斜拉桥发展史与现状综述
浅谈斜拉桥发展现状及趋势
![浅谈斜拉桥发展现状及趋势](https://img.taocdn.com/s3/m/939beffc5122aaea998fcc22bcd126fff7055d1a.png)
浅谈斜拉桥发展现状及趋势浅谈斜拉桥发展现状及趋势前言现代桥梁正朝着大跨径、更轻巧的方向发展。
斜拉桥是其中一种最为常用的结构。
斜拉桥由主梁、索以及支承缆索的索塔等部分组成,属于组合体系的桥梁。
通过桥塔上多条斜向拉索的支承,斜拉桥结构可以跨越较大的山谷、河流等障碍物。
文中通过对斜拉桥的历史和发展趋势进行分析,提出斜拉桥在设计和建设中存在的问题,以期对斜拉桥的修建有一定的指导作用。
德国发展了斜拉桥的早期工艺技术:正交异性板,钢箱梁,斜拉索预应力工艺,施工方法等,斜拉桥得到了大量应用和发展。
发展历史斜拉桥早在l7世纪就有,但当时由于受科技水平的限制,缺乏可靠的理论分析方法和技术,这种结构体系没有得到很大的发展。
同时18世纪初修建的两座斜拉桥的倒塌事件,使得这种结构体系一直没有得到重视和发展。
直到1938年德国工程师Dishinger 重新认识到了斜拉桥的优越性,并对其进行了研究,1956年由他设计的瑞典Str?msund 桥拉开了现代斜拉桥的序幕。
1956年瑞典建成第一座现代化斜拉桥Str?msund 桥,跨径是74.7m+182m+ 74.7m ,塔是门型框架,拉索辐射形布置,加劲梁由两片板梁组成。
1957年德国Düsseldorf 建成Theodor Heuss 桥,跨径是108m+260m+108m ,钢塔高41m ,横向独立不设横梁,拉索竖琴式布置,索距36m ,钢梁高3.12m 。
1959年德国Cologne 建成Severvin桥,桥跨径是302m ,正交异性钢桥面板的钢箱梁,塔采用A 形,钢索呈放射形,结构为漂浮式,它为桥的抗震提出有效措施,是世界上第一座非对称式钢斜拉桥。
1962年在委内瑞拉建成Maracaibo 桥为第一座混凝土斜拉桥,主跨235m , A形塔,预应力刚性索,混凝土加劲梁,主要为带挂孔的悬臂体系。
20世纪60年代初期,结构分析有了新突破,采用电子计算机分析超静定结构,采用密索体系斜拉桥,从而避免了疏索体系斜拉桥主梁重而配筋多的缺点。
斜拉桥的现状与展望
![斜拉桥的现状与展望](https://img.taocdn.com/s3/m/4f9c6b34ed630b1c59eeb594.png)
Page 33
2.现代斜拉桥的三大历史时期
1998年,瑞士,桑尼伯格 2000年,芜湖长江大桥, L=312m,钢桁架梁双层桥面 ,公铁两用
桥(Sunniberg Bridge, L=140m),四塔五跨
Page 34
2.现代斜拉桥的三大历史时期
斜塔斜拉桥
荷兰Erasmus桥
a、传统无背索斜拉桥
b、无背索部分斜拉桥:一部分荷载由斜拉索传至斜塔,最后传
到基础;另一部分由主梁传递到两边基础
Page 37
2.现代斜拉桥的三大历史时期
高低塔斜拉桥 ① 受水文地质条件限制,两边跨跨径不等的情形 ② 出于桥梁景观考虑,消除单一塔高的单调之感
日本新上平井桥
Page 38
涪陵乌江二桥
1、对300m~800m跨度最有竞争力; 与悬索桥相比,斜拉桥有比较好的刚度。 2、景观方面的新颖感;
塔的型式多样性,拉索布置的灵活性,可以构造出许 多新型的桥梁形式。
2.现代斜拉桥的三大历史时期
多塔斜拉桥
① 双塔桥型一个大主跨无法满足需要时,可考虑多塔多跨斜拉桥 体系 ② 多塔体系需解决整体刚度不足的问题
① ② ③
Page 39
2.现代斜拉桥的三大历史时期
希腊Rion-Antirion桥
香港汀九桥
Page 40
法国Malliu高架桥
2.现代斜拉桥的三大历史时期
承体系以斜索受拉及桥塔受压为主的桥梁。
Page 4
1.概述
斜拉桥的历史很早,在几百年之前就存在有斜拉桥的雏 形。其承重索是用藤罗或竹材编制而成 。
Page 5
1.概述
1784年,德国人勒舍尔(C.J Löscher)在弗莱(Freiburg) 建造了一座木桥,是早期斜拉桥的雏形。
现代斜拉桥的发展
![现代斜拉桥的发展](https://img.taocdn.com/s3/m/289c10fb0242a8956bece4b1.png)
3、桥塔的形式和布置
1)桥塔纵向形式 主要有三种类型: 单柱形、倒V形、倒Y形
2)桥塔的横向形式 桥塔的横向形式与索面布置密切相关。当采用单面索中,横向形式主要为 三种类型:单柱形、倒V形、A形
当采用双索面时,桥塔横向形式有5种:独柱形、A形、菱形、门形、梯形。
Knie Bridge(中文:格尼桥),位于德国杜塞尔多夫。该桥为独塔竖琴式 双索面斜拉桥,桥塔为柱形。
4、锚拉体系与支承体系 1)斜索的锚拉体系 有三种:自锚式、地锚式、部分地锚式。
2、桥塔支承体系 (1)、塔墩固结、塔梁分离 (2)、塔梁固结、梁墩分离 (3)、铰支桥塔 (4)、塔、梁、墩固结
三、现代斜拉桥发展趋势
现代斜拉桥的发展趋势是: (1)桥跨向特大跨度(即1000m以上)发展; (2)结构形式更为美观,表现为桥塔独特异形,桥面加劲梁更为轻巧。 因此需要存在改进的问题为: (1)、抗风设计 风的随机性和其动力振动行为极为复杂,尽管依靠风洞试验来验证抗风设 计,但风洞模型与实际还是存在差异。因此,需要多收集跨海峡大桥的风振方 面实际资料加以研究。 (2)、抗震设计 斜拉桥的塔、索、梁的各自振动特性有很大差别,给地震设计带来很大的复 杂性。此外结构的阻尼特性也还研究不够,再加之对于大跨度桥梁,地震的行 波效应也需要考虑。 (3)、斜索的使用寿命 影响斜索的使用寿命是两个方面的问题:腐蚀与疲劳。 (4)结构材料强度的提高 结构材料强度的提高可以减轻结构自重,从而提高桥梁跨越能力。
长沙浏阳河洪山大桥,主桥结构形式为无背索斜塔竖琴式单索面斜拉桥,主 跨206米,等截面薄壁空心钢筋混凝土结构,钢箱梁高4.4米,桥面宽33.2米。
