通频带。收信机接收的已调波是一个频带信号,即已调波频谱(的主要 成分)要占有一定的带宽。
⑤选择性。对某个波道的收信机而言,要求它只接收本波道的信号,对 邻近波道干扰、镜像频率干扰及本波道的收、发干扰等要有足够的抑制 能力,这就是收信机的选择性。
⑥收信机的最大增益。天线收到的微波信号经馈线和分路系统到达收信 机。由于受衰落的影响,收信机的输入电平在随时变动。
(1)地面波传播。无线电波沿着地球表面的传播,称为地面波传播。其特 点是信号比较稳定,电波频率愈高,地回波随距离的增加衰减愈快。因 此,这种传播方式主要适用于长波和中波波段。
(2)天波传播。天波传播是指电波由高空电离层反射回来而到达地面接收 点的这种传播方式。短波是利用天波进行远距离通信的。
上一页 下一页 返回
上一页 下一页 返回
5. 2电波在自由空间的传播
对辐射场,电场强度E和磁场强度H的振幅随离开天线的距离:的增加而 按1/r的因子减小,辐射场的等相面(或称波阵面,波前)是以r为半径的球 面。
上一页 下一页 返回
5. 1数字微波通信概述
由于微波频率高,波长短,微波通信一般使用面式天线。当面式天线的 日面积给定后,增益与波长的平方成反比,故微波通信很容易制成高增 益天线。当波长比周围物体的尺寸小得多时,电磁波近似于光波特性, 可以利用微波天线把电磁波聚集成很窄的波束,得到方向性很强的天线。 例如,直径3m的抛物面天线,当工作波长为λ=7. 5 cm,天线效率η=0. 6时,其天线增益可达40 dB,相当于无方向性天线的发射功率提高了 10 000倍。
SDH数字微波通信技术
SDH数字微波通信技术SDH 微波通信是新一代的数字微波传输体制。
数字微波通信是用微波作为载体传送数字信息的一种通信手段。
它兼有SDH 数字通信和微波通信两者的优点,由于微波在空间直线传输的特点,故这种通信方式又称为视距数字微波中继通信。
本文主要介绍SDH数字微波通信技术的组成、特点及应用。
一、SDH数字微波通信系统的组成1、数字微波传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支。
如图1所示是一条数字微波通信线路的示意图,其主干线可长达几千公里,另有若干条支线线路,除了线路两端的终端站外,还有大量中继站和分路站,构成一条数字微波中继通信线路。
组成此通信线路设备的连接方框图如图2所示。
它分为以下几个部分:2、用户终端,直接为用户所使用的终端设备,如自动电话机、电传机、计算机、调度电话等。
3、交换机。
这是用于功能单元、信道或电路的暂时组合以保证所需通信动作的设备,用户可通过交换机进行呼叫连接,建立暂时的通信信道或电路。
这种交换可以是模拟交换,也可以是数字交换。
4、数字电话终端复用设备(即数字终端机)。
其基本功能是把来自交换机的多路信号变换为时分多路数字信号,送往数字微波传输信道,以及把数字微波传输信道收到的时分多路数字信号反变换为交换机所需的信号,送至交换机。
5、微波站。
按工作性质不同,它可分成数字微波终端站、数字微波中继站和数字微波分路站。
SDH微波终端站的发送端完成主信号的发信基带处理、调制、发信混频及发信功率放大等;终端站的收信端完成主信号的低噪声接收、解调、收信基带处理。
终端站还具有备用倒换功能,包括倒换基准的识别,倒换指令的发送与接收,倒换动作的启动与证实等。
6、数字微波中继站。
主要完成信号的双向接收和转发。
有调制、解调设备的中继站,称再生中继站。
需要上、下话路的中继站称微波分路站,它必须与SDH 的分插复用设备连接。
再生中继站具有全线公务联络能力,以及向网管系统汇报站信息。
SDH数字微波通信技术的特点及其应用探讨
Technological Innovation8《华东科技》SDH 数字微波通信技术的特点及其应用探讨尚 博1,同朝辉2(1.四川通信科研规划设计有限责任公司,四川 成都 610041;2.中国铁塔股份有限公司咸阳市分公司,陕西 咸阳 712000)摘要:近年来,通信行业取得了长足的发展进步,SDH 数字微波通信技术以独特的优势取得了重要的应用进展。
