液压伺服系统工作原理及实例

合集下载

机-液伺服系统的仿真液压仿形刀架

机-液伺服系统的仿真液压仿形刀架

(3-7)
考虑导轨的机械摩擦等因素,取 h 0.7 ,系统的方框图如图 3-3 所示。
图 3-3 代入参数后的系统方框图 将上述系统在 MATLAB 中用 Simulink 建模,模型如图 3-4 所示
图 3-4 仿形刀架系统结构图 用线性定常系统 LTI Viewer 仿真,得到的阶跃响应曲线如图 3-5 所示。
xv1 xv 2 ,而 pc 0.5 ps ,则液压缸处于平衡状态,静止而不运动。
工作时,刀架纵向进给速度为 vz ,触头沿样件直线表面滑动,对伺服阀心并未输入信 号,故伺服阀阀心及液压缸均无动作,即液压缸无输出。但液压缸缸体连同刀具在液压缸轴 向切削分力的作用下产生退让,迫使阀口 x v1 减少, xv 2 加大,而 pc 下降,即 ps Ar 2 pc Ar 以使之与切削分力相平衡,即
xv
(3)液压缸的位移方程
n m xi y K i xi K f y mn mn
(3-3)
根据上文对液压缸的特性分析,液压缸的输入流量与输出位移的传递函数为
1 / Ap y Qo s 2 2 h s 2 s 1 h h
将各个部分按照图 4-2 的结构组合起来,得到系统的方框图如下
2 10 6 2.72m 2 / s 860
(3-5)
Ap
液压固有频率
(D 2 d 2 )
4
35.33 10 4 m 2
(3-6)
h
2 4 e Ap
Vt mt

4 1200 10 5 35.33 10 4 9.8 689rad / s 0.05 35.33 10 4 700
图 3-5 仿形刀架系统的阶跃响应曲线 系统开环 Bode 图和开环脉冲响应曲线如图 3-6 和图 3-7 所示,MATLAB 程序如下。

液压伺服系统的发展和应用

液压伺服系统的发展和应用

液压控制系统液压技术主要是由于武器装备对高质量控制装置的需要而发展起来的。

随着控制理论的出现和控制系统的发展,液压技术与待腻子技术的结合日趋完善,从而产生了广泛应用于武器装备的高质量电液控制系统。

同时,液压技术也广泛地应用于许多工业部门。

在这个发展过程中,控制装置的需要反过来迫使液压元器件、液压控制系统不断更新,不断发展提高。

本文结合课堂所学,简要讲述液压技术的发展和应用。

1.液压传动将源动力的能量按一定方式和规律传递给工作机构的作用叫传动。

在机器中起传动作用的机构叫传动机构。

目前传动有五种型式:机械传动、电气传动、气体传动、流体传动和复合传动。

在液体传动中,有一种以液体为传动介质,主要靠受压液体的压力能来实现运动和能量传递的叫液压才传动。

图1为一个简单的连通器,可以用来传递能量。

图1.连通器简图当右边小活塞在外力Fo作用下,向下推压右边腔室的液体时,该处的液体通过两腔室间连通的通道被挤压到左边大腔室中,使重物G运动,这样就起到了传动能量的作用。

但这种简单的连通器不能连续工作,下面以一个简单的例子来分析液压传动系统。

如图2所示,小活塞及其活塞缸为主动缸,在单向阀配合下不断从邮箱吸油,排左边大缸腔,被称为液压泵。

左边大活塞及其缸腔为工作缸,不断得到压力油,不断推举重物做功,被称为液压缸。

从图中知道,液压泵、液动机(液压缸和液压马达)和控制阀为组成液压系统的三个主要部分,加上辅助装置和液压油,这五个部分是实际液压机构所必须的。

图2.千斤顶的原理图2.液压元件根据各个元件在液压系统中的作用,主要分为动力元件(液压能源)—液压泵,执行元件(液动机)—液压马达(输出旋转运动)和液压缸(输出直线运动),以及各种控制阀。

2.1.液压控制元件液压阀是液压系统的控制元件,通过它改变系统中流体的运动方向、压力和流量。

在节流式伺服系统中,它直接控制执行元件动作;在容积式伺服系统中,它直接控制着泵的变量机构,改变其输出流量,从而间接的对执行元件的动作进行控制。

液压伺服系统工作原理及实例PPT课件

液压伺服系统工作原理及实例PPT课件

电液伺服阀
工作台
xf
放大器
uf Δu
反馈电位器 xo +E
ug
指令电位器
xg
双电位器位置控制电液伺服系统
.
12
4、液压伺服控制系统举例
电液伺服阀处于零位,没有 流量进出系统,工作台不动. 当指令电位器向右移动一个 位移△U=K △Xg, 经放大去 控制电液伺服阀,输出压力 油推动工作台右移,同时使 工作台位移增加,当增加量 为△U=Xf+△Xf-Xg- △Xg =0,工作台重新停止.
电液伺服阀
工作台
xf
放大器
uf Δu
反馈电位器 xo +E Nhomakorabeaug
指令电位器
xg
双电位器位置控制电液伺服系统
.
13
4、液压伺服控制系统举例
该系统是一个电量反馈的闭环控制系统。该系统的工作原 理方块图为:
指令 电位器
+ -
伺服 放大器
电液 伺服阀
液压缸
工作台
反馈 电位器
位置控制系统工作原理方块图
.
14
4、液压伺服控制系统举例
(1) 液 压 仿 形 刀 架
v纵
v合
v仿
v合
v仿
v纵
v纵
b
a
进给运动示意图
.
该 系 统 的 反 馈 是 机 械 反 馈
11
4、液压伺服控制系统举例
(2)电液位置伺服控制系统
该系统控制工作台的位置,使 之按照指令电位器给定的规律 变化.指令电位器将滑臂的位置 指令Xg转换成电压Ug. 工作台位 置Xf由反馈电位器检测,转换成 电压Uf.两个电位器接成桥式回 路,电桥的输出电压△U=Ug-Uf =K(Xg-Xf),K电位器增益. 当工作台位置Xf与指令位置Xg 一致时,Xf=Xg,即△U=0.