4)多塔多跨式 斜拉桥与悬索桥很少采用多塔多跨式。主要原因是多塔多跨式斜拉桥的中间 桥塔顶没有很好的方法来有效地限制它的变位。
斜拉桥梁简介及发展趋势
![斜拉桥梁简介及发展趋势](https://img.taocdn.com/s3/m/a5ce92e2e009581b6bd9eb97.png)
大跨度桥梁——斜拉桥专业:岩土与地下工程班级:10-1班姓名:卢雪东学号:20101792斜拉桥斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
斜拉桥由索塔、主梁、斜拉索组成。
索塔主要是承压,斜拉索受拉,梁体主要承受弯矩,外荷载主要由主梁和斜拉索承受,并由斜拉索将受力传递给索塔。
主梁由一根根拉索拉起,等于在梁内设置了许多支撑点,可以将其看作由拉索代替支墩的多跨弹性支承连续梁,这种结构能够非常有效的减小梁体内弯矩,从而降低主梁的高度,减轻结构重量,节省建筑材料,有利于斜拉桥向大跨度方向发展。
主梁常见的截面形式有:板式截面和箱形截面。
主梁截面选取主要由斜拉索的布置形式和抗风稳定性情况所决定。
板式截面的主梁构造简单,施工方便,一般适用于双索面斜拉桥。
箱形截面梁有抗弯、抗扭刚度大、收缩变形较小等特点,能适应许多不同形式的拉索布置,对悬臂施工非常有利,而且可以部分预制、部分现场浇筑,为施工方案提供了多种选择,因此箱形截面主梁逐渐成为现代斜拉桥中经常采用的形式。
另外,主梁按材料可以分为:预应力混凝土梁、刚—混凝土组合梁、钢主梁和混合式梁斜拉桥相对悬索桥有较大的刚度,在抵抗风载、地震、竖向活载的作用方面有优势斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型,也是我国大跨径桥梁最流行的一种桥型。
目前为止我国建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。
而大跨径混凝土斜拉桥的数量已居世界第一。
按照交通功能分类根据桥梁建造的使用目的,可以分为公路斜拉桥,铁路斜拉桥,人行斜拉桥,斜拉管道桥,斜拉渡槽等,有时在一座桥上这些功能是兼而有之的,如公铁两用桥,现在越来越多的斜拉桥都同时通行管道(输送水。
液化气。
电缆等);按照梁体材料分类有钢桥、混凝土桥、迭合梁桥。
复合梁桥、组合梁桥;按照塔的数量分类有单塔、双塔、多塔;按照索面不知形式分类索的布置:面外——单面索、双面索、多面索、空间索,单索面应用较少,因为采用单索面是拉索对结构抗扭不起作用,主梁需要采用抗扭刚度大的截面。
斜拉桥发展历史及未来方向
![斜拉桥发展历史及未来方向](https://img.taocdn.com/s3/m/cebdbed0162ded630b1c59eef8c75fbfc77d94e4.png)
斜拉桥发展历史及未来方向斜拉桥的发展历程及未来发展趋势通过本学期的学习,我们学习了梁桥、拱桥、斜拉桥、悬索桥的计算方法。
通过老师的讲解使我们了解到了不同桥梁的受力特点的不同以及不同桥梁计算时使用的不同的理论。
梁桥以受弯为主的主梁作为承重构件的桥梁。
主梁可以是实腹梁或桁架梁。
实腹梁构造简单,制造、架设和维修均较方便,广泛用于中、小跨度桥梁,但在材料利用上不够经济。
桁架梁的杆件承受轴向力,材料能充分利用,自重较轻,跨越能力大,多用于建造大跨度桥梁。
拱桥指的是在竖直平面内以拱作为结构主要承重构件的桥梁。
拱桥是向上凸起的曲面,其最大主应力沿拱桥曲面作用,沿拱桥垂直方向的最小主应力为零。
悬索桥既吊桥指的是以通过索塔悬挂并锚固于两岸(或桥两端)的缆索(或钢链)作为上部结构主要承重构件的桥梁。
其缆索几何形状由力的平衡条件决定,一般接近抛物线。
从缆索垂下许多吊杆,把桥面吊住,在桥面和吊杆之间常设置加劲梁,同缆索形成组合体系,以减小活载所引起的挠度变形。
下面我们重点来说说斜拉桥,斜拉桥是由主梁、索塔和斜拉索三大部分组成,主梁一般采用混凝土结构、钢和混凝土结构、组合结构或钢结构,索塔主要采用混凝土结构,斜拉索采用高强材料的钢丝或钢绞线制成。
它的主要优点有在各个支点支承的作用下跨中弯矩大大减小,而且由于结构自重较轻,既节省了结构材料,又能大幅地增大桥梁的跨越能力。
此外,斜拉索轴力产生的水平分力对主梁施加了预应力,从而可以增强主梁的抗裂能力,节约主梁中预应力钢材的用钢量。
斜拉桥和梁桥和拱桥相比有着跨越能力大的优势。
而与悬索桥相比在300-1000米跨度又有经济性的优势。
同时外形对称美观更兼线条纤秀,构造简洁,造型优美。
符合桥梁美学的要求。
适合在跨度为300-1000米的桥梁使用。
斜拉桥的发展其实进行了一个漫长的历史,在国外1784年德国人勒舍尔建造了一座跨径为32米的木桥,这是世界上第一座斜拉桥。
1821年法国建筑师叶帕特在世界上第一次系统地提出了斜拉桥的结构体系。
21世纪斜拉桥发展动态及关键技术分析
![21世纪斜拉桥发展动态及关键技术分析](https://img.taocdn.com/s3/m/d651dce2aeaad1f346933f8b.png)
21世纪斜拉桥发展动态及关键技术分析土木1110 11160299 司振摘要:斜拉桥的优缺点与发展历程,以及21世纪我国在斜拉桥领域取得的成果。
斜拉桥的现状与前景,分析斜拉桥的施工施法、斜拉索以及抗风性能等关键技术。