本文从技术特点、设备特点以及通信系统三个方面对SDH 数字微波通信技术进行了概述,从六个方面讨论了SDH 数字微波通信技术的优势及应用特点。
关键词:SDH;数字微波通信;应用1 SDH 数字微波传输系统概述 SDH 是一种全新的同步数字体系,能够实现数字传输功能。
现阶段通信技术的不断发展使信息容量大幅度增加,光纤技术也出现了较大进步,在这种基础上SDH 应运而生。
1.1 SDH 微波传输技术特点 现在的通信系统技术体系中有三种较为主要通信技术手段,数字微波通信就是其中之一。
数字微波通信的传输容量较大,在远距离传输场景中质量较高,需要进行的设施资金投入少,同时建设数字通信传输设施的项目周期较短,对数字微波传输基站的维护成本很低,在通信领域备受青睐。
SDH 对速率的要求很高,因此数字微波接力通信系统的传输速度就需要保持同步提高才能满足基本应用需求。
如今数字微波接力通信系统的单波道速率能够超过300Mbit/s,得益于64QAM、128QAM 以及512QAM 调制技术对数字微波接力通信系统的单波道速率增益,然而使用了全新的调制技术以后微波波形不能达到要求,这就导致SDH 微波传输系统出现了较高的误码率,在这种情况下降低误码率的研发工作也激烈展开,一系列降低误码率的方法也因此出现。
1.2 SDH 微波传输设备 SDH 微波传输设备主要由以下三个部分组成,分别是中频调制解调部分、微波收发信机部分、操作管理维护和参数配置部分。
1.3 SDH 微波接力通信系统 一个SDH 微波接力通信系统可由端站、枢纽站、分路站及若干中继站组成。
数字微波通信技术
数字微波通信技术摘要:微波是卫星、光缆、微波三大电视信号传输方式之一。
微波通信定义是指波长在0.1mm-1m 区间的电磁波所进行的通信方式。
数字微波是在微波的频段内通过地表视距来进行传播数字信息的无线通信。
关键词:微波通信;数字微波通信;直线距离内无障碍数字微波通信是在微波传输过程当中使用数字信号处理技术的一种通信方式,它同时具备了微波通信投资很小、建线迅速、应用灵活等特点,还拥有抗干扰强、传输可靠、传输线路很长等优势。
如今数字微波通信在中国国民经济建设中发挥着极大的作用。
一、我国数字微波通信发展经历了以下三个阶段1. 发展模拟微波的阶段我国模拟微波通信技术的发展始于1958 年,到20 世纪70 年代中,全数字化﹑全固态化﹑无人值守,三个技术问题始终没有得到解决,影响它的推广使用。
2. 发展中、小容量数字微波的阶段20 世纪80 年代初期我们已经掌握了中、小容量数字微波所有的技术,也逐步在通信专用网上实施应用。
3. 发展大容量数字微波的阶段20 世纪80 年代末期,国家“七五”科技攻关项目提出,大容量数字微波通信将逐步进入系统的研发过程。
20 世纪80 年代中、后期,我国的数字微波发展受阻,光纤通信技术的推广成为了主要原因,而数字微波干线传输也逐步被光纤通信取代。
因光纤通信具有超大的带宽、极低的损耗以及建设超低成本而成为了干线传输的主要方式,从而对数字微波产生强烈的冲击。
从20世纪90 年代开始,大容量光纤传输成为了我国信息道路建设的重要传输方式。
在这样的现实面前,数字微波该如何发展已经是该领域研发和使用的单位及人员非常关心的问题。
随着时代的发展、科技的进步,快节奏的生活使得人们对于随时随地学习、购物、娱乐、办公的需求越来越高,组建安全且高效的全光信息网络已然成为了国家当前重要发展战略的一步;IPTV产业的产生及发展让日渐萧条的固网运营重现活力;通过北京奥运圣会和上海世博会带来的众多契机,都使得FTTH的大规模应用具有从未有过的现实需求以及市场机遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。