数学思想方法一整体思想

数学思想方法一整体思想
数学思想方法一整体思想

数学思想方法一

整体思想

整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识

方面具有独特的作用.

一.数与式中的整体思想

例 1.已知114a b -=,则2227a ab b a b ab

---+的值等于 ( )

A.6

B.6-

C.125

D.27

- 分析:根据条件显然无法计算出a ,b 的

值,只能考虑在所求代数式中构造出11a b

-的形式,再整体代入求解. 解:112242b 6112272(4)7

2()7a ab b a a b ab b a ------===-+?-+-+

说明:本题也可以将条件变形为4b a ab -=,即4a b ab -=-,再整体代入求解.

例2.已知代数式25342()2x ax bx cx x dx ++++,当1x =时,

值为3,则当1x =-时,代数式的值为

解:因为当1x =时,值为3,所以231a

b c d

+++=+,即

11a b c d ++=+,从而,当1x =-时,原式()21211a b c d

-++=+=-+=+ 例3.已知

2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值.

分析:要求多项式的值,直接代入计算肯定不是最佳方案,注意到222a b c ab bc ac ++---2221()()()2a b b c c a ??=-+-+-??,只要求得

a b -,b c -,c a -这三个整体的值,本题的计算就显得很简单了.

解:由已知得,1a b b c -=-=-,2c a -=,所以, 原式2221(1)(1)232??=-+-+=??

说明:在进行条件求值时,我们可以根据条件的结构特征,合理变形,构造出

条件中含有的模型,然后整体代入,从整体上把握解的方向和策略,从而使复杂问题简单化.

二.方程(组)与不等式(组)中的整体思想

例4.已知24122x y k x y k +=+??+=+?

,且03x y <+<,则k 的取值范围是

分析:本题如果直接解方程求出x ,y 再代入03x y <+<肯定比较麻烦,注意到条件中x y +是一个整体,因而我们只需求得x y +,通过整体的加减即可达到目的.

解:将方程组的两式相加,得:3()53x y k +=+,所以513x y k +=+,从而50133

k <+<,解得3655k -<<

例5. 已知关于x ,y 的二元一次方程

组3511x ay x by -=??+=?的解为56x y =??=?

,那么关于x ,y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=?

的解为为 分析:如果把56x y =??=?代入3511x ay x by -=??+=?

,解出a ,b

的值,再代入3()()5()11x y a x y x y b x y +--=??++-=?进行求解,应当是可行的,但运算量比较大,相对而言比较繁琐.

若采用整体思想,在方程组3()()5()11

x y a x y x y b x y +--=??++-=?中令x y m x y n +=??-=?,则此方程组变形为3511

m an m bn -=??+=?,对照第一个方程组即知56m n =??=?,从而56

x y x y +=??-=?,容易得到第二个方程组的解为1121

2x y ?=????=-??,这样就避免了求a ,b 的值,又简化

了方程组,简便易操作. 解:1121

2x y ?=????=-??

说明:通过整体加减既避免了求复杂的未知数的值,又简化了方程组(不等式组),解答直接简便.

例6.解方程 225

23423x x x x +-=+

分析:本题若采用去分母求解,过程很复杂和繁冗,根据方程特点,我们采用整体换元,将分式方程转化为整式方程来解.

解:设223x

x y +=,则原方程变形为54y y

-=,即2450y y --=,解得15y =,21y

=-,所以2235x x +=或2231x x +=-,从而解得152x =-,21x =,312x =-,41

x =-,经检验1x ,2x ,3x ,4

x 都是原方程的解. 说明:(1)对于某些方程,如果项中含有相同部分(或部分相同)可把它看作一个整体,用整体换元进行代换,从而简

化方程及解题过程.当然本题也可以设2234y x x =+-,将方程变形为54

y y =+来解. (2)利用整体换元,我们还可以解决形如

22315122x x x x -+=-这样的方程,只要设21x y x =-,从而将方程变形为15322

y y +=,再转化为一元二次方程来求解.

例7. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元

分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决.

解:设购甲、乙、丙各1件分别需x 元、y 元、z 元.

依题意,得37315410420x y z x y z ++=++=???..,即

2331533420()().()().x y x y z x y x y z ++++=++++=???

解关于x y +3,x y z ++的二元一次方程组,可得x y z ++=105

.(元) 答:购甲、乙、丙各1件共需1.05元. 说明:由于我们所感兴趣的不是x 、y 、z 的值,而是x y z ++这个整体的值,所以目标明确,直奔主题,收到了事半功倍的效果.

三.函数与图象中的整体思想

例8.已知y m +和x n -成正比例(其中m 、

n 是常数)

(1)求证:y 是x 的一次函数;

(2)如果y =-15时,x =-1;x =7时,

y =1,求这个函数的解析式.

解:(1)因y m +与x n

-成正比例,故可设y m k x n k +=-≠()()

0 整理可得y k x k n m =-+()

因k ≠0,k 、-+()k n m 为常数,

所以y 是x 的一次函数.

(2)由题意可得方程组-=--+=-+???1517k k n m k k n m ()()

解得k =2,k n m +=13.

故所求的函数解析式为y x =-213

. 说明:在解方程组时,单独解出k 、m 、n 是不可能的,也是不必要的.故将k n m +看成一个整体求解,从而求得函数解析式,这是求函数解析式的一个常用方法.