关键词:优点,缺点,发展历程,现状,前景,悬臂施工,支架法,抗腐蚀,抗风行能21st century developments in cable-stayed bridge andanalysis of key technologySummary:Advantages and disadvantages of cable-stayed bridge and development process, as well as the 21st century results achieved in thefield of cable-stayed bridge in China. Present situation and prospect ofcable-stayed bridge, analysis of stay cable of cable-stayed bridgeconstruction is cast, as well as wind resistance and other key technologies. Keyword:advantage,disadvantage,development history,Present situation,Future,Cantilever construction,Support method,Anti corrosion,The wind resistance performance(1)斜拉桥的定义、特点与优缺点定义:斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。
道路与桥梁工程概论论文
![道路与桥梁工程概论论文](https://img.taocdn.com/s3/m/5dc429c6d5bbfd0a7956730d.png)
道路与桥梁工程概论论文——浅谈斜拉桥的基本概况及发展前景摘要:斜拉桥是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是一种由塔、梁、索三种基本构件组成的组合桥梁结构体系,可看作是拉索代替支墩的多跨弹性支承连续梁。
其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。
斜拉桥由索塔、主梁、斜拉索组成。
斜拉桥在目前所有桥型中具有鲜明的特征和优势。
在此浅述有关斜拉桥的发展历程和建造技术要点,以及斜拉桥在世界桥梁发展史上的地位和发展前景。
关键字:跨径结构体系构造建筑美学Abstract:With many girder cable-stayed bridge is will draw directly lasso in bridge tower bridge, is a kind of by a tower, beams, cable three basic components combination bridge structure system, can be considered a lasso more instead of a pier across the elastic supporting continuous beam. It can make the beam is reduced, reduce body bending moment the height and reduce the weight, saving material structure. Cable-stayed bridge by cable tower, girders, composed stay-cables.Cable-stayed bridge in the present in all the distinctive temperature.though characteristics and advantages. In the light of the development process and relevant cable-stayed bridge built technological essencials, as well as in world history ofcable-stayed bridge bridge the status and development prospects.Key Words:span structurestructural system architectural aesthetics正文:身处三大,身在宜昌这个坐落在长江之滨的魅力城市,自然和跨江桥梁构成了密不可分的关系。
10.斜拉桥
![10.斜拉桥](https://img.taocdn.com/s3/m/43c83ce1172ded630b1cb61f.png)
(重),其吊装施工较为困难。 钢绞线索:工厂制作半成品,现场按长度下料安装并最 终形成索;索力控制相对繁琐费时。
思考题
1、单索面斜拉桥主梁采用什么型式截面?为什么? 2、斜拉桥中塔梁墩固结、漂浮以及半漂浮体系各有 何特点? 3、斜拉桥中密索体系与稀索体系各有何优缺点? 4、斜拉索立面布置型式有哪些?各有何优缺点? 5、拉索空间布置与平面布置方式对斜拉桥的受力性 能有何影响?
索面内的其它布置形式 星式
分叉式
混合式
拉索间距 早期:稀索
混凝土达15m~30m
钢斜拉桥达30m~50m
莱茵河上最早的斜拉桥(德)
现代: 密索
混凝土达4m~12m
钢斜拉桥达8m~24m
上 海 南 浦 大 桥
拉索倾角(边索)
辐射式或扇式:260~300
竖琴式:210~300
4、主梁: (1)力学体系: 主梁是以承受压力和弯矩为主的偏心受压构 件,力学体系上可分为:连续体系、非连续体系。 (2)主梁的高跨比 等高度梁,h/l=1/100~1/200 (3)材料 钢材、混凝土、结合梁、混合梁
2. 半飘浮体系(或铰支体系) 塔墩固结,主梁在塔墩上设置竖向支承,为多点弹 性支承的三跨连续梁。 一般支座/ 可调节高度支座或弹簧支承
3. 塔梁固结体系: 塔梁固结并支承在墩上,斜拉索变为弹性支承。 优点:主梁中央段的轴向拉力减小,温度内力极小。 缺点:主梁转角位移导致塔柱倾斜,塔顶水平位移较大, 增大主梁跨中挠度和边跨负弯矩;需设大吨位支座。
2、斜拉桥的组成
3、传力途径及力学特点 a、多点弹性支承,弯矩和挠度显著减小 (1)主梁 高 次 (压弯构件) b、斜拉索水平分力,提供“免费”预应力 超 a、为主梁提供弹性支承 对斜拉索 静 (2)斜索 b、调整其索力、间距 进行预张 定 (受拉) 和数量,可调整桥梁内 拉 结 力分布及刚度 构 3 )索塔(受压为主): 承受索力