液压伺服系统工作原理

液压伺服系统工作原理

液压伺服体系工作道理1.1 液压伺服体系工作道理液压伺服体系以其响应速度快.负载刚度大.控制功率大等奇特的长处在工业控制中得到了广泛的应用.电液伺服体系经由过程应用电液伺服阀,将小功率的电旌旗灯号转换为大功率的液压动力,从而实现了一些重型机械装备的伺服控制.液压伺服体系是使体系的输出量,如位移.速度或力等,能主动地.快速而精确地追随输入量的变更而变更,与此同时,输出功率被大幅度地放大.液压伺服体系的工作道理可由图1来解释.图1所示为一个对管道流量进行中断控制的电液伺服体系.在大口径流体管道1中,阀板2的转角θ变更会产生撙节感化而起到调撙节量qT的感化.阀板迁移转变由液压缸带动齿轮.齿条来实现.这个体系的输入量是电位器5的给定值x i.对应给定值x i,有必定的电压输给放大器7,放大器将电压旌旗灯号转换为电流旌旗灯号加到伺服阀的电磁线圈上,使阀芯响应地产生必定的启齿量x v.阀启齿x v使液压油进入液压缸上腔,推进液压缸向下移动.液压缸下腔的油液则经伺服阀流回油箱.液压缸的向下移动,使齿轮.齿条带动阀板产生偏转.同时,液压缸活塞杆也带动电位器6的触点下移x p.当x p所对应的电压与x i所对应的电压相等时,两电压之差为零.这时,放大器的输出电流亦为零,伺服阀封闭,液压缸带动的阀板停在响应的qT地位.图1 管道流量(或静压力)的电液伺服体系1—流体管道;2—阀板;3—齿轮.齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制体系中,将被控制对象的输出旌旗灯号回输到体系的输入端,并与给定值进行比较而形成误差旌旗灯号以产生对被控对象的控制造用,这种控制情势称之为反馈控制.反馈旌旗灯号与给定旌旗灯号符号相反,即老是形成差值,这种反馈称之为负反馈.用负反馈产生的误差旌旗灯号进行调节,是反馈控制的根本特点.而对图1所示的实例中,电位器6就是反馈装配,误差旌旗灯号就是给定旌旗灯号电压与反馈旌旗灯号电压在放大器输入端产生的△u.图2 给出对应图1实例的方框图.控制体系经常应用方框图暗示体系各元件之间的接洽.上图方框顶用文字暗示了各元件,后面将介绍方框图采取数学公式的表达情势.图2 伺服体系实例的方框图液压伺服体系的构成液压伺服体系的构成由上面举例可见,液压伺服体系是由以下一些根本元件构成;输入元件——将给定值加于体系的输入端的元件.该元件可所以机械的.电气的.液压的或者是其它的组合情势.反馈测量元件——测量体系的输出量并转换成反馈旌旗灯号的元件.各类类形的传感器经常应用作反馈测量元件.比较元件——将输入旌旗灯号与反馈旌旗灯号比拟较,得出误差旌旗灯号的元件.放大.能量转换元件——将误差旌旗灯号放大,并将各类情势的旌旗灯号转换成大功率的液压能量的元件.电气伺服放大器.电液伺服阀均属于此类元件;履行元件——将产生调节动作的液压能量加于控制对象上的元件,如液压缸或液压马达.控制对象——各类临盆装备,如机械工作台.刀架等.液压伺服数学模子2.1 数学模子为了对伺服体系进行定量研讨,应找出体系中各变量(物理量)之间的关系.不单要搞清晰其静态关系,还要知道其动态特点,即各物理量随时光而变更的进程.描写这些变量之间关系的数学表达式称之为数学模子.2.1.1 微分方程伺服体系的动态行动可用各变量及其各阶导数所构成的微分方程来描写.当微分方程各阶导数为零时,则变成暗示各变量间静态关系的代数方程.有了体系活动的微分方程就可知道体系各变量的静态和动态行动.该微分方程就是体系的数学模子.2.1.2 拉氏变换与传递函数拉氏变换全称为拉普拉斯变换.它是将时光域的原函数f(t)变换成复变量s域的象函数F(s),将时光域的微分方程变换成s域的代数方程.再经由过程代数运算求出变量为s的代数方程解.最后经由过程拉氏反变换得到变量为t的原函数的解.数学大将时域原函数f(t)的拉氏变换界说为如下积分:而拉氏逆变换则记为现实应用中其实不须要对原函数一一作积分运算,与查对数表类似,查拉氏变换表(表1)即可求得.拉氏变换在解微分方程进程中有如下几共性质或定理:(1)线性性质设则有式中 B——随意率性常数.(2)迭加道理这一性质极为重要,它使我们可以不作拉氏逆变换就能预感体系的稳态行动.(6)初值定理微分方程表征了体系的动态特点,它在经由拉氏变换后生成了代数方程,仍然表征了体系的动态特点.假如所有肇端前提为零,设体系(或元件)输出y(t)的拉氏变换为Y(s)和输入x(t)的拉氏变换为X(s),则经由代数运算得(1)G(s)为一个以s为变量的函数,我们称这个函数为体系(或元件)的传递函数.故体系(或元件)的动态特点也可用其传递函数来暗示.传递函数是经典控制理论中一个重要的概念.用常系数线性微分方程暗示的体系(或元件),在初始前提为零的前提下,经拉氏变换后,微分方程中n阶的导数项响应地变换为s n项,而系数不变.即拉氏变换后所得代数方程为一系数与原微分方程雷同,以s n代替n阶导数的多项式,移项后就是其传递函数.故一个体系(或元件)的传递函数极易求得.表1 拉氏变换表(部分)原函数ƒ(t)拉氏变换函数F(s)原函数图形(t≥0)1 单位脉冲函数δ(t)= 1单位阶跃函数=1(t>0) 2=0(t≤0)3 t4 t n56 (1-)7 sinωt8 cosωt9 sin(ωt+θ)10 cos(ωt+θ)11 cosbt12131415 sinhωt16 coshωt例如图3所示为一个质量-弹性-油阻尼体系,该体系的力均衡微分方程为(2)式中 M——质量;x——质量的位移;B C——阻尼系数;k——弹簧刚度.图3 质量-弹性-油阻尼体系经拉氏变换得(3)写成传递函数为(4)方框图及其等效变换图4 所示是一种文字情势的方框图,它暗示体系构造中各元件的功用及它们之间的互相贯穿连接和旌旗灯号传递线路.这种方框图又称作构造方框图.另一种方框图即“函数方块图”,就是将元件或环节的传递函数写在响应的方框中,用箭头线将这些方框衔接起来,如图4所示.指向方框图的箭头暗示对其输入旌旗灯号;从方框图出来的箭头暗示输出.图中圆圈暗示比较点,亦称加减点,它对二个以上旌旗灯号根据其正.负进行代数运算.同一旌旗灯号线上的各引出旌旗灯号,数值与性质完整雷同.方框图输出旌旗灯号的因次,等于输入旌旗灯号的因次与方程中传递函数因次的乘积.图4 体系方框图1—输入旌旗灯号;2—比较点;3—引出旌旗灯号;4—输出旌旗灯号方框图等效变换.简化轨则见表2.表2 方块图变换轨则序号原方块图等效方块图1234567891011121314电液伺服阀电液伺服阀电液伺服阀既是电液转换元件,又是功率放大元件,它可以或许把渺小的电气旌旗灯号转换成大功率的液压能(流量和压力)输出.它的机能的好坏对体系的影响很大.是以,它是电液控制体系的焦点和症结.为了可以或许精确设计和应用电液控制体系,必须控制不合类型和机能的电液伺服阀.伺服阀输入旌旗灯号是由电气元件来完成的.电气元件在传输.运算和参量的转换等方面既快速又轻便,并且可以把各类物理量转换成为电量.所以在主动控制体系中广泛应用电气装配作为电旌旗灯号的比较.放大.反馈检测等元件;而液压元件具有体积小,构造紧凑.功率放大倍率高,线性度好,逝世区小,敏锐度高,动态机能好,响应速度快等长处,可作为电液转换功率放大的元件.是以,在一控制体系中常以电气为“神经”,以机械为“骨架”,以液压控制为“肌肉”最大限度地施展机电.液的长处.因为电液伺服阀的种类许多,但各类伺服阀的工作道理又基底细似,其剖析研讨的办法也大体雷同,故今以经常应用的力反馈两级电液伺服阀和地位反馈的双级滑阀式伺服阀为重点,评论辩论它的根本方程.传递函数.方块图及其特点剖析.其它伺服阀只介绍其工作道理,同时也介绍伺服阀的机能参数及其测试办法电液伺服阀的构成电液伺服阀在电液控制体系中的地位如图27所示.电液伺服阀包含电力转换器.力位移转换器.前置级放大器和功率放大器等四部分.3.1.1 电力转换器包含力矩马达(迁移转变)或力马达(直线活动),可把电气旌旗灯号转换为力旌旗灯号.3.1.2 力位移转换器包含钮簧.弹簧管或弹簧,可把力旌旗灯号变成位移旌旗灯号而输出.3.1.3 前置级放大器包含滑阀放大器.喷嘴挡板放大器.射流管放大器.3.1.4 功率放大器——滑阀放大器由功率放大器输出的液体流量则具有必定的压力,驱动履行元件进行工作.图27 电液控制体系方块图电液伺服阀的分类电液伺服阀的分类电液伺服阀的种类许多,根据它的构造和机能可作如下分类:1)按液压放大级数,可分为单级伺服阀.两级伺服阀和三级伺服阀,个中两级伺服阀应用较广.2)按液压前置级的构造情势,可分为单喷嘴挡板式.双喷嘴挡板式.滑阀式.射流管式和偏转板射流式.3)按反馈情势可分为地位反馈.流量反馈和压力反馈.4)按电-机械转换装配可分为动铁式和动圈式.5)按输出量情势可分为流量伺服阀和压力控制伺服阀.6)按输入旌旗灯号情势可分为中断控制式和脉宽调制式.伺服阀的工作道理伺服阀的工作道理下面介绍两种重要的伺服阀工作道理.力反馈式电液伺服阀的构造和道理如图28所示,无旌旗灯号电流输入时,衔铁和挡板处于中央地位.这时喷嘴4二腔的压力p a=p b,滑阀7二端压力相等,滑阀处于零位.输入电流后,电磁力矩使衔铁2连同挡板偏转θ角.设θ为顺时针偏转,则因为挡板的偏移使p a>p b,滑阀向右移动.滑阀的移动,经由过程反馈弹簧片又带动挡板和衔铁反偏向扭转(逆时针),二喷嘴压力差又减小.在衔铁的原始均衡地位(无旌旗灯号时的地位)邻近,力矩马达的电磁力矩.滑阀二端压差经由过程弹簧片感化于衔铁的力矩以及喷嘴压力感化于挡板的力矩三者取得均衡,衔铁就不再活动.同时感化于滑阀上的油压力与反馈弹簧变形力互相均衡,滑阀在分开零位一段距离的地位上定位.这种依附力矩均衡来决议滑阀地位的方法称为力反馈式.假如疏忽喷嘴感化于挡板上的力,则马达电磁力矩与滑阀二端不服衡压力所产生的力矩均衡,弹簧片也只是受到电磁力矩的感化.是以其变形,也就是滑阀分开零位的距离和电磁力矩成正比.同时因为力矩马达的电磁力矩和输入电流成正比,所以滑阀的位移与输入的电流成正比,也就是经由过程滑阀的流量与输入电流成正比,并且电流的极性决议液流的偏向,如许便知足了对电液伺服阀的功效请求.