例9. 若关于x 的一元二次方程

22(1)20x a x a +-+-=有一根大于1,一根小于1-,求a 的取值范围.

分析:此题如果运用根的判别式和韦达定理,解答此题较为

困难.整体考虑,把一

元二次方程

22(1)20x a x a +-+-=与二次函

数22(1)2

y x a x a =+-+-联系起来,利用二次函数的图象来解题,则显得很直观,也较为容易.

解:由题意可知,抛物线与x 轴的交点坐标,一个交点在点(1,0)的右边,另一个交点在点(1,0)-的左边,抛物线图象开口向上,则可得:当1x =时,0y <,当1x =-时,0y <,即22200a a a a ?+-

第10题6

54321I H G

F

E D C B A

说明:(1)由于当1x =,1x =-时,0y <, 所以解答过程中不必再考虑0?>了.

(2)利用函数与

图象,整体考察,是解

决涉及方程(不等式)

有关根的问题最有效的方法在之一,在数学教学中应当引起足够的重视.

四.几何与图形中的整体思想

例10.如图,

123456∠+∠+∠+∠+∠+∠= 分析:由于本题出无任何条件,因而单个角是无法求出的.利用三角形的性质,我们将12∠+∠视为一个整体,那么应与△ABC 中BAC ∠的外角相等,同理34∠+∠,56∠+∠分

第11题O P F E D C

B A 别与AB

C ∠,ACB ∠的外角相等,利用三角形外角和定理,本题就迎刃而解了.

解:因为12DAB ∠+∠=∠,34IBA ∠+∠=∠,56GCB ∠+∠=∠,根据三

角形外角定理,得360DAB IBA GCB ∠+∠+∠=°, 所以123456∠+∠+∠+∠+∠+∠=360°.

说明:整体联想待求式之间的关系并正确应用相关性质是解决此类问题的关键.

例11.如图,菱形

ABCD 的对角线长分别为3

和4, P 是对角线AC 上任一点(点P 不与A ,C 重合),且PE ∥BC 交AB 于E , PF ∥CD 交AD 于F ,则图中阴影部分的面积为 .

解:不难看出,四边形AEPF 为平行四边形,

从而△OAF 的面积等于△OAE 的面积, 故图中阴影部分的面积等于△ABC 的面积, 又因为12ABC ABCD S S ?=Y 1134322=???=,所以图中阴影部

分的面积为3.

说明:本题中,△OAF 与△OAE 虽然并不全等,但它们等底同高,面积是相等的.因而,可以将图中阴影部分的面积转化为△ABC 的面积.我们在解题过程中,应仔细分析题意,挖掘题目的题设与结论中所隐含的信息,然后通过整体构造,常能出奇制胜.

例12.如图,在正方形ABCD 中,E 为BC 边的中点,AE 平分BAF ∠,试判断AF 与BC CF +的

大小关系,并说明理由.

解:AF 与BC CF +的大小关系为AF BC CF =+. 分别延长AE ,DC 交于点G ,因为E 为BC 边的中点,因而易证△ABE ≌△GCE ,所以AB GC =,并且BAE CGE ∠=∠,AB BC =,从而BC CF GF +=.由于AE 平分BAF ∠,所以BAE FAE ∠=∠,故FAE CGE ∠=∠,即△AFG 为等腰三角形,即AF GF =,所以,AF BC CF =+.

说明:证明一条线段等于另外两条线段的和差,常常用截长法或补短法把问题转化为证明两条线段相等的问题,本题中我们利用三角形全等将BC CF +转化为FG 这一整体,从而达到了解决问题的目的.

用整体思想解题不仅解题过程简捷明快,而且富有创造性,有了整体思维的意识,在思考问题时,才能使复杂问题简单化,提高解题速度,优化解题过程.同时,强化整体思想观念,灵活选择恰当的整体思想方法,常常能帮助我们走出困境,走向成功.

练习

一、选择题

1. (2011盐城,4,3分)已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )

A.﹣1 C .﹣5

2. (2011,台湾省,26,5分)计算(250+++)2﹣(250﹣﹣﹣)2之值为何( )

A 、

B 、

C 、1200

D 、2400

3. 10(2011山东淄博10,4分)已知a 是方程x 2+x ﹣1=0的一个根,则22

211a a a ---的值

为( )

A.

C.﹣1

二、填空题

1. (2011德州,14,4分)若x 1,x 2是方程x 2+x ﹣1=0的两个根,则x12+x22= .

2.(2011年山东省威海市,16,3分)分解因式:16–8(x –y )+

(x –y )2= .

3. (2011四川达州,15,3分)若2210b b ++=,则221a b a +-= .

三、解答题 1. (2011江苏宿迁,21,8)已知实数a 、b 满足ab=1,a+b=2,求代数式a 2b+ab 2的值.

2. (2010重庆,21,10分)先化简,再求值:22122121x x x x x x x x ---??-÷ ?+++??,其中x 满足x 2-x

-1=0.