有关斜拉桥的发展与创新
![有关斜拉桥的发展与创新](https://img.taocdn.com/s3/m/e725a543bfd5b9f3f90f76c66137ee06eff94ed3.png)
有关斜拉桥的发展与创新一、斜拉桥的发展历程世界上第一座现代的斜拉桥——斯特伦松德桥是德国工程师弗兰茨·狄辛格从1955年开始在瑞典主持设计的。
1975年,这种桥型传入我国,第一座试验性斜拉桥——四川云阳汤溪河大桥(当时重庆属四川管辖)建成。
虽然我国斜拉桥的建造比世界晚了二十年,但是经过中国桥梁工程师们不懈的理论探索和创新实践,中国的斜拉桥事业发展迅速,到现在中国已经成为世界第一桥梁大国。
根据查找资料了解到我国斜拉桥的发展历程大致可以分为三个阶段。
第一阶段是我国斜拉桥的起步阶段,从1975~1982年,是我国斜拉桥发展的第一次高潮。
在这期间所修建的斜拉桥均为混凝土斜拉桥。
除了一开始提到的于1975年2月我国建成的第一座试验性斜拉桥——四川云阳汤溪河大桥以外;还有1980年建成的第一座预应力混凝土斜拉桥——三台涪江大桥;然后是1980年,我国在广西建成的第一座铁路预应力混凝土斜拉桥——红水河铁路桥;还有1981年我国建成了第一座独塔斜拉桥——四川金川县曾达桥,这座桥创造性地采用了平转法施工;1982年建成了上海泖港大桥为双塔双索面预应力混凝土斜拉桥,是中国第一座真正意义上的大跨度斜拉桥。
第二阶段是我国斜拉桥的提升阶段,从1983~1991年。
为何会有提升阶段的划分呢?这是由于第一阶段的建成的斜拉桥大多有拉索上的损坏问题,危及桥梁安全。
在这种情况下,越来越多优秀的桥梁工程师开始了斜拉桥的深入研究。
1985年,上海市政设计院的林元培先生主持设计了重庆嘉陵江石门大桥及上海恒丰北路桥,为日后设计建造南浦大桥积累了宝贵的技术经验。
1987年建成了天津永和大桥。
该桥是跨越永定新河的一座公路桥,是津汉公路的重要通道。
第三阶段是我国斜拉桥的飞跃式发展阶段,从1991年至2023年。
从1990年以后,我国经济迅速发展,交通的建设也必须提上日程,所以中国迎来了桥梁建设的春天。
尤其是造型美观的斜拉桥往往成为首选桥型。
斜拉桥的现状与展望解析
![斜拉桥的现状与展望解析](https://img.taocdn.com/s3/m/6672b8afa76e58fafbb0033e.png)
析按斜塔拉梁桥的合结理状合态方确 定法 式理论与索力优化方 斜按拉交桥通力功学能行为分参类数
研究
斜②拉世桥界的斜静拉力稳桥定跨性 斜径拉排桥名抗震性能研究
斜拉桥抗风性能研究
灌③酒设构计造理及论钢箱与梁科设 计研理情论况研的究现进展状 特体④大系斜跨 方拉度 面桥斜 的施拉 理桥 论工结 探与构 索 ④施斜工拉控桥制施现工与状施工
拉桥,并可对他们进行组合。
赤峰桥,弯斜拉桥
绵阳会客厅一号桥,直弯组合斜拉桥
ponte-del-mare,分离式弯斜拉桥
控制现状
⑤⑤总总结结
按塔的形状
有H形、倒Y形、A形、钻石形、异性等。
斜拉桥的现状
①①斜斜拉拉桥桥的的分类分类
按塔的结构与布置
按按梁塔的的材结料构与线与形布 按置索的疏密与线形 按按按索塔梁的 梁的锚 的材固 结料方 合式 方与式线 按 形交通功能分类 ②名③按形世设索界 计的斜 理疏拉 论密桥 与跨 科与径 研线排 情 况按的索现的状锚固方式
斜拉桥静力非线性分
析按斜塔拉梁桥的合结理状合态方确 定法 式理论与索力优化方 斜按拉交桥通力功学能行为分参类数
研究
斜②拉世桥界的斜静拉力稳桥定跨性 斜径拉排桥名抗震性能研究
斜拉桥抗风性能研究
灌③酒设构计造理及论钢箱与梁科设 计研理情论况研的究现进展状 特体④大系斜跨 方拉度 面桥斜 的施拉 理桥 论工结 探与构 索 ④施斜工拉控桥制施现工与状施工
斜拉桥是一种由塔、梁、索三 种基本构件组成的组合桥梁结构 体系。
因此,根据塔、梁、索各自的 结构形式与布置形式以及其相互 之间的关系,可以对斜拉桥进行 分类。
斜拉桥的现状
①斜拉桥的分类 按塔的结构与布 置 按梁的材料与线 形 按索的疏密与线 形 按索的锚固方式 按塔梁的结合方 式 按交通功能分类 ②世界斜拉桥跨 径排名 ③设计理论与科 研情况的现状 ④斜拉桥施工与 施工控制现状 ⑤总结
斜拉桥发展史及现状综述
![斜拉桥发展史及现状综述](https://img.taocdn.com/s3/m/3d502ab604a1b0717ed5dd00.png)
从斜拉桥看桥梁技术的发展姓名:马哲昊班级:1403专业:建筑与土木工程学号:143085213086摘要: 介绍了国内外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。
关键词: 斜拉桥;发展史;现状;展望Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward.Key words: Cable-stayed bridge; Review; Looking forward to1.斜拉桥的发展1.1 斜拉桥的历史斜拉桥是一种古老而年轻的桥型结构。
早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。
在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜张桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜张桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。
以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。