图28 力反馈式伺服阀的工作道理1—永远磁铁;2—衔铁;3—扭轴;4—喷嘴;5—弹簧片;6—过滤器;7—滑阀;8—线圈;9—轭铁因为采取了力反馈,力矩马达根本上在零位邻近工作,只请求其输出电磁力矩与输入电流成正比(不象地位反馈中请求力矩马达衔铁位移和输入电流成正比),是以线性度易于达到.别的滑阀的位移量在电磁力矩必定的情形下,决议于反馈弹簧的刚度,滑阀位移量便于调节,这给设计带来了便利.采取了衔铁式力矩马达和喷嘴挡板使伺服阀构造极为紧凑,并且动特点好.但这种伺服阀工艺请求高,造价高,对于油的过滤精度的请求也较高.所以这种伺服阀实用于请求构造紧凑,动特点好的场合.力反馈式电液伺服阀的方框图如图29.图29 力反馈式伺服阀方框图3.3.2 地位反馈式伺服阀图30为二级滑阀式地位反馈伺服阀构造.该类型电液伺服阀由电磁部分,控制滑阀和主滑阀构成.电磁部分是一只力马达,道理如前所述.动圈靠弹簧定位.前置放大器采取滑阀式(一级滑阀).如图所示,在均衡地位(零位)时,压力油从P腔进入,分别经由过程P腔槽,阀套窗口,固定撙节孔3.5到达上.下控制窗口,然后再经由过程主阀(二级阀芯)的回油口回油箱.输入正向旌旗灯号电流时,动圈向下移动,一级阀芯随之下移.这时,上控制窗口的过流面积减小,下控制窗口的过流面积增大.所以上控制腔压力升高而下控制腔的压力下降,使感化在主阀芯(二级阀芯)两头的液压力掉去均衡.主阀芯在这一液压力感化下向下移动.主阀芯下移,使上控制窗口的过流面积逐渐增大,下控制窗口的过流面积逐渐缩小.当主阀芯移动到上.下控制窗口过流面积从新相等的地位时,感化于主阀芯两头的液压力从新均衡.主阀芯就逗留在新的均衡地位上,形成必定的启齿.这时,压力油由P腔经由过程主阀芯的工作边到A腔而供应负载.回油则经由过程B腔,主阀芯的工作边到T腔回油箱.输入旌旗灯号电流反向时,阀的动作进程与此相反.油流反向为P→B,A→T.上述工作进程中,动圈的位移量,一级阀芯(先导阀芯)的位移量与主阀芯的位移量均相等.因动圈的位移量与输入旌旗灯号电流成正比,所以输出的流量和输入旌旗灯号电流成正比.图30 地位反馈伺服阀构造1—阀体;2—阀套;3—固定撙节口;4—二级阀芯;5—固定撙节口;6—一级阀芯;7—线圈;8—下弹簧;9—上弹簧;10—磁钢二级滑阀型地位反馈式伺服阀的方框图如图31所示.该型电液伺服阀具有构造简略,工作靠得住,轻易保护,可在现场进行调剂,对油液干净度请求不太高.图31 地位反馈式电液伺服阀方框图电液伺服阀的根本特点空载时输出流量和输入旌旗灯号电流之间的关系,经常应用空载流量特点曲线来暗示(图32).由这一曲线可得到该阀的额定值.线性度.滞环.流量增益等特点.额定电流I R——在这一电流规模内,阀的输出流量与输入旌旗灯号电流成正比.额定空载流量——在额定压力与额定电流下阀的空载流量.线性度——q-I曲线直线性的器量.图32 空载流量特点曲线I R——额定电流;q0——最大空载流量;tanθ——流量增益滞环——重要用来标明旌旗灯号电流转变偏向时,由摩擦力.磁滞等原因使I-q曲线不重合的程度.常以曲线上同一流量下电流最大差值△I max与阀的额定电流I R之比来暗示.流量增益——q L与I之比值,即q-I曲线的平均斜率.3.4.2 压力增益特点在必定供油压力下,在输入电流I和负载压力p L=p1-p2曲线上,比值△p L/△I称为压力增益.当负载流量保持为零时,在零位(中央均衡地位)邻近的压力增益称为零位压力增益.零位压力增益与主滑阀的启齿情势有关,以零启齿情势最高.进步供油压力p s也可进步零位压力增益.但这一特点重要与阀的制造质量有关.进步零位压力增益,对于减小不敏锐区.进步精度有感化,但对稳固性起相反的感化.图33是零启齿伺服阀的零位压力增益特点曲线.图33 零位压力增益特点曲线3.4.3 负载压力.流量特点这一特点往往是选用伺服阀的重要根据.图34即为负载压力-流量特点曲线.3.4.4 对数频率特点它暗示电液伺服阀的动态特点.幅频曲线中一3dB时频率为该阀的频宽.其值越大则该阀的工作频率规模越大.对数频率特点也是剖析伺服体系动特点以及设计.分解电液伺服体系的根据.图35即为阀的对数频率特点曲线.3.4.5 零飘与零偏伺服阀因为供油压力的变更和工作油温度的变更而引起的零位(Q L=p L=0的几何地位)变更称为零飘.零飘一般用使其恢复位所需加的电流值与额定电流值之比来权衡.这一比值越小越好.别的,因为制造.调剂.装配的不同,控制线圈中不加电流时,滑阀不必定位于中位.有时必须加必定的电流才干使其恢复中位(零位).这一现象称为零偏.零偏以使阀恢复零位所需加之电流值与额定电流值之比来权衡.图34 负载压力-流量特点曲线图35 对数频率特点曲线3.4.6 不敏锐度因为不敏锐区的消失,伺服阀只有在输入旌旗灯号电流达必定值时才会转变状况.使伺服阀产生状况变更的最小电流与额定电流之比称为不敏锐度.其值愈小愈好.液压伺服体系设计液压伺服体系设计在液压伺服体系中采取液压伺服阀作为输入旌旗灯号的转换与放大元件.液压伺服体系能以小功率的电旌旗灯号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度.地位控制.速度控制.力控制三类液压伺服系同一般的设计步调如下:1)明白设计请求:充分懂得设计义务提出的工艺.构造实时体系各项机能的请求,并应具体剖析负载前提.2)拟定控制计划,画出体系道理图.3)静态盘算:肯定动力元件参数,选择反馈元件及其它电气元件.4)动态盘算:肯定体系的传递函数,绘制开环波德图,剖析稳固性,盘算动态机能指标.5)校核精度和机能指标,选择校订方法和设计校订元件.6)选择液压能源及响应的从属元件.7)完成履行元件及液压能源施工设计.本章的内容主如果按照上述设计步调,进一步解释液压伺服体系的设计原则和介绍具体设计盘算办法.因为地位控制体系是最根本和应用最广的体系,所以介绍将以阀控液压缸地位体系为主.4.1 周全懂得设计请求4.1.1 周全懂得被控对象液压伺服控制体系是被控对象—主机的一个构成部分,它必须知足主机在工艺上和构造上对其提出的请求.例如轧钢机液压压下地位控制体系,除了应可以或许推却最大轧制负载,知足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等请求外,履行机构—压下液压缸在外形尺寸上还受轧钢机牌楼窗口尺寸的束缚,构造上还必须包管知足改换轧辊便利等请求.要设计一个好的控制体系,必须充分看重这些问题的解决.所以设计师应周全懂得被控对象的工况,并分解应用电气.机械.液压.工艺等方面的理论常识,使设计的控制体系知足被控对象的各项请求.4.1.2 明角设计体系的机能请求1)被控对象的物理量:地位.速度或是力.2)静态极限:最大行程.最大速度.最大力或力矩.最大功率.3)请求的控制精度:由给定旌旗灯号.负载力.干扰旌旗灯号.伺服阀及电控体系零飘.非线性环节(如摩擦力.逝世区等)以及传感器引起的体系误差,定位精度,分辩率以及许可的飘移量等.4)动态特点:相对稳固性可用相位裕量和增益裕量.谐振峰值和超调量等来划定,响应的快速性可用载止频率或阶跃响应的上升时光和调剂时光来划定;5)工作情形:主机的工作温度.工作介质的冷却.振动与冲击.电气的噪声干扰以及响应的耐高温.防水防腐化.防振等请求;6)特别请求;装备重量.安然呵护.工作的靠得住性以及其它工艺请求.4.1.3 负载特点剖析精确肯定体系的外负载是设计控制体系的一个根本问题.它直接影响体系的构成和动力元件参数的选择,所以剖析负载特点应尽量反应客不雅现实.液压伺服体系的负载类型有惯性负载.弹性负载.粘性负载.各类摩擦负载(如静摩擦.动摩擦等)以及重力和其它不随时光.地位等参数变更的恒值负载等.4.2 拟定控制计划.绘制体系道理图在周全懂得设计请求之后,可根据不合的控制对象,按表6所列的根本类型选定控制计划并拟定控制体系的方块图.如对直线地位控制系同一般采取阀控液压缸的计划,方块图如图36所示.图36 阀控液压缸地位控制体系方块图表6 液压伺服体系控制方法的根本类型伺服体系控制旌旗灯号控制参数活动类型元件构成机液电液气液电气液模仿量数字量位移量地位.速度.加快度.力.力矩.压力直线活动摆动活动扭转活动1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达4.3 动力元件参数选择动力元件是伺服体系的症结元件.它的一个重要感化是在全部工作轮回中使负载按请求的速度活动.其次,它的重要机能参数能知足全部体系所请求的动态特点.此外,动力元件参数的选择还必须斟酌与负载参数的最佳匹配,以包管体系的功耗最小,效力高.动力元件的重要参数包含体系的供油压力.液压缸的有用面积(或液压马达排量).伺服阀的流量.当选定液压马达作履行元件时,还应包含齿轮的传动比.4.3.1 供油压力的选择选用较高的供油压力,在雷同输出功率前提下,可减小履行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,装备构造紧凑,同时油腔的容积减小,容积弹性模数增大,有利于进步体系的响应速度.但是随供油压力增长,因为受材料强度的限制,液压元件的尺寸和重量也有增长的趋向,元件的加工精度也请求进步,体系的造价也随之进步.同时,高压时,泄露大,发烧高,体系功率损掉增长,噪声加大,元件寿命下降,保护也较艰苦.所以前提许可时,平日照样选用较低的供油压力.经常应用的供油压力等级为7MPa到28MPa,可根据体系的要乞降构造限制前提选择恰当的供油压力.4.3.2 伺服阀流量与履行元件尺寸的肯定如上所述,动力元件参数选择除应知足拖动负载和体系机能两方面的请求外,还应斟酌与负载的最佳匹配.下面侧重介绍与负载最佳匹配问题.(1)动力元件的输出特点将伺服阀的流量——压力曲线经坐标变换绘于υ-F L平面上,所得的抛物线即为动力元件稳态时的输出特点,见图37.图37 参数变更对动力机构输出特点的影响a)供油压力变更;b)伺服阀容量变更;c)液压缸面积变更。