答案:ADD ;3,(4-x+y )2,6;2,1

中小学数学很重要的20种常见思想方法

中小学数学很重要的20种常见思想方法 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

中学数学思想方法的教学研究

中学数学思想方法的教学研究 发表时间:2013-03-14T14:50:22.857Z 来源:《少年智力开发报》2012-2013学年21期供稿作者:盖玉顺 [导读] 美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理. 山东省东营市陈庄镇中学盖玉顺 1.数学思想方法教学的意义 美国心理学家布鲁纳认为,“不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.第一,“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳 入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容. 第二,有利于记忆.布鲁纳认为,“除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.”“学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具.”由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.” 第三,学习基本原理有利于“原理和态度的迁移”.布鲁纳认为,“这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.”曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力. 2.中学数学教学内容的层次 中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法. 表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识. 深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质. 3.中学数学中的主要数学思想和方法 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是: (1)这三个思想几乎包摄了全部中学数学内容; (2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握; (3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多; 4.数学思想方法的教学模式 数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式: 操作——掌握——领悟。对此模式作如下说明: (1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的; (2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础; (3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识的前提; (4)“领悟”是指在教师引导下,学生对掌握的有关表层知识的认识深化,即对蕴于其中的数学思想、方法有所悟,有所体会;

如何培养学生的数学思想

如何培养学生的数学思想 小学数学教材中渗透的数学思想方法主要有:数形结合、集合、对应、分类、函数、极限、化归、归纳、符号化、数学建模、统计、假设、代换、比较、可逆等思想方法。教学中,要明确渗透数学思想方法的意义,认识数学思想方法是数学的本质之所在、是数学的精髓,只有方法的掌握、思想的形成,才能使学生受益终生。 下面我就如何向学生渗透这些数学思想方法分别举例说明一下。 一、数形结合思想方法 1.先形后数。一年级的小学生刚开始学习数学,是从具体的物体开始认数,从具体形象到抽象。 2.先数后形。如教学排队问题:一年级小同学排队做操,从前往后数,小明排第5,从后往前,小明排第4,这一对共有几人?小同学很容易地将4与5相加,得出错误的结果。如果让学生用画图的方法解答,用“△”代表排队的小朋友,这道题很容易解决。 二、对应思想 例如,求一个数比另一个数多(少)几的应用题的数量关系。对二年级学生来说较为抽象。我是这样设计的:苹果有8个,梨有6个,苹果比梨多几个?学生通过用○、△等学具代替苹果、梨摆一摆,或用画一画的方法得到了解决。 再如,数轴上的点与实数之间的一一对应等把抽象内容的数量关系视觉化、具体化、形象化,化深奥为浅显。同时,鼓励了学生的创新,使学生乐于参与这样的数学活动。 三、分类思想 分类是根据教学对象的本质属性的异同按某种标准,将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类进行分析研究。分类是数学发现的重要手段,在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。一般分类时要求满足互斥,无遗漏、最简便的原则。如整数以能否被2整除为例,可分为奇数和偶数;若以自然数的约数个数来分类,则可分为质数、合数和1。几何图形中的分类更常见,如学习“角的分类”时,涉及到许多概念,而这些概念之间的关系渗透着量变到质变的规律。其中几种角是按照度数的大小,从量变到质变来分类的,由此推理到在三角形中以最大一个角大于、等于和小于90°为分类标准,可分为钝角三角形、直角三角形和锐角三角形。而三角形以边的长短关系为分类标准,又可分为不等边三角形和等边三角形,等边三角形又可分为正三角形和等腰三角形。通过分类,建构了知识网络,不同的分类标准会有不同的分类结果,从而产生新的数学概念和数学知识的结构。 四、化归思想 化归是数学中最普遍使用的一种思想方法。它是通过变形把要解决的问题,化归为某个已经解决的问题,从而求得原问题的解决。其基本思想是:将待解决的问题甲,通过某种转化过程,归结为一个已经解决或者比较容易解决的问题乙,然后通过乙问题的解答返回去求得原问题甲的解答。这种化归思想不同于一般所讲的“转化”、“转换”,它具有不可逆转的单向性。它的基本形式有:化难为易,化生为熟,化繁为简,化整为零,化曲为直等。在小学数学中蕴藏着各种可运用化归的方法进行解答的内容,让学生初步学会化归的思想方法。如:教学圆面积的计算方法,这里要推导出圆面积公式,在推导过程中,采用把圆分成若干等份,然后拼成一个近似长方形,从而推导出圆的面积公式。这里把圆剪拼成近似长方形的过程,就是把曲线形化归为直线形的过程。 再如平行四边形的面积推导,当我通过创设情境使学生产生迫切要求出平行四边形面积的需要时,便将“怎样计算平行四边形的面积”直接抛向学生,让学生独立自由地思考。这个完全陌生的问题,需学生调动所有的相关知识及经验储备,寻找可能的方法,解决问题。当学生

论文:数学思想方法

数学思想方法 河南省虞城县李老家乡第二初级中学;高华增数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征 常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下: 类型一:化归思想方法:重难点突破:解决问题的基本思想就是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径 的扇形,并且所有多边形的每条边都大于2,则第n 个多边形中,所有扇形面积之和是______.(结果保留π) 分析:本题考察了扇形面积和n 边形内角和公式,解题关键是:是求第n 个图形中(n +2)个半径为1的扇形的面积之和 解析:[]ππ2n 1802-2)(n 3601S 2 =?+?=,答案;π2 n