1818 年,英国一座跨越特威德河的人行桥也毁于风振。
国内外无背索斜拉桥的发展概况
![国内外无背索斜拉桥的发展概况](https://img.taocdn.com/s3/m/3fc996eaf111f18582d05a48.png)
国内外无背索斜拉桥的发展概况自1992年西班牙塞维利亚建成世界上第一座无背索斜拉桥Alamillo桥以来,无背索斜拉桥这种造型优美独特的桥梁结构形式立即引起了世界桥梁界的关注,并在后续短短的十几年里,世界各国相继建成无背索斜拉桥10余座,其中中国已建成的有长沙洪山大桥、合肥铜陵路桥、哈尔滨太阳桥等。
西班牙塞维利亚的Alamillo桥建于1992年,由Santiago Calatrava先生设计,是世界上第一座大跨度无背索斜塔斜拉桥,Alamillo桥主跨200m,桥宽32m,桥梁总长250m,主塔高142m,主塔倾角58°。
长沙市洪水大桥坐落于长沙市洪山庙休闲度假区,横跨浏阳河,主跨206m,主梁为钢-混凝土叠合脊骨结构体系,梁高4.4m,索塔采用预应力混凝土箱形结构,桥面以上塔高136.8m,水平倾角58°,洪山桥为单索面结构,横桥向两排索间距6m,顺桥向索距12m,共计13对26根索,索的水平倾角25°,平行布置。
太阳桥位于哈尔滨太阳岛旅游区,主跨跨径布置为: 14m (西过渡孔)+ 60m (边跨)+140m(中跨)+ 14m(东过渡孔)=228m。
桥梁总宽15.5m,有效宽度为12m 。
主梁梁高2.4 m,为扁平流线型正交异性桥面板钢箱梁,底面为圆弧形,钢箱梁全长200m(含0号节段),共分27个节段,标准节段长度为8m。
主塔为钻石造型桥塔,水平倾角60°,塔高93.5m。
采用变截面钢箱结构,有索区塔截面由2个8边形组合而成。
无索区为2个分离式8边形。
合肥市铜陵路桥是一座新型的无背索斜拉桥,是利用倾斜的塔柱自重来与主梁及荷载相平衡,组成一种独特的传力体系。
其桥垮布置为30m(压重边跨)+ 66m (主跨)+ 30m(边跨)=126m(桥梁总长)。
桥梁总宽38m ,主梁为肋板式结构,主跨梁高2.8m。
主塔为门式型桥塔,水平倾角为62 °,塔高为56.71m ,采用等截面矩形结构,为双索面配置斜拉索,斜拉索共布置16根,为扇形布置。
斜拉桥的发展现状及常见问题分析
![斜拉桥的发展现状及常见问题分析](https://img.taocdn.com/s3/m/3f192a47cd1755270722192e453610661fd95a79.png)
斜拉桥的发展现状及常见问题分析摘要:作为一种可以跨越超长距离的桥梁结构,斜拉桥主要是由主塔和斜索所组成的桥梁结构,这种形式的桥梁结构,虽然整体性能突出,但是在施工的过程中稳定性控制难度极大,一旦施工操作不到位,就可能一发坍塌事故。
为此,想要全面提升斜拉桥的施工效果,施工企业就必须要积极开展斜拉桥相关技术的研究工作,了解发展情况,分析常见问题。
关键词:斜拉桥;结构;桥梁工程引言在社会不断发展,城市化建设进程不断加快的过程中,区域间的交流与沟通日益频繁,此时就对交通运输工程提出了更高的要求。
比如说在进行桥梁项目建设的过程中,为了对其美观性、实用性、受力性、跨越能力等方面进行兼顾,就可以对斜拉桥施工技术展开运用,同时积极进行施工技术的研究工作,促进斜拉桥梁作用的充分发挥。
1斜拉桥技术研究目的斜拉桥属于一种高次超静定桥梁结构,在具体施工的过程在,由于收到桥梁结构参数与设计值差异和施工中荷载不确定等因素的影响,就会造成斜拉桥结构内力与位移的计算结果无法满足设计要求。
在施工的过程中如果不能进行有效的控制与调节,就会对斜拉桥的使用性能产生影响,严重的还会威胁到整体使用安全。
为此,就需要积极开展斜拉桥施工的研究工作,全面提升斜拉桥结构内力、线性与设计要求的一致性,保障使用安全,延长使用寿命。
开展斜拉桥施工控制工作,可以对斜拉桥结构的目标状态与实施状态进行有效的调控,并且必须要严格遵循斜拉桥结构施工的安全性和周期性要求,同斜拉桥自身结构特点相结合确定具体的管控手段,合理确定施工中的允许误差,积极开展施工监控工作,全面提升斜拉桥施工效果,保障我国路桥项目使用安全,为城市与交通运输事业的发展的奠定基础。
2斜拉桥的发展现状目前,斜拉桥正朝着多元化、轻便化方向进行发展。
首先,在开展桥面布设和规划工作的过程中,需要严格遵循轻型化原则,适当减轻桥面系统的构筑重量,同时科学控制拉索部分的造价成本,提高主题结构的轻柔化水平在对近年来大部分大跨度斜拉桥工程的建设施工情况进行分析的过程中可以发现,叠合梁的使用越发频繁,除了可以减轻桥面的实际重量,同时还促进了斜拉桥结构大范围跨越能力的提升,推动整体结构设计朝着多样化方向发展进行发展。
斜拉桥发展概况
![斜拉桥发展概况](https://img.taocdn.com/s3/m/bc31791255270722192ef73f.png)
斜拉桥发展概况自1955年瑞典建成世界第一座现代斜拉桥以来,斜拉桥的建设在世界各地蓬勃发展,但现有斜拉桥大多是独塔双跨式和双塔三跨式,而具有连续主梁的三塔四跨式斜拉桥很少。
伴随着内陆经济发展,三峡库区蓄水工作逐渐完成,长江做为最大的黄金水道其重要性更加凸显,这也要求桥梁必须能够保证通航,多跨连续斜拉桥正好可以完整适应这一要求。
1斜拉桥的发展及其结构特点斜拉桥是现代大跨度桥梁的重要结构形式,特别是在跨越峡谷、海湾、大江、大河等不易修筑桥墩和由于地质的原因不利于修建地锚的地方,往往选择斜拉桥的桥型。
它的受力体系包括桥面体系,支承桥面体系的缆索体系,支承缆索体系的桥塔。
斜拉桥不仅能充分利用钢材的抗拉性能、混凝土材料的抗压性能,而且具有良好的抗风性能和动力特性。
它以其跨越能力大,结构新颖而成为现代桥梁工程中发展最快,最具有竞争力的桥型之一。
2国内外斜拉桥的发展现状及展望现代斜拉桥的历史虽短,但是利用斜向缆索、铁链或铁杆,从塔柱或桅杆悬吊梁体的工程构思以及实际应用可追朔到17 世纪。