电液伺服控制系统的应用实例

电液伺服控制系统的应用实例

第七章 电液伺服控制系统的应用实例 7.1 引例图7-1 阀控油缸闭环控制系统原理图此图为采用电液伺服阀控制的液压缸速度闭环控制系统。

这一系统不仅使液压缸速度能任意调节,而且在外界干扰很大(如负载突变)的工况下,仍能使系统的实际输出速度与设定速度十分接近,即具有很高的控制精度和很快的响应性能。

工作原理如下:在某一稳定状态下,液压缸速度由测速装置测得(齿条1、齿轮2和测速发电机3)并转换为电压。

这一电压与给定电位计4输入的电压信号进行比较。

其差值经积分放大器放大后,以电流输入给电液伺服阀6。

电液伺服阀按输入电流的大小和方向自动地调节其开口量的大小和移动方向,控制输出油液的流量大小和方向。

对应所输入的电流,电液伺服阀的开口量稳定地维持在相应大小,伺服阀的输出流量一定,液压缸速度保持为恒值。

如果由于干扰的存在引起液压缸速度增大,则测速装置的输出电压改变,而使放大器输出电流减小,电液伺服阀开口量相应减小,使液压缸速度降低,直到液压缸恢复原来的速度时,调节过程结束。

按照同样原理,当输入给定信号电压连续变化时,液压缸速度也随之连续地按同样规律变化,即输出自动跟踪输入。

通过分析上述伺服系统的工作原理,可以看出伺服系统的特点如下:(1)反馈系统:把输出量的一部分或全部按一定方式回送到输入端,并和输入信号比较,这就是反馈作用。

在上例中,反馈电压和给定电压是异号的,即反馈信号不断地抵消输入信号,这就是负反馈。

自动控制系统中大多数反馈是负反馈。

(2)靠偏差工作:要使执行元件输出一定的力和速度,伺服阀必须有一定的开口量,因此输入和输出之间必须有偏差信号。

执行元件运动的结果又试图消除这个误差。

但在伺服系统工作的任何时刻都不能完全消除这一偏差,伺服系统正是依靠这一偏差信号进行工作的。

(3)放大系统:执行元件输出的力和功率远远大于输入信号的力和功率。

其输出的能量是液压能源供给的。

7.2 车床液压仿形刀架图7-2 车床液压仿形刀架车削圆锥面时,触销沿样件的圆锥段滑动,使杠杆向上偏摆,从而带动阀芯上移,打开阀口,压力油进入液压缸上腔,推动缸体连同阀体和刀架轴向后退。