类型二:数形结合: 重难点突破: 根据数学问题的题设和结论之间的内在联系,分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙结合,充分利用这种结合探究解题思路,使问题得以解决; 【例2】(09重庆)如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是 ( ) 分析:本题考查点是运动变化为前提,根据几何图形的面积变化特征,通过分段讨论,确立相应函数关系,进而确定函数图象,这是一道典型的数形结合与分类讨论的综合题,是这几年中招试题常见题型,解题关键是能否充分利用分类的讨论思想,难点是能否把所有情况分别讨论,很多同学因考虑不全而丢分. 解析:当点P 在BC 上时,即0<x ≤1时 x x 2PB AB S 2121PAB =??=?=? 当点P 在CD 上时,即1<x ≤3时

《小学数学与数学思想方法》读后感

《小学数学与数学思想方法》读后感 读完《小学数学与数学思想方法》这本书,对数学思想方法有了更系统和更全面的认识。知道了什么是数学思想,什么是数学方法,知道了数学思想与数学方法的内在联系与区别。知道数学思想是数学方法进一步提炼和概括,数学思想的抽象概括程度要高一些,而数学方法的操作性更强一些。人们实现数学思想往往要靠一定的数学方法,而人们选择的数学方法,又要以一定的数学思想为依据。由此可见,数学思想方法是数学的灵魂,那么,要想学好数学,用好数学,就要深入到数学的“灵魂深处”。 数学思想方法如此严重,从这本书中还知道了教师如何进行数学思想方法的教学: 重视思想方法目标的落实。 教师在备课撰写教学设计时,把数学思想方法作为与知识技能同等地位的目标呈现出来。而不是可有可无或者总是进行渗透,并利用动词进行描述和评价,使数学思想方法的教学目标落到实处。 2.在知识形成过程中体现数学思想方法。 现在的数学课堂教学中,很多教师精讲多练,急于把概念、公式、法则等知识传授给学生,然后按照考试的要 求进行训练,轻视了知识的形成过程。这样,既浪费了时间,又没有真正培养学生的思维能力、思想方法和学习兴趣,导致很多学生害怕数学。我曾经在讲《除法的初步认识—平均分》时,通过让学生动手操作引导他们经历知识的形成过程。读过这本书才知道自己忽略了数学思想方法的渗透,在这个教学过程中,教师可以引导学生感受从直观操作的详尽情境中抽象出除法概念的抽象思想,认识用除法符号表达的具有简洁性的符号化思想,体会用实物、图形帮助理解除法的具有直观性的数形结合思想,知道除法是一种严重的模型思想,体会在除法中商随着被除数、除数的变化而变化的函数思想。

中学数学思想方法教学的主要途径

中学数学思想方法教学的主要途径 数学思想的形成发展是数学教学中的关键步骤,是学习数学的精髓之处。数学思想方法是为了培养学生的思维方式和各项能力,提高学生的整体素质。学生作为主体,教师作为指导者,课堂作为思维方式形成的载体,从而实现这一教学目的。本文通过对实现数学思想方法教学的必要性做出分析,提出了实现中学数学思想方法教学的主要途径。 数学思想方法方式中学途径 中学数学思想方法是将数学知识、技能转化成数学能力的途径,它具有构建数学体系和将数学知识应用是实际问题中的作用。数学思想和数学方法都是以数学知识为基础,将知识升华。但是数学思想有引导着数学方法,是数学方法的升华。人们在数学的教学和研究中,将数学思想和数学方法归纳成数学思想方法。 一、中学数学思想方法教学的原则 (一)意识性原则 意识性原则是指在教师在教学中能够自觉地意识到数学体系中所包含的思想方法。很多教师存在着忽视教学思想方法的趋势,这表现在制定教学目标时,对具体的技能技巧没有明确的目标,偏重就题论题,忽略了数学思想方法的引导、形成、提炼、归纳。

要在备课、教学过程中发现、总结、分析数学思想方法,通过具体的概念、公式综合运用,交替出现,有意识的将数学思想方法渗透其中。比如,不等式的解法与证明。这要运用到数形结合和同解变形,证明不等式则可以运用比较法、综合法、分析法、放缩法、数学归纳法和反证法等。有的不等式还需要综合运用到这些方法,这就要求教师在教学过程中归纳点拨,分析总结,使学生学习并灵活运用数学思想方法。 (二)化隐为显原则 在中学数学中,数学思想跟数学方法同样重要,甚至更甚。化隐为显原则是指教师在授课的过程中将数学思想方法明确地讲解出来,针对教学内容和进度,有计划的进行。在数学难点和重点的讲解时将数学思想方法自然的传授给学生,在单元小结时适当点拨数学思想方法。例如,在讲解不等式的课程之后,可以通过实际例题归纳总结数学方法。比如(x-5)(x-3)>0,可以通过代数解析法、列表法、图解法分别解答,让学生通过这三种解法的比较,总结数学思想方法,在以后的学习中举一反三,运用其中。 (三)系统性原则 数学思想方法像普通的知识教学一样,只有系统性的学习,才能充分的发挥它的作用。在当前的教学中,有一些教师往往忽视了数学思想方法系统性的教育,会忽略学生掌握