斜拉桥发展几乎与悬索桥同时代(Virlogeux M, 1999)。
在我国古代,城墙外面护城上架设的可以开启的桥梁应属于斜拉式,东南亚地区的原始竹索桥的布置与近代的斜拉桥颇为相似。
15, 16世纪的地理大发现,极大推动了东西方文明的交流,源于亚洲的原始形态的斜拉桥对欧美近代斜拉桥的演变产生了深远的影响。
在欧美,最早见于记载的斜拉桥是1617年意大利威尼斯工程师V erantius建造的一座有几根斜拉铁链的桥。
1784年,德国人C.J. Loscher建造了一座木制斜拉桥。
这是世界上第一座真正愈义上的斜拉桥。
但是,18 世纪初两座斜拉桥的损毁,致使这种斜拉体系在18 世纪到19 世纪期间的发展几乎停滞[Podolny W, 1976]。
1918 年,位于英国Dryburgh-Abber 附近,跨越Tweed 河长约79m 的人行桥,在风力振荡的情况下,致使斜链在节点处折断而出现事故。
小议大跨度斜拉桥施工技术发展现状及发展趋势
![小议大跨度斜拉桥施工技术发展现状及发展趋势](https://img.taocdn.com/s3/m/1f5ba1f22dc58bd63186bceb19e8b8f67c1cef3b.png)
小议大跨度斜拉桥施工技术发展现状及发展趋势大跨度斜拉桥施工技术发展的现状如下:1、斜拉索材料的发展:传统的斜拉索材料主要采用钢材,但随着新材料的发展,现在也有采用碳纤维、高强度钢丝等材料作为斜拉索的新型斜拉桥。
这些新材料具有重量轻、强度高、耐腐蚀等特点,能够提高斜拉桥的承载能力和使用寿命!2、斜拉索施工技术的改进:传统的斜拉索施工主要采用吊索法或者拉索法,但这些方法存在一定的施工难度和风险。
现在,一些新的斜拉索施工技术被引入,如预应力张拉法、预制张拉法等,能够提高斜拉索的施工效率和质量。
3、斜拉桥结构设计的创新:传统的斜拉桥结构设计主要采用单塔单索或者双塔双索的形式,但这些结构存在一定的限制。
现在,一些新型的斜拉桥结构被提出,如多塔多索、斜塔斜索等,能够适应更大跨度和更复杂的地形条件。
4、斜拉桥施工技术的自动化和智能化:随着科技的发展,大跨度斜拉桥施工技术也在向自动化和智能化方向发展。
例如,施工机械的自动化控制、无人机的应用、人工智能的辅助设计等,能够提高施工效率和质量。
大跨度斜拉桥施工技术的发展趋势主要包括以下几个方面:1、施工工艺的优化:随着施工技术的不断发展,施工工艺也在不断优化。
传统的大跨度斜拉桥施工通常需要大量的人力和物力投入,而现代化的施工工艺可以通过使用先进的机械设备和自动化技术来提高施工效率,减少施工时间和成本。
2、材料的创新:大跨度斜拉桥的施工需要使用高强度、轻质的材料,以保证桥梁的结构稳定性和承载能力。
随着材料科学的不断进步,新型材料的开发和应用将为大跨度斜拉桥的施工提供更多选择,例如高强度钢材、碳纤维等。
3、结构设计的优化:大跨度斜拉桥的结构设计是保证桥梁安全可靠的关键。
随着计算机技术的发展,结构设计分析软件的应用越来越广泛,可以对桥梁的结构进行更加精确和详细的分析,优化结构设计,提高桥梁的承载能力和抗震性能。
4、施工监测技术的应用:大跨度斜拉桥的施工过程需要进行实时的监测和控制,以确保桥梁的安全性和稳定性。
铁路斜拉桥的发展历程
![铁路斜拉桥的发展历程](https://img.taocdn.com/s3/m/94351842bfd5b9f3f90f76c66137ee06eff94e23.png)
铁路斜拉桥的发展历程
铁路斜拉桥是一种横跨河流、峡谷等地理障碍的桥梁类型,其发展历程可以追溯到19世纪末。
在19世纪末到20世纪初的时期,随着工业化的迅速发展,铁路交通的建设需求大幅增加。
传统的悬索桥和梁桥等桥梁形式在面对较长跨度的铁路建设时遇到了困境,因为这些桥梁结构需要大量的支撑,而在地理复杂地区往往很难找到足够的支撑点。
因此,工程师们急需一种新的桥梁结构形式来解决这一问题。
1904年,德国工程师F. Sechen首次提出了斜拉索桥的概念,这种桥梁结构利用了斜向的拉索来支撑桥面,并通过张拉斜拉索来分担桥面的荷载。
斜拉索桥的设计理念革新了桥梁建设领域,为解决长跨度桥梁建设的难题提供了新的思路。
随后几十年间,斜拉桥的设计和建设继续得到改进和完善。
各国工程师在实践中不断探索,不断尝试新的设计理念和结构材料,使得斜拉桥的跨越能力不断提升。
在技术条件逐渐成熟的情况下,斜拉桥开始在世界各地得到大规模应用,成为长跨度铁路桥梁建设的首选。
近年来,随着工程技术的进一步发展,铁路斜拉桥的跨越能力已达到了令人瞩目的水平。
一些具有重大工程挑战的项目,如中国的长江大桥、美国的赫尔姆斯特-汉布尔特桥等,都采用了斜拉桥的设计方案,成功地跨越了巨大的水域和复杂的地理环境。
总的来说,铁路斜拉桥的发展历程可以追溯到20世纪初,经过多年的研发和实践,该桥梁结构在解决长跨度铁路建设难题方面取得了巨大的突破,并成为现代铁路交通建设中不可或缺的一部分。
矮塔斜拉桥综述-牟芸
![矮塔斜拉桥综述-牟芸](https://img.taocdn.com/s3/m/debcc35077232f60ddcca1d2.png)
二、矮塔斜拉桥的特点
1.矮塔斜拉桥的力学特征 矮塔斜拉桥是介于斜拉桥和梁式桥之间的一种组合体系桥梁,表 1 列出我国和日本已
建和在建的部分矮塔斜拉桥。矮塔斜拉桥结构体系可选用塔梁固结、梁底设支座;塔梁分 离、塔墩固结;塔梁墩固结的形式。如果跨径不大,可选用第一种形式这样可以降低塔底 弯矩,塔两侧索力差小,结构整体刚度小;第三种形式类似于连续刚构桥,适合于跨径稍 大的情况,由于塔梁墩固结,在墩底和塔底都将产生较大的弯矩,并且塔两侧索力差较大, 整体刚度稍大。
1 180+312+180
银湖大桥
80+80
常州运河桥
70.2+120+70.2
小西湖黄河大桥
82+136+82
湛河一桥 漳州战备大桥
88+72 80.8+132+80.8
边跨与 主跨比 0.60 0.60 0.61 0.42 0.55 0.58 0.32 0.58 1.00 0.585