数控液压伺服控制系统工作原理及在冲压工艺中的应用

数控液压伺服控制系统工作原理及在冲压工艺中的应用

实现 自动化的控制要 求。 ( 4 )易于 实现防爆功 能。液压缸 与步进 电动 机均有多规格 、多类型防爆 产品,使得数字液压缸 应用于矿山机械等领域成为可能 ,只需要选择合适
的 产 品 配型 即 可 使用 。
计 算机 或P L C 发 出数字脉 冲信 号来 控制步进 电动
机 ,进而达到控制液压缸运动的 目的 。 数字油缸有如下独特功能 :
螺母保持相 同转速 ,二者之 间无相对旋转运动与轴
向直 线 运 动 ,阀 芯 开 口大小 不变 ,此 时 阀 芯开 口处
的流量不变 ,活塞杆以原有的运动速度进行移动 。 当v 相 对 > 0 时 ,阀芯 、反馈滚 珠丝杠在轴 向上保 持原有方 向的直线运 动 ,使 阀芯开 口增大 ,进而使 流量增大 ,推动活塞杆 、丝杠及反馈滚珠螺母加速 运动 ,使得 相 对 不断减小 ,直至 相 对 变为零。
对其他规格钢管进行弯制时 ,每次 弯管前重复
调整的过程即可 :①根据钢管外径调整每 层弧形辊

参磊
6 1
活塞向右移动 ,且随着 阀芯开 口的增大 ,活塞的移 动速度会逐 渐加快 ;活塞杆上的丝杠螺母与丝杠组
成 丝杠 运 动副 ,所 以 活 塞 杆 向 右运 动 时 ,丝 杠 会 与
长弯头就压人多长 ,方便快捷 。固定轴头和转动辊 身之 间采用轴承 ,垂直受压 ,受力合理 ,延长 了弧
形辊的使用寿命 。
成本提 高工效的有力措施 ,这种方法我们 已经在全
公司范 围内推广应用 ,广泛应用于国内外的冶金、 矿 山机 械产 品的 配管制作 中 ,具 有极好 的社会 效
益 。MW ( 2 0 1 3 0 8 2 3 )
数控液压伺服控制系统Байду номын сангаас作原理及在 冲压工艺中的应用

液压伺服、比例控制

液压伺服、比例控制

液压伺服系统工作原理1.1 液压伺服系统工作原理液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。

电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。

液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。

液压伺服系统的工作原理可由图1来说明。

图1所示为一个对管道流量进行连续控制的电液伺服系统。

在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。

阀板转动由液压缸带动齿轮、齿条来实现。

这个系统的输入量是电位器5的给定值x i。

对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。

阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。

液压缸下腔的油液则经伺服阀流回油箱。

液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。

同时,液压缸活塞杆也带动电位器6的触点下移x p。

当x p所对应的电压与x i 所对应的电压相等时,两电压之差为零。

这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。

图1 管道流量(或静压力)的电液伺服系统1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。

反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。

用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。

而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。

《液压伺服系统控制》PPT模板课件

《液压伺服系统控制》PPT模板课件

微机液压伺服控制系统
液压伺服系统组成
• 输入元件 • 反馈测量元件 • 比较元件 • 放大转换元件 • 执行元件 • 控制对象
伺服控制应用实例
图1.15 液压伺服控制之车床靠模加工系统
图1.16 CNC数值控制机台X、Y轴轴向运动控制系统
1.17 射出成型机射出压力控制系统
图1.18 轧钢厚度控制
1.3 液压伺服与比例控制系统的优缺点
(一)、液压伺服控制的优点 (1)液压元件的功率—重量比与力矩-惯量比大 可以组 成结构紧凑、体积小、重量轻、加速性好的伺服系统。 (2)液压动力元件快速性好,系统响应快。 (3)液压伺服系统抗负载的刚度大,即输出位移受负载 变化的影响小,定位准确,控制精度高。 (二)、液压伺服控制的缺点 (1) 液压元件,特别是精密的液压控制元件(如电液伺服 阀)抗污染能力差,对工作油液的清洁度要求高。 (2) 油温变化时对系统的性能有很大的影响。 (3) 当液压元件的密封设计、制造相使用维护不当 时.容易引起外漏,造成环境污染。 (4) 液压元件制造精度要求高,成本高。 (5) 液压能源的获得与远距离传输都不如电气系统方便。
液压伺服系统控制
(Excellent handout training template)
第一章 绪论 Introduction of Hydraulic
Servo Control
1-1 液压伺服控制定义
伺服控制
控制物体的位置、方向、姿态,并能追踪任意 变化之目标的控制系統。(JIS)
液压伺服控制
传统点到点闭回路液压控制系统
闭回路液压伺服机构
图是泵控式电液速度控制系统的原理图。该
系统的液压动力元件由变量泵和液压马达组 成,变量泵既是液压能源又是液压控制元件。

电液控制-机液伺服系统

电液控制-机液伺服系统

四、液压转矩放大器
Hale Waihona Puke 反馈机构为 螺杆、螺母 液压马达轴完全跟 踪阀芯输入转角而 转动。但输出力矩 比输入力矩要大得 多,故称液压转矩 放大器。
电液步进马达
以惯性负载为主时,可分析得
方框图为:
则系统方框图为:
§系统稳定性分析
液压伺服系统的动态分析和设计一般都是以稳定性要求为 中心进行的。
令G(s)为前向通道的传递函数,H(s)为反馈通道的传递函 数,由以上的方框图可得系统的开环传递函数为:
含有一个积分环节,故系统为Ⅰ型系统。
可绘制开环系统伯德图,如下图所示:
对伯德图的分析
幅值穿越频率ωc≈Kv 相位穿越频率ωc=ωg 为了使系统稳定, 必须有足够的相位裕 量和增益裕量。 由图可见,相位裕 度已为正值,为使幅 值裕度为正值,可计 算求得要求: K 2
与全闭环系统相比,半闭环系统的稳定性好得多,但精度较低。
综上所述,由于结构柔度的影响,产生了结构谐振和液压谐 振的耦合,使系统出现了频率低、阻尼比小的综合谐振,综合谐 振频率ωn和综合阻尼比ξn常常成为影响系统稳定性和限制系统频 宽的主要因素,因此提高具有重要意义。 提高ωn 就需要提高结构谐振频率ωs,就要求负载惯量减小 (但已由负载特性决定),结构刚度增大(提高安装固定刚度和 传动机构刚度,尤其是靠近负载处的传动机构的结构刚度)。 增大执行元件到负载的传动比,可提高液压固有频率;提高 液压弹簧刚度的方法也可提高液压固有频率,从而提高综合谐振 频率。
反馈从活塞输出端Xp取出时,构成为半闭环系统,其方框图 为:
此时系统开环传函中含有二阶微分环节,当ωs2和ωn靠得很 近时,会有零极点相消现象,使综合谐振峰值减小,从而改善 系统稳定性,如曲线b所示。 系统闭环传函为:

液压教学课件08- 液压随动系统

液压教学课件08-  液压随动系统

3、力调节特点
选定农具耕作阻力后,发动机负荷稳定; 土壤耕阻力变化大时耕地质量差; 悬挂农具不应有支地轮;有增重作用; 土壤耕阻力变化大时耕地质量差; 只适于入土工作机具。
4、力调节传感机构
力传感方式: 上拉杆 下拉杆
力传感器形式: 机械式 电磁传感
拖拉机电传感 悬挂装置
四、综合调节
力、位 两种控制信 号可分别
2、双向缓冲阀 作用: 缓冲 结构: 工作过程:
七、人力转向过程
八、正确使用
1、拆 卸: ● 不要轻易拆卸 ● 保持清洁,不要损伤零件。 ● 注意位置关系
2、装 配: ● 装配位置: 配油阀与转子泵的位置关系 人力转向单向阀 ● 清洁
3、操 纵
● 停车时不要转动方向盘; ● 行走时不要猛打方向盘; ● 转向油缸行程到终点时可
二、转子泵
结 构: 转子、 定子、 上下盖等。
工作原理: ● 转子运动规律:
自传 公转 ● 齿腔变化规律:
以连心线为界将 齿腔分为两种类型,
连心线通过的齿 腔为困油腔。 ● 泵油
三、配油阀
结 构:阀体、阀套、阀芯、定位弹 化簧片、拨肖等。
回油环槽 通油缸油孔 配油孔
回油孔 通油缸油孔 进油孔 通油缸油孔
工作过程: 中 立:执行机构(输出)与手柄(输入)没有相对
运动,系统误差为零,系统处于中立状态。
搬动手柄开始:阀芯开始移动,暂时执行机构不 动,使系统产生位置误差,引起 执行机构运动。
随动过程:机行机构输出运动总是跟随输入信号变 化规律而变化。
反馈过程:当输入信号停止,由于反馈作用,随即执行 机构运动停止,系统回到中立位置
回油环槽
通油缸环槽 配油孔 进油环槽
卸荷油孔

液压伺服系统

液压伺服系统
10-节流孔;11-滤油器
控制元件-电液伺服阀
挡板 先导控制油腔
喷嘴
挡板一方面与力 矩马达衔铁连接, 另一方面,其穿过 两个喷嘴,与主阀 芯连接。
主阀芯
压缸停止运动。
喷嘴挡板阀的优点是结构简单、
加工方便、运动部件惯性小、反应快、
精度和灵敏度高;缺点是能量损耗大、
抗污染能力差。喷嘴挡板阀常用作多
级放大伺服控制元件中的前置级。
图7.11 喷嘴挡板阀的工作原理 1-挡板;2、3-喷嘴;4、5-
节流小孔
§7.3 电液伺服阀
电液伺服阀是电液联合控制的多 级伺服元件,它能将微弱的电气输入 信号放大成大功率的液压能量输出。 电液伺服阀具有控制精度高和放大倍 数大等优点,在液压控制系统中得到 了广泛的应用。
图7.4 速度伺服系统职能方框图
实际上,任何一个伺服系统都是由这些元件(环节) 组成的,如图7.5所示。
图7.5 控制系统的组成环节
下面对图中各元件做一些说明:
(1)输入(给定)元件。通过输入元件,给出必要的 输入信号。如上例中由给定电位计给出一定电压,作为系 统的控制信号。
(2)检测、反馈信号。它随时测量输出量(被控量) 的大小,并将其转换成相应的反馈信号送回到比较元件。 上例中由测速发电机测得液压缸的运动速度,并将其转换 成相应的电压作为反馈信号。
(5)执行元件(机构)。直接带动控制对象动作 的元件或机构。如上例中的液压缸。
(6)控制对象。如机器的工作台、刀架等。
3.液压伺服系统的分类
伺服系统可以从下面不同的角度加以分类。
(1)按输入的信号变化规律分类:有定值控制系统、程 序控制系统和伺服系统三类。
当系统输入信号为定值时,称为定值控制系统,其基本 任务是提高系统的抗干扰能力。当系统的输入信号按预先给 定的规律变化时,称为程序控制系统。伺服系统也称为随动 系统,其输入信号是时间的未知函数,输出量能够准确、迅 速地复现输入量的变化规律。

液压伺服系统

液压伺服系统

液压伺服系统液压伺服系统是以高压液体作为驱动源的伺服系统,是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。

液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。

一、液压伺服系统的基本组成液压伺服系统无论多么复杂,都是由一些基本元件组成的。

如图就是一个典型的伺服系统,该图表示了各元件在系统中的位置和相互间的关系。

(1)外界能源—为了能用作用力很小的输入信号获得作用力很大的输出信号,就需要外加能源,这样就可以得到力或功率的放大作用。

外界能源可以是机械的、电气的、液压的或它们的组合形式。

(2)液压伺服阀—用以接收输入信号,并控制执行元件的动作。

它具有放大、比较等几种功能,如滑阀等。

(3)执行元件—接收伺服阀传来的信号,产生与输入信号相适应的输出信号,并作用于控制对象上,如液压缸等。

(4)反馈装置—将执行元件的输出信号反过来输入给伺服阀,以便消除原来的误差信号,它构成闭环控制系统。

(5)控制对象—伺服系统所要操纵的对象,它的输出量即为系统的被调量(或被控制量),如机床的工作台、刀架等。

二、液压伺服系统的分类液压伺服系统是由液压动力机构和反馈机构组成的闭环控制系统,分为机械液压伺服系统和电气液压伺服系统(简称电液伺服系统)两类。

电液伺服系统电液伺服系统是一种由电信号处理装置和液压动力机构组成的反馈控制系统。

最常见的有电液位置伺服系统、电液速度控制系统和电液力(或力矩)控制系统。

如图是一个典型的电液位置伺服控制系统。

图中反馈电位器与指令电位器接成桥式电路。

反馈电位器滑臂与控制对象相连,其作用是把控制对象位置的变化转换成电压的变化。

反馈电位器与指令电位器滑臂间的电位差(反映控制对象位置与指令位置的偏差)经放大器放大后,加于电液伺服阀转换为液压信号,以推动液压缸活塞,驱动控制对象向消除偏差方向运动。

当偏差为零时,停止驱动,因而使控制对象的位置总是按指令电位器给定的规律变化。

伺服液压缸原理

伺服液压缸原理

伺服液压缸原理
伺服液压缸是一种通过液压力来实现精确位置控制的装置。

它由液压缸和伺服控制部分组成。

液压缸是伺服液压系统的执行部分,它包括液压缸筒、活塞以及密封件。

液压缸筒是一个金属筒体,内部衬有涂层来减少摩擦;活塞则是一个固定在筒内的圆柱体,通常由钢制成。

液压缸的密封件主要包括密封圈和密封垫,用于防止液压油泄露。

伺服液压系统通过控制压力和流量来控制液压缸的活塞位置,从而实现所需的运动。

具体来说,伺服控制部分会感知到外部的位置信号,并将其转化为电信号。

然后,这些电信号会经过信号处理部分,计算出所需的压力和流量,并通过控制阀门来实现液压系统的输出。

液压系统会将液压油送入液压缸,使活塞向所需的位置移动。

伺服液压系统具有快速响应、高精度和高稳定性的优点。

它可以广泛应用于工业生产中的定位、自动化控制和机器人技术等领域。

2 液压伺服系统

2 液压伺服系统

,它可以绕扭轴在a、b、c
、d四个气隙中摆动。
力矩马达 1——放大器; 2——上导磁体; 3——永久磁铁; 4——衔铁; 5——下导磁体; 6——弹簧管; 7——永久磁铁
当线圈控制电流为零时,四个 气隙中均有永久磁铁所产生的固定 磁场的磁通,因此作用在衔铁上的 吸力相等,衔铁处于中位平衡状态 。通入控制电流后,所产生的控制 磁通与固定磁通叠加,在两个气隙 中(例如,气隙a和d)磁通增大, 在另两个气隙中(例如,气隙b和c )磁通减少,因此作用在衔铁上的 电磁力矩与扭轴的弹性变形力矩及 外负载力矩平衡时,衔铁在某一扭 转位置上处于平衡状态。
(5)执行元件(机构)。直接带动控制对象动作 的元件或机构。如上例中的液压缸。
(6)控制对象。如机器的工作台、刀架等。
液压伺服系统的分类(1/2)
3.液压伺服系统的分类
伺服系统可以从不同的角度加以分类。
(1)按输入的信号变化规律分类:有定值控制 系统、程序控制系统和伺服系统三类。
当系统输入信号为定值时,称为定值控制系统, 其基本任务是提高系统的抗干扰能力。当系统的输 入信号按预先给定的规律变化时,称为程序控制系 统。伺服系统也称为随动系统,其输入信号是时间 的未知函数,输出量能够准确、迅速地复现输入量 的变化规律
动圈式力马达的线性行程范 围大(±2~4mm),滞环小, 可动件质量小,工作频率较宽, 结构简单,但如采用湿式方案, 动圈受油的阻尼较大,影响频宽 ,适合作为气压比例元件。
二、力矩马达
由上下两块导磁体、左
右两块永久磁铁、带扭轴
a
b
(弹簧管)的衔铁及套在
c
d
衔铁上的两个控制线圈所
组成。衔铁悬挂在扭轴上
液压伺服系统的分类(2/2)