小学数学教学中渗透数学思想方法的策略

小学数学“教学中培养学生学习习惯研究”课题实施方案 王凤楼镇中心小学低年级数学教研组 一、问题提出的背景与意义 1、关注数学思想方法教学的重要性 (1)《数学课程标准》的期待。《数学课程标准》(最新稿)不仅把“数学思考”作为总体目标之一提出,同时,还将“双基”扩展为“四基”,即基础知识、基本技能、基本数学思想、基本活动经验。由此可见,数学思想方法教学变得越来越重要(2)数学教育专家的观点。(3)哲学角度的理解。从数学哲学的角度讲,数学科学中最有生命力统摄力的是数学观和数学方法论,即数学思想方法;从数学教育哲学的角度讲,决定一生数学修养的高低,最为重要的标志是看他能否用数学的思想方法去解决数学问题以至日常生活问题。 2、关注小学数学思想方法教学的必需性 一种数学思想的形成绝不是一朝一夕可以做到的,古往今来世人留下的数学思想方法非常丰富,这些数学思想方法有难的但也有容易的,所以,数学思想方法的教学不只是中学、大学教师的事,小学阶段进行数学基础知识的教学时,适时适度渗透数学思想方法,不仅成为一种可能,也成为一种必需。 二、研究的价值: 1、在学生方面: 可以培养学生的数学素养,养成用数学眼光看待和分析周围的事物的习惯和能力。数学思想渗透在数学知识之中,这样就造成教师在教学中只重视讲授表层知识,而不注重渗透数学思想、方法的教学,学生所学的数学知识往往是孤立、零散的东西,不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高,加重了学生的学习负担;数学思想方法是数学的精髓,在学生学习数学知识的同时渗透数学思想和方法的教学,让学生在掌握表层知识的同时,领悟到深层知识,学习层次实现质的“飞跃”,学生所学的知识成为一个相互联系的,组织得很好的知识结构,这样学生才能摆脱“题海”之苦,焕发其生命力和创造力。 2、在教师方面:

《数学思想方法》课程教学大纲

数学思想方法》课程教学大纲 第一部分大纲说明 一、课程的地位、性质与任务 《数学思想方法》是研究数学思想方法及其教学的一门课程。随着现代科学技术的迅速发展和素质教育的全面实施,对科学思想、科学方法有着全局影响的数学思想方法其重要性日益凸现。鉴于数学思想方法在素质教育中的重要作用,《数学思想方法》被列为中央广播电视大学小学教育专业的一门重要的必修课。 通过本课程的学习,使学员比较系统地获得对数学思想方法的认识,掌握实施数学思想方法教学的特点,并能运用这些理论指导小学数学教学实践。通过各个教学环节,逐步培养学员实施数学思想方法教学的能力和综合运用所学知识分析问题、解决有关实际问题的能力,为成为适应新世纪需要的高素质的小学教师打下坚实基础。 二、课程主要内容及要求 本课程的主要内容包括:数学思想与方法的两个源头、数学思想与方法的几次重要突破、数学的真理性、现代数学的发展趋势、演绎与化归、抽象与概括、猜想与反驳、计算与算法、应用与建模、数学思想与方法与素质教育、数学思想与方法教学、数学思想与方法教学案例。通过本课程的学习,关键在于使学员建构起关于数学思想方法的认知结构,认识数学思想方法的重要性,增强数学思想方法教学的自觉性,提高实施数学思想方法教学的水平和能力。通过“数学思想方法的发展”部分学习,帮助学员了解数学思想方法的源头、几次重要突破和现代数学的发展趋势,并能正确理解数学的真理性,确立动态的、拟经验主义的数学观。通过“数学思想方法例解 " 部分学习,使学员掌握数学教学中常用的数学思想方法及其应用。通过“数学思想方法教学" 部分学习,使学员掌握数学思想方法教学的特点,并能将所学数学思想方法初步应用于小学数学教学。 三、教学媒体 1.文字教材: 文字教材是学生学习课程的主要用书,是学生获得知识和能力的重要媒体,是教和学的根本依据。文字教材名称:《数学思想与方法》(顾泠沅主编,中央电大出版社出版)。 2.音像教材:《数学思想与方法》录像教材共18 讲,由首都师范大学副教授姚芳主讲。 3. 网上学习资源 江苏电大在线中(https://www.360docs.net/doc/d110108053.html, )教学辅导、实施方案、学习自测等;栏目以及中央电大在线( https://www.360docs.net/doc/d110108053.html, )中与本课程有关的学习资源。 四、教学环节 1. 理论教学环节(课程的基本知识、理论和方法) (1)自学 自学是电大学生获得知识的重要方式 , 自学能力的培养也是远程开放高等教育的目的之一 ,本课程的教学要注意对学生自学能力的培养 . 学生可以通过自学、收

整体的思想方法

整体的思想方法 一、知识要点概述 解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法. 在数学思想中整体思想是最基本、最常用的数学思想。它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。 高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。 二、解题方法指导 1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。 2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。 3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。 三、整体的思想方法主要表现形式 1、整体补形 【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离. 思路:透过局部→整体补形→构建方程