0.60
0.82
0.61
桥面以 上塔高 10.7 12.00 10.00 16.00 22.1 30.00
9.1 35.00 30.25 31.0
17
22.7
16.50
塔高与 主跨比
1/11.5 1/8.7 1/9.0 1/11.2
53.0 高 2.5 高 2.5
高 3.0~5.5
高 3.0~6.0 高 4.3~4.7
备注
1994 年建成 1995 年建成 1995 年建成
1998 年建成
1998 年建成 2001 年建成
1/9.89 高 2.5~3.0 2002 年建成
斜拉桥的发展、现状和展望
![斜拉桥的发展、现状和展望](https://img.taocdn.com/s3/m/a2fcc404804d2b160a4ec035.png)
缆索承重桥 — 斜拉桥 —发展、现状和展望(知识点1)
缆索承重桥
教学目的:
通过对斜拉桥和悬索桥(缆索承重桥)的学习,了解这两类桥的设计、 构造原则和施工过程,掌握斜拉桥、悬索桥主要结构体系的受力特点及 结构计算要点。
教学内容:
1)、斜拉桥的发展、设计、构造、计算要点和施工过程; 2)、悬索桥的发展、设计、构造、计算要点和施工过程; 3)、斜拉桥和悬索桥桥例介绍。
斜拉桥、悬索桥的发展,结构体系及立面布置,主要结构体系及受 力特点,施工过程,以及设计和计算要点。
《桥梁工程》(下)
缆索承重桥
教材与主要参考书
教材: 1、《桥梁工程》(下册),顾安邦等主编,人民交通出版社,2011。 参考书: 1、《缆索支承桥梁——概念与设计》(第二版),Niels J.Gimsing,
《桥梁工程》(下)
斜拉桥的发展、现状和展望
斜拉桥 的定义
斜拉桥又名(Cable-stayed bridge) 斜张桥,由主梁、拉
索及塔柱(也称索塔)组成的组合受力体系桥梁 也是用斜拉索将主梁悬吊在塔柱上的索支承(承重)
桥梁 外荷载由主梁受弯
压、斜拉索受拉及 塔柱受压弯承担
《桥梁工程》(下)
斜拉桥的发展、现状和展望
斜拉桥 的发展、现状和展望
斜拉桥雏形 斜拉桥的失败(18世纪下半叶至19世纪初)
斜拉桥的复兴和典型斜拉桥(二次世界大战后) 斜拉桥的发展阶段和现状
中国斜拉桥的发展和现状 斜拉桥展望
《桥梁工程》(下)
斜拉桥的发展、现状和展望
斜拉桥展望
斜拉桥发展的原因与条件
金增洪译,人民交通出版社,2002; 2、《现代悬索桥》,严国敏编著,人民交通出版社,2002; 3、《现代斜拉桥》,严国敏编著,西南交通大学出版社,1996; 4、《斜拉桥》,林元培编著,人民交通出版社,1994。
斜拉桥与悬索桥的现状受力特点及构造[详细]
![斜拉桥与悬索桥的现状受力特点及构造[详细]](https://img.taocdn.com/s3/m/5130dabd7cd184254b3535df.png)
(四)截面
➢主梁
斜拉桥的主梁宜在全长范围内布置成连续体系。 新的设计细则明确提出斜拉桥主梁的四种形式:
➢混凝土梁 ➢钢梁 ➢组合梁 ➢混合梁
钢主梁截面形式: 箱形、梁板式、分离式边箱、钢板梁截面。
当采用双层桥面的主梁时,宜采用桁架形式。
重庆菜园坝大桥
主梁横向连接系
新设计细则中规定 主梁斜拉索锚固区必须设置横向连接系。支座处 横
(三)结构体系
a) 主 梁 b) 拉 索 c) 索 塔 d) 桥 墩 e) 桥 台
➢漂浮体系:塔墩固结, 梁在塔处不设支座, 边墩上仅设纵向滑动支座.
➢支承体系:塔墩固结,在所有墩, 塔处梁下均设有支座.(当支座是 纵向滑动支座时,叫做半漂浮体系)
主梁与塔柱之间横向约束示意图
➢塔梁固结体系:塔梁固结,墩处设有支座.
➢刚构体系:塔,梁,墩均固结,不需支座,不需体系转换.
按拉索的锚拉体系不同而形成 的三种结构体系
自锚式斜拉桥 地锚式斜拉桥 部分地锚式斜拉桥
A)自锚式斜拉桥
自锚体系中,锚固在端支点处的拉索索力 最大,一般需要较大的截面,并且它对控制塔 顶的变为起着重要的作用,是最重要的一根拉 索,被成为端锚索。
可减少水中墩及深水基础,故总体布置时一 般从经济角度考虑,宜采用独塔布置方案, 根据桥位地形及跨径需要等各种因素也可选 用双塔布置或多塔布置
桥涵工程
18
(二)跨径布置
现代斜拉桥最典型的跨径布置有两种:即双 塔三跨式和独塔双跨式。在特殊情况下也可 布置成独塔单跨式、双塔单跨式及多塔多跨 式。
辅助墩的作用:斜拉桥在边跨设置辅助墩, 可以增强结构体系的刚度,明显地改善边跨 内力和减小挠度,特别是对辅助墩附近主梁 断面的内里有明显的改善。设置辅助墩后大 大减小了活载引起的梁端转角,使伸缩缝不 易受损。当索塔刚度不够大时,辅助墩还可 以约束塔身的变形,从而改善中跨的内力及 挠度。反之,如索塔的刚度较大,则将辅助 墩对中跨的受理状态就没有明显的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从斜拉桥看桥梁技术的发展
:马哲昊
班级:1403
专业:建筑与土木工程
学号:6
摘要: 介绍了国外斜拉桥的发展历史,综述了现今斜拉桥发展的现状,并分析了斜拉桥的结构形式和布置形式及其经济效益,并简述了其中的桥梁技术,对今后斜拉桥的发展做出展望。
关键词: 斜拉桥;发展史;现状;展望
Abstract: the paper introduces the domestic and foreign in recent decades history of Cable-stayed bridge.the paper summarized the The structure of cable-stayed bridge and the Economic benefits and Introduced the technology of it.the direction of further research in the future was put forward.