液压伺服系统概述

液压伺服系统概述

第11章液压伺服系统概述液压伺服控制技术是液压技术中的一个分支,又是控制领域中的一个重要组成部分。

一、液压伺服系统的发展历史在第一次世界大战前,液压伺服系统作为海军舰船的操舵装置已开始应用。

在第二次世界大战期间及以后,由于军事需要,特别是武器和飞行器控制系统的需要,以及液压伺服系统本身具有响应快、精度高、功率一重量比大等优点,液压伺服系统的理论研究和实际应用取得了很大的进展,40年代开始了滑阀特性和液压伺服理论的研究,1940年底,首先在飞机上出现了电液伺服系统。

但该系统中的滑阀由伺服电机驱动,只作为电液转换器。

由于伺服电机惯量大,使电液转换器成为系统中耗时最大的环节,限制了电液伺服系统的响应速度。

到50年代初,出现了快速响应的永磁力矩马达,形成了电液伺服阀的雏形。

到50年代末,又出现了以喷嘴挡板阀作为第一级的电液伺服阀,进一步提高了伺服阀的快速性。

60年代,各种结构的电液伺服阀相继出现,特别是干式力矩马达的出现,使得电液伺服阀的性能日趋完善。

由于电液伺服阀和电子技术的发展,使电液伺服系统得到了迅速的发展。

随着加工能力的提高和液压伺服阀工艺性的改善,使液压伺服阀性能提高、价格降低。

使液压伺服系统由军事向一般工业领域推广。

目前,液压伺服控制系统,特别是电液伺服系统已成了武器自动化和工业自动化的一个重要方面。

二、液压伺服系统的工作原理液压伺服控制系统是以液压伺服阀和液压执行元件为主要元件组成的控制系统,是一种高精度的自动控制系统。

如图所示,系统由滑阀1和液压缸2组成,阀体与缸体固定,液压泵以恒定的压力P向系统供油。

当阀心处于中间时,阀口关闭,缸不动,系统静止。

当阀心右移x,则a、b处有开口x v=x,压力油进入缸右腔,左腔回油,缸体右移。

由于缸体与阀体刚性固连,阀体也随缸体一起右移,结果使阀的开口x v减小。

当缸体位移y等于阀心位移x时,缸不动。

如果阀心不断右移,缸拖动负载不停右移。

如果阀心反向运动,液压缸也反向运动。

液压伺服工作原理

液压伺服工作原理

液压伺服工作原理
液压伺服系统是通过液压原理实现精确控制的一种机电装置。

其工作原理如下:
1. 液压伺服系统由液压泵、液压缸、控制阀和传感器等组成。

液压泵通过机械能输入,将机械能转化为流体能。

2. 液压泵将流体送入控制阀,控制阀通过调节液压流量和压力来控制流体的输出。

控制阀是系统的核心部件,它根据传感器信号和预设的控制要求,将流量和压力分配到液压缸上。

3. 传感器用于感知被控对象的实际状态,并将状态信息反馈给控制阀。

控制阀根据传感器的反馈信号,调整液压流量和压力,使得被控对象达到期望的位置、速度或力。

4. 液压流体进入液压缸,通过液压缸的活塞运动,产生线性位移或输出力。

液压缸的活塞由流体推动,通过活塞杆连接到被控对象,将控制信号转化为机械运动。

5. 当被控对象达到期望状态时,传感器感知到的状态信息与控制阀预设的控制要求相符,控制阀停止调节。

通过以上原理,液压伺服系统实现了对机械运动的精确控制。

其优点包括高承载能力、动态响应快、可靠性高、结构简单等。

在工业自动化领域广泛应用,例如数控机床、起重设备、注塑机等。

液压伺服系统电液伺服系统课件

液压伺服系统电液伺服系统课件
发展趋势
随着科技的不断发展,液压伺服系统也在不断创新和完善。未来,液压伺服系统将朝着智能化、数字 化、网络化方向发展,实现更高效、更精准的控制。同时,液压伺服系统还将更加注重环保和节能, 推动绿色制造和可持续发展。
02 电液伺服系统基础知识
电液转换元件
01
02
03
伺服阀
将电气信号转换为液压流 量或压力,实现液压执行 机构的精确控制。
速度同步
采用液压伺服系统实现多工位、多执行机构的速 度同步,优化生产流程。
航空航天领域中的应用
飞机起落架收放系统
通过电液伺服系统实现飞机起落架的平稳收放,确保飞行安全。
发动机推力控制
利用液压伺服系统对航空发动机进行精确的推力控制,提高飞行 性能。
飞行姿态调整
采用电液伺服系统实现飞行姿态的快速、精确调整,满足复杂飞 行需求。
仿真分析
在系统模型的基础上,进行仿真分析,包括系统动态响应、控制精度、稳定性等方面的评估,以验证设计的合理性。
优化设计
根据仿真分析结果,对系统进行优化设计,包括调整元件参数、改进控制策略等,以提高系统性能。
04 电液伺服系统实现技术
硬件平台搭建
控制器选择
根据系统需求,选用合适的控制器,如PLC、DSP等,确保控制精 度和实时性。
元件选型与计算
元件选型
根据规格书要求,选择合适的液压泵 、马达、阀等元件,确保系统性能达 标。
元件计算
对所选元件进行详细的计算和分析, 包括流量、压力、功率等参数,确保 元件之间的匹配性和系统的稳定性。
系统仿真与优化
系统建模
利用AMESim、MATLAB/Simulink等仿真软件,建立液压伺服系统的数学模型,为后续仿真分析提供基础。

液压与气动技术 第六版 第10章 液压伺服系统

液压与气动技术 第六版 第10章 液压伺服系统

10.1 液压伺服系统概述
第10章 液压伺服系统
10.1.3 液压伺服回路的分类
液压伺服回路的类型很多,也有多种分类方法,见表10-1。
表10-1
液压伺服回路的分类
分类准则
类型
按控制号分
机液伺服系统、电液伺服系统、气液伺服系统
按控制方式分
节流型(伺服阀控制)伺服系统 容积型(伺服变量泵或伺服变量马达控制型)伺服系统
跟随运动。由此可见,只要给伺服阀一个有规律的输入信号,执行元件就会自动而准确地按这一规
律跟随运动。
动画演示
10.1 液压伺服系统概述
第10章 液压伺服系统
10.1.2 液压伺服系统的特点
液压伺服系统具有以下四个主要特点: (1)液压伺服系统是一个随动系统,即输出量能自动跟随输入量的变化而变化。 (2)液压伺服系统是一个负反馈系统。系统的输出量之所以能跟随输入量变化,是因为两者 之间有反馈联系。而反馈的目的是减小和力图消除输出量与给定值之间的误差,这就是负反馈。 液压伺服系统必须采用负反馈。 (3)液压伺服系统是一个有误差系统。系统工作时,总是在减小或力图消除误差,但在其工 作的任何时刻都不能完全消除误差。没有误差,系统就无法工作。 (4)液压伺服系统是一个力或功率的放大系统,即执行装置输出的力和功率可以远远大于 输入信号的力和功率。功率放大所需的能量是由液压能源供给的。
10.2 液压伺服阀
第10章 液压伺服系统
10.2.1 滑阀 根据滑阀在零位(中间位置)时其阀芯凸肩宽度L与阀体内孔环槽宽度h的不同,滑
阀的开口形式有负开口(L>h)、零开口(L =h)和正开口(L <h)三种,如图10-3所
示。负开口阀有一定的不灵敏区,会影响精度,故较少采用;正开口阀工作精度较负开口阀 高,但在中位时,正开口阀有无用的功率损耗;零开口阀的工作精度最高,控制性能最好,故 在高精度伺服系统中经常采用。