浅谈高中数学思想方法与高中数学教学

浅谈高中数学思想方法与高中数学教学 【摘要】数学基础知识与数学思想方法是中学数学教学内容的两个有机组成部分。本文阐述了数学思想方法在中学数学教学中重要性;以及如何发挥数学思想方法在中学数学教学中的作用,谈谈自己的观点,为更好的开展课堂教学寻求更佳的教学模式。 【关键词】数学思想方法;数学教学;数学能力;作用 随着数学课程改革的发展,中学数学的教材内容、教学方法发生了很大的变化。数学教学不再是单纯的知识传授,而且还要培养学生的技能,发展学生的能力和提高学生的素质。本文围绕在中学数学教学中关于数学思想方法的教学,谈谈自己的实践与体会。 一、重视数学思想方法的教学是时代的要求 《全日制义务教育数学课程标准(实验稿)》(一)数学新课程标准要求我们要重视数学思想方法的教学。 指出:通过义务教育阶段的数学学习,使学生能够获得适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能。这个课程目标,要求我们在数学教学中,要重视数学思想方法的教学。 数学思想是指从某些具体的数学认识过程中提升的观点,它在后继认识活动中被反复运用和证实其正确性,带有普遍的意义和相对稳定的特征。它是对数学的概念、方法和理论的本质认识,是建立数学理论和解决数学问题的指导思想。中学数学思想是数学思想中最常见、最基本、较浅显的思想,经如数形结合的思想,分类思想、转化思想、方程思想、函数思想等。而数学方法是在数学思想指导下,在从事数学活动、处理数学问题过程中所采用的具体手段、途径和方式。中学数学基本的数学方法有:观察与实验法、归纳法、配方法、换元法、类比与联想、抽象与概括、分析与综合、一般化与特殊化等。数学方法是实现数学思想的手段,任何方法的实施,无不体现某种或多种数学思想;而数学思想往往是通过数学方法的实施才得以体现的。二者关系密切,难于区分,因而统称为数学思想方法。 高中数学基础知识,包括中学代数、几何中的概念、法则、性质、公式、公理、定理等,以及由其内容所反映出来的数学思想和方法。数学基本知识和数学思想方法是中学数学教学内容的两个有机组成部分,教材的每一章、节、乃至每一道题,都是知识与思想、方法的和谐组合,它们是相互影响、相互联系,协同发展的统一体。数学思想来源于数学基本知识与基本方法,而数学思想反过来又指导数学方法。数学思想方法具体反映于数学基本知识之中,而作为中学数学教材中的基本知识,又要受到数学思想方法的支配、约束。没有脱离数学知识的数学思想方法,也没有不包含数学思想方法的数学知识。数学知识与数学思想方法的这种辩证统一关系决定了在强调数学基本知识教学的同时,也要重视数学思想方法的教学。 (二)掌握基本的数学思想方法,是形成和发展数学能力的基础。长期以来,我们的数学教学都是以知识的传授为主,忽略了数学思想方法的讲解与分析,再加上传统的考试制度也多限于测试知识,所以“高分低能”的现象屡见不鲜。新的课程标准要求我们在数学教学时,要使学生能够学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识,具有初步的创新精神和实践能力。数学教育的根本目的就是要使学生获得必要的数学能力,即运用数学解决实际问题和进行发明创造的能力,而这种能力,不仅表现在对数学知识的记忆,而且更主要地依赖于对数学思想方法的掌握。我们常说某人办事有头脑,其实是说他能灵活运用数学思想方法解决生活工作中的实际问题。数学思想方法是联系知识与能力的纽带,是数学的灵魂,它对形成和发展学生的数学能力,培养学生的创新意识,提高应用数学的能力具有十分重要的作用。 分类思想是通过把一个数学问题,根据某种共同性和差异性,将它们分成某几类情形分别加以研究解决的一种指导思想,在数学知识的整理和概念学习中十分重要,可使有关的知识系统化、完整化。

《数学思想与方法》综合作业答案1

谈谈我对我国小学数学教育的看法 九年义务教育改革的核心是实施素质教育,数学作为一门基础自然学科,如何实施素质教育这正是当前广大数学教师非常关注的新课题。实施素质教育是我国社会主义现代化建设和迎接国际竞争的迫切需要。我们要在21世纪激烈的国际竞争中处于战略主动地位,就必须优先发展教育,必须实施素质教育,唯有如此才能实现发展教育的根本任务,提高全民整体索质,从而实现社会的快速发展。素质教育关系着一个国家和民族的未来。小学是义务教育的奠基工程,而小学数学则是基础教育的一门重要学科。如何在小学数学教学中全面贯彻落实素质教育,发挥整体育人功能,这是每位教育工作者都应认真思考的问题。本文就小学数学素质教育谈几点认识。 一、学习素质理论,统一思想认识 由于我国的基础教育在“应试教育”的轨道上运行多年,人们在思想观念、政策导向、管理体制乃至教育的内容与方法等诸多方面,都形成了一整套固定的模式,因此,要实现从应试教育向素质教育的转轨,决非轻而易举的事。随着社会的进步和发展,以及教育体制持续不断的改进,大家认识到素质教育是一种旨在谋求学生身心发展的教育,是一种承认差异,重视个性的教育,是确认学生主体,从学生个体实际出发的教育,是一种根据社会需要,给学生的素质发展以价值导向与限定的教育,同时又是一种重知识,又不唯知识,以提高民族素质为最终目的的教育。 二、素质教育是数学教学改革的主旋律 围绕素质教育的实施这一主题,数学教学改革应重视如下几个方面: 1.重视非智力因素,培养学生的个性品质。 一般来说,非智力因素可以转化学习动机,成为学生学习的内驱力;还可以对学生的学习起到调节、强化作用。智力和非智力因素是学生统一的心理活动过程和