Key words: Cable-stayed bridge; Review; Looking forward to
1.斜拉桥的发展
1.1 斜拉桥的历史
斜拉桥是一种古老而年轻的桥型结构。
早在数百年前,斜拉桥的设想和实践就已经开始出现,例如在亚洲的老挝,爪哇都发现过用藤条和竹子架设的斜拉结构人行桥。
在古代,世界各地也都出现过通行人、马等轻型荷载的斜拉结构桥梁在 18 世纪,德国人就曾提出过木质斜桥的方案,1817 年英国架成了一座跨径为 34m 的人行木质斜桥,该桥的桥塔采用铸铁制造,拉索则采用了钢丝。
以后在欧洲的很多国家都先后出现了一些斜拉桥,如 1824 年,英国在 Nienburg 修建了一座跨径为 78m 的斜拉桥,拉索采用了铁链条和铸铁杆,后来由于承载能力不足而垮塌。
1818
年,英国一座跨越特威德河的人行桥也毁于风振。
现在看来,这些桥梁的垮塌主要是由于当时工业水平的限制、对斜拉桥这样高次超静定结构体系缺乏理论分析方法和技术手段以及桥梁结构构造存在缺陷。
世界上第一座现代化的大跨径斜拉桥诞生于 1955 年,在第二次世界大战结束后,Dischinger 在瑞典设计建成了 Stromsund 桥。
该桥主跨 182.6m,全桥采用斜拉式结构,主梁为钢板梁,中间用横梁连接,双塔式,每塔只用了两对高强钢丝拉索,梁上索距35m 左右,梁高 3.25m 为跨径的 1/56,塔高 28m 为跨径的 1/6.5。
这座桥在现代的观点来看虽然在细节上存在着一些不足,如桥面采用的分离的混凝土梁,索塔的造型缺乏美感等,但在桥梁结构上却开创了一个新的纪元,创造出了一种新的桥梁体系,且这种桥梁结构拥有着诸多优点:
①用少量拉索取代了深水桥墩,不但节省了费用、降低了施工难度,而且有效的提高了桥梁的跨越能力,利于通航和排洪。
②拉索作为主梁的中间弹性支承,使得在桥梁跨径增大的同时,主梁的梁高却可以减小,从而使主梁本身以梁以及段引桥的造价得以降低。
③拉索自锚固于主梁上,梁身能够得到免费的预压应力,在很多情况下,尤其对于中等跨径桥梁是有利的,和悬索桥相比还可以节省庞大而昂贵的地锚。
④拉索和索塔、主梁组成了多个三角形结构,稳定性高,刚度大。
静、动力性能都良好。
⑤整体结构新颖,造型美观。
斜拉桥这种新桥型的的出现,以其先进的技术,经济的造价、美观的外形,很快的得到了社会的认同,并在许多国家得到了推广,从Stromsund 桥建成后的第二年起,诸多有名的斜拉桥相继诞生,且发展的速度很快,平均每年就能完一座斜拉桥的修建。
早期的斜拉桥结构大多采用当时盛行的轻型钢结构正交异性桥面板,各桥不仅在形式上不尽相同,各具特色,而且技术构思上也互有区别。
在这个过程中,斜拉桥在世界各地也逐渐广泛流行起来。
1.2 国外斜拉桥的发展
从全世界的围来看,20 世纪中期,由于结构分析技术的进步、高强材料和新施工方法的应用以及防腐技术的发展,推动了大跨径斜拉桥的发展。
从 20 世纪70 年代开始,斜拉桥开始进入高速发展的阶段,直到 20 世纪 90 年代,斜拉的跨径已经进入以前悬索桥适应的特大跨径围,建造的数量也越来越多。
斜拉桥的跨径的世界记录是斜拉桥发展的重要标志。
斜拉桥的跨径记录在上世纪 70 年代到 80 年代缓慢发展,从 90 年代开始跨径记录则不断被刷新
(表 1.1)。
从全世界第一座建成的斜拉桥—瑞典 Stroemsund 桥
(74.7m+183.0m+74.7m)开始,欧洲国家开始出现了一系列稀索结构的钢斜拉桥。
1957 年德国建成的杜塞尔多夫北桥,跨径组成为
108m+260m+108m,主梁为钢结构,高度 3.12m;钢塔高 41m,横向不设置横梁;拉索呈竖琴形布置,索距为36m。
1959 年德国克隆建成的 Severin 桥,主跨 302m,首次采用“A”形主塔,结合斜索面,首次采用主梁漂浮体系,也是首座非对称、独塔双跨斜拉桥。
1962 年在委瑞拉建成了的马拉开波桥是世界上第一座混凝土斜拉桥,该桥由意大利 Morandi J 设计,主跨跨径为235m,主梁为带挂孔的悬臂体系。
20 世纪 60 年代开始,随着计算机技术的广泛应用,密索体系的斜拉桥开始出现,解决了过去稀索体系斜拉桥存在的主梁重且配筋多的缺陷。
1967 年德国波恩
建成的弗瑞德里西—埃伯特桥是单索面密索体系斜拉桥,主跨 280m,该体系的优点还包括锚固点的集中力较小,易于悬臂施工,为期后修建的斜拉桥作出了典。
在密索体系出现后,主梁支撑间距缩短,主梁的高度得以降低,主梁的柔薄化成为了斜拉桥发展的新趋势。
特别是对于混凝土主梁而言,梁高的减小对于恒载的降低有尤其重要的意义,例如:1985 年建成的美国 East Huntington 桥,独塔主跨 274.32m,梁板式主梁高1.52m,高跨比为
1/180。
1988 年建成的美国 Dame Point 桥,双塔主跨 396.24m,主梁高1.524m,高跨比为 1/260。
1991 年建成的挪威 Skarnsundet 桥,双塔主跨530m,主梁高 2.15m,高跨比为 1/274。
可以看出,斜拉桥主梁的柔薄化,使得高跨比视跨径大小、主梁材料、结构形式等在 1/150~1/300 之间变化,甚至可以更低。
上世纪末,斜拉桥的发展向着大跨径和特大跨径不断进军。
法国 1994 年修建的跨径为 856m 的诺曼底大桥和日本 1998 年修建的跨径为890m 的多多罗大桥标志着斜拉桥进入了特大跨径领域。
斜拉桥的复兴与辉煌也被认为是 20 世纪下半叶桥梁界最重要的事
1.3 国斜拉桥的发展
斜拉桥在我国的发展起步较晚但发展速度很快。
我国第一座斜拉桥为1975 年交通部科学研究所设计和指导施工的云阳桥。
由于尚处“文革”
时期,各方面条件受限,该桥是在一座人行吊桥的桥墩和桥塔基础上改建
而成的试验桥,桥宽仅能维持单车道 3.75m,主跨跨径 75.84m。
虽然该。