液压伺服控制系统

液压伺服控制系统
假设节流阀开口量由人来控制,当液压缸运动 速度由于某种原因升高,人通过观察液压缸测量装 置所测量的实际速度,判断出实际速度高于系统所 要求的运动速度,人会通过减小节流阀开口量的方 法,逐步降低液压缸活塞杆的运动速度,即减小实 际速度与所要求速度的差值(偏差),从而使液压 缸以所要求的运动速度运行。
当液压缸运动速度降低时,调节过程相反。
1.2 伺服阀
1.2.1液压伺服阀
1.滑阀 根据滑阀的工作边数不同,有单边滑阀、双边滑阀和四边滑阀。
其中,四边滑阀有四个可控节流口,控制性能最好;双边滑阀有两 个可控节流口,控制性能一般;单边滑阀有一个可控节流口,控制 性能最差。四边滑阀性能虽好,但结构工艺复杂,生产成本较高; 单边滑阀容易加工,生产成本较低。
图10.6-10.8分别为单边滑阀,双边滑阀和四边滑阀控制液压 缸的原理图。
四边滑阀在平衡状态下,根据初始开口量的不同,有负开口 (图10.9(a))、零开口(图10.9(b))和正开口(图10.9 (c))之分。
2.喷嘴挡板阀 如图1.10所示为双喷嘴挡板阀由两个单喷嘴挡板阀组成,可
以控制双作用液压缸。它由挡板、左右喷嘴、固定节流孔组成。 挡板与左右喷嘴的环形面积形成两个可变节流孔,分别为δ1和δ2, 挡板绕轴旋转,可以改变两个可变节流孔的大小。挡板处于图中 所示位置时,即δ1=δ2。此时两节流口的节流阻力相同,使左右 喷嘴的压力相同,即p1= p2,液压缸两腔受力平衡,保持原来位 置不动。
3
1.1.3 液压伺服控制系统的分类
1.按系统输入信号的变化规律分类 液压伺服控制系统按输入信号的变化规律不同可分为:定值控
制系统、程序控制系统和伺服控制系统。 2.按被控物理量的名称分类 按被控物理量的名称不同,可分为:位置伺服控制系统、速度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

输入 元件
比较元件 +
-
转换放大装置将偏
转换放 大装置
液压执 行元件
控制 对象
差信号的能量形式进 行变换并加以放大。
反馈测 量元件
液压伺服系统的构成
3、电液伺服阀
电液伺服阀既是电液的转换元件也是功率放大元件,它 将小功率的电信号输入转换成大功率的液压能输出。
由电液伺服阀构成的伺服系统叫电液伺服系统。 电液伺服阀已标准化、系列化。 我国70年代开始批量生产QDY系列和DY系列电液伺 服阀。
? 电气机械转换器的输出力或力矩很小,在流量比较大的情况 下,无法直接驱动阀芯,此时要增加前置放大级,将输出力或力 矩放大。前置放大级是喷嘴挡板阀,功率放大级是滑阀。
4、液压伺服控制系统举例
? (1)






仿










4、液压伺服控制系统举例
? (1)



v合
v仿


v纵
v纵

电液伺服阀
工作台
xf
放大器
uf Δu
反馈电位器 xo +E
ug
指令电位器
xg
双电位器位置控制电液伺服系统
4、液压伺服控制系统举例
该系统是一个电量反馈的闭环控制系统。该系统的工作原 理方块图为:
指令 电位器
+ -
伺服 放大器
电液 伺服阀
反馈 电位器
位置控制系统工作原理方块图
液压缸
工作台
4、液压伺服控制系统举例
仿
v合
v仿
v纵
b
a






进给运动示意图



ቤተ መጻሕፍቲ ባይዱ

4、液压伺服控制系统举例
? (2)电液位置伺服控制系统
该系统控制工作台的位置,使 之按照指令电位器给定的规律 变化.指令电位器将滑臂的位置 指令Xg转换成电压Ug. 工作台 位置Xf由反馈电位器检测,转换 成电压Uf.两个电位器接成桥式 回路,电桥的输出电压△U=Ug -Uf=K(Xg-Xf),K电位器增益. 当工作台位置Xf与指令位置Xg 一致时,Xf=Xg,即△U=0.
电液伺服阀
工作台
xf
放大器
uf Δu
反馈电位器 xo +E
ug
指令电位器
xg
双电位器位置控制电液伺服系统
4、液压伺服控制系统举例
? 电液伺服阀处于零位,没有 流量进出系统,工作台不动. 当指令电位器向右移动一个 位移△U=K △Xg, 经放大 去控制电液伺服阀,输出压 力油推动工作台右移,同时 使工作台位移增加,当增加 量为△U=Xf+△Xf-Xg- △Xg=0,工作台重新停止.
液压伺服系统的原理及实例
伺服系统(又叫随动系统或跟踪系统)是一中自动控制系统, 在这种系统中执行机构能以一定的精度自动地按照输入信号 的变化规律动作。
液压伺服系统:凡是采用液压控制元件和液压执行元件, 根据液压传动原理建立起来的伺服系统,都称为液压伺服系 统。
电液伺服控制系统
? 电液伺服控制系统是由电气的信号处理部分与液 压的功率输出部分组成的闭环控制系统。具有控 制精度高、响应速度快、信号处理灵活、输出功 率大、结构紧凑、重量轻等特点。应用广泛。
xi 液压伺服系统原理图
2、液压伺服系统的构成
输入元件给出输入信号,加于系统的输入端。
反馈测量元件测量系统的输出量,并转换成反馈信号。输入元件和反馈测量 元件都可以是机械的,电气的,液压的或其组合。
比较元件将反馈信号与输入信号进行比较,产生偏差信号加于放大装置,该元
件一般不单独存在。
液压能源
执行结构是液压缸或液压马达。
+
转换器 位移力 -
前置放大级
功率放大级 (滑阀)
输出 流量 压力
反馈机构
电液伺服阀的基本构成
3、电液伺服阀
? 电液伺服阀的类型和结构很多,但是,都是由电气机械转换器 和液压放大器所构成。
? 电气机械转换器也成“力马达”或“力矩马达”,它将输入 的电信号(电流或电压)转换成力或力矩输出,去操纵阀芯的位 移。
1、液压伺服控制的工作原理
图示为一液压伺服系统原理图,Xi为阀芯位移(做为系统的输入量),Xp缸体位移(做 为系统的输出量),系统中阀体和缸体作成一体,构成反馈连接。
系统中输出位移能够精确地复现输入位移的变化,同时它输入的机械量转换成很 大的输出力,因此也是一个功率放大装置。
xi
b
a
xv
Ap
负载
FL
3、电液伺服阀
QDY系列伺服阀属于干式力矩马达喷嘴挡板滑阀式 力反馈伺服阀。该系列电液伺服阀性能质量都非常过关, 应用较多。
DY系列伺服阀是动圈双级滑阀式伺服阀,冶金矿山行 业用的较多。
图示为QDY电液伺服阀原理图
3、电液伺服阀
QDY的基本组成如下图: 液 压 放 大 器
输入信号 (电流)
电气-机械
(3)电液速度伺服控制系统
? 测速发电机:将输出转换为反馈电压信号 Uf,它是反馈装置。
速度指令 +
ug u-f
伺服放大器
电液伺服阀
ω 滚筒
位移 传感器
测速发电机 电液速度伺服控制原理图
相关文档
最新文档