数学思想方法及其教学

数学思想方法及其教学 数学思想是指现实世界的空间形式和数量关系,反映到人民的意识中,经过思维活动而产生的结果。它是对数学事实与理论经过概括后产生的本质认识。数学思想方法是对数学的知识、内容和所使用的方法的本质的认识。它是从某些具体数学认识过程中提炼出来的观点,在后继研究和实践中被反复证实其正确性并带有一般意义和相对稳定的特征。数学思想方法是对数学规律的理性认识,它是以数学为工具进行科学研究的方法,中学数学教学中数学思想方法主要有代换、类比、分析、综合、抽象、概括等方法。 数学思想与思想方法是数学知识中的“基石”,是学生获得数学能力不可或缺的重要思想,数学思想方法的训练,是把知识型转化为能力型数学的关键。学生通过数学学习,形成一定的数学思想方法是教学的重要目标之一。 新课程改革的研究和实践表明:学生的数学学习不只是简单被动的“复制”活动,而是学生认识结构主动建立的过程;不仅是知识传授的过程,更应该是数学思想方法形成的过程。因此,在数学教学中注重分析数学思想方法发展的脉络,促进数学思想方法的形成,便成为构建学生数学认知结构的重要环节。对学生来说,具体的数学知识,可能地随时间的推移而遗忘,但思想方法却能长存,使其受用终生,所以数学思想方法是数学中的精髓。 学生数学思想方法的形成是一个循序渐进的过程,是一个多次孕育、适时渗透的过程,在数学教学中应重视将抽象的思想方法逐渐融入具体的实在的数学知识之中,使学生对这些思想方法具有初步的感知。数学新课程的内容是由数学知识与思想方法组成的有机整体,其是知识体系是纵向展开的,而蕴含在知识之中的思想方法是纵横交错、前后联系的。在教学中不能急功近利,略去教学知识发生和发展的过程,而应适时把握好进行数学思想方法渗透的契机。如:概念的形成过程、问题被发现的过程、解题思想探求的过程,均为渗透数学思想方法的大好时机,教师应有“润物细无声”的境界,在知识生长与发展中,让数学思想方法着地、生根、发芽。 渗透数学思想方法只是让学生对数学思想方法有初步的理解,而引进数学思想方法,就要求学生知道它的要素、特征及用途。由于同一内容可表示为不同的数学思想方法,而同一数学思想方法又常常分布于许多不同的知识点。因此,在单元小结复习时,就应该整理出数学思想方法系统。也可根据数学思想方法的形成过程,适时开设专题讲座,讲清知识的来龙去脉、内涵外延、作用功能等,这也是数学思想教学方法化隐为显的有效途径。 有些基本的数学思想方法,如数形结合、化归、函数与方程等数学思想方法贯穿于整个中学数学,对这些应经常强调并通过“问题解决”使学生灵活运用。要重视提供含有数学思想方法的问题或情景,调动学生积极参与,在会解决问题的情况下,要求能揭示问题中蕴含的数学思想方法和使用价值。对同一问题从不同的角度去审视,根据不同的特征,用不同的数学思想方法解决。

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

(no.1)2013年高中数学教学论文 提高数学能力,形成数学素质--思想方法的教学要点

本文为自本人珍藏版权所有仅供参考 提高数学能力,形成数学素质--高中数学思想方法的教学要点 如何在高中数学教学中实施素质教育,提高学生的数学素养,是摆在高中数学教师面前的一个重要问题。那种只重视讲授基础知识,而不注重渗透数学思想方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段。反之,如果单纯强调数学思想和方法,而忽略基础知识的教学,就会使教学流于形式,学生也难以领略到深层知识的真谛。数学思想方法的教学应与整个基础知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质。 一、数学思想方法的分类 函数与方程的思想方法。函数思想的实质是提取问题的数学特征,用联系变化的观点提出数学对象,抽象其数学特征,建立函数关系。很明显,只有在对问题的观察、分析、判断等一系列的思想过程中,具备有标新立异、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的。 数形结合的思想方法。数形结合的思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维形象思维结合,通过对图形的认识,数形结合的转化,可以培养思维的灵活性,使问题化难为易,化抽象为具体。 分类讨论的思想方法。分类讨论是解决问题的一种逻辑方法,也是一种数学思想,这种思想在人的思维发展中有着重要的作用。如“参数问题”对中学生来说并不十分陌生,它实际上是对具体的个别的问题的概括。从绝对值、算术根以及在一般情况下讨论字母系数的方程、不等式、函数,到曲线方程等,无不包含着参数讨论的思想。 等价转化的思想。等价转化思想是把未知解的问题转化到在已有知识范围内可解的问题是一种重要数学思想方法,转化包括等价转化和非等价转化,等价转化要求转化过程中前因后果应是充分必要的,这样的转化能保证转化后的结果仍为原问题所需的结果;而非等价转化其过程是充分或必要的,这样的转化能给人带来思维的闪光点,找到解决问题的突破口,是分析问题中思维过程的主要组成部分。转化思想贯穿于整个高中数学之中,每个问题的解题过程实质就是不断转化的过程。 二、数学思想方法教学的主要途径 用数学思想指导基础复习,在基础学习中培养思想方法。①基础知识的复习中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。如讨论直线和圆锥曲线的位置关系时的两种基本方法:一是把直线方程和圆锥曲线方程联立,讨论方程组解的情况;二是从几何图形上考虑直线和圆锥曲线交点的情况,利用数形结合的思想方法,使问题清晰明了。②注重各知识点在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程,不等式,联想函数图象可提供方程,不等式的解的几何意义,运用转化、数形结合的思想,这三块知识可相互为用。 用数学思想方法指导解题练习,在问题解决中运用思想方法,提高学生自觉运用数学思想方法的意识。①注意分析探求解题思路时数学思想方法的运用。解题的过程中就是在数学思想的指导下,合理联想提取相关知识,调用一定数学方法加工、处理题设条件及知识,逐步缩小题设与题断间的差异的过程。也可以说是运用化归思想的过程,解题思想的寻求就自然是运用思想方法分析解决问题的过程。②注意数学思想方法在解决典型问题中的运用。例如选择题中的求解不等式x≥,虽然可以通过代数方法求解,但若用数形结合,转化为半圆与直线的位置关系,问题变得非常简单。③以数学思想方法为指导,进行一题多解的练习。

小学数学思想方法的梳理分析法和综合法

小学数学思想方法的梳理(分析法和综合法) 课程教材研究所王永春 十、分析法和综合法 分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。 1. 分析法和综合法的概念。 分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。 2. 分析法和综合法的重要意义。 大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。这样分析了数量关系和解题思路后,再利用综合法根据已知条件列式解答。再如在学习概率统计时对各种统计数据需要经过整理和描述,并进行分析和综合,做出合理的判断和预测。虽然新课标并没有明确提出逻辑思维能力的培养,但在推理能力方面仍然提出了“能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据;在与他人交流的过程中,能运用数学语言合乎逻辑地进行讨论与质疑。”这其中就包含了对学生逻辑思维、分析和综合能力的要求。分析能力不仅是逻辑思维能力的重要方面之一,也是其他一些思维能力的基础。分析法和综合法是培养学生分析问题、解决问题和推理等能力的重要的思想方法。因此,分析法和综合法在课标时代仍然是培养逻辑思维能力和解决问题能力的重要的思想方法。 3. 分析法和综合法的具体应用。 如上所述,分析法和综合法作为数学的思想方法,在小学数学的各个方面都有重要的应用。首先,在四大领域的内容中,无论是低年级的数和计算、图形的认识,还是中高年级的方程和比例、统计与概率,分析法和综合法都有较多应用。如数的计算法则的学习,就是一个先分析再综合概括的过程,先一步一步地学习法则的不同方面,再综合概括成一个完整的法则。其次,在贯穿整个数学学习过程中的问题解决、判断和推理证明等方面,分析法和综合法也是无所不在。如在进行一个概念或者性质的判断时,必须先进行分析,然后才能做出判断。 4.分析法和综合法的教学。 分析能力和综合能力作为培养逻辑思维能力和解决问题能力的重要方面,在课标时代仍然要给予足够的重视,在教学中应注意以下几点。

高中数学思想方法教学

高中数学思想方法教学 中学数学教学内容从总体上可以分为两个层次:一个称为基础知识,另一个称为深层知识.基础知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法。基础知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的基础知识后,才能进一步的学习和领悟相关的深层知识。深层知识蕴含于基础知识之中,是数学的精髓,它支撑和统帅着基础知识.教师必须在讲授基础知识的过程中不断地渗透相关的深层知识,让学生在掌握基础知识的同时,领悟到深层知识,才能使学生的基础知识达到一个质的“飞跃”,使其更富有朝气和创造性。 实施以培养创新精神和实践能力为重点的素质教育,是我国面向二十一世纪的战略选择,是教育走向现代化的开端,如何在高中数学教学中实施素质教育,提高学生高的数学素养,就是摆在高中复习中数学教学面前的问题。那种只重视讲授基础知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略基础知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个基础知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形

成良好的数学素质。这也是数学思想方法教学的基本原则。 结合本人的教学经验,下面对数学思想方法教学浅谈一些体会。 一、在高中复习教学中,数学思想方法教学的途径主要有: 1、用数学思想指导基础复习,在基础复习中培养思想方法。 ①基础知识的复习中要充分展现知识形成发展过程,揭示其中蕴涵的丰富的数学思想方法。如讨论直线和圆锥曲线的位置关系时的两种基本方法:一是把直线方程和圆锥曲线方程联立,讨论方程组解的情况;二是从几何图形上考虑直线和圆锥曲线交点的情况,利用数形结合的思想方法,将会使问题清晰明了。 ②注重知识在教学整体结构中的内在联系,揭示思想方法在知识互相联系、互相沟通中的纽带作用。如函数、方程、不等式的关系,当函数值等于、大于或小于一常数时,分别可得方程,不等式,联想函数图象可提供方程,不等式的解的几何意义。运用转化、数形结合的思想,这中块知识可相互为用。 例如、若关于 x的方程9x2+(4+a)3x+4=0有实根,求实数a的范围。 分析:若令3x=t ,则t>0,原方程有解的充要条件是方程t2+(4+a)t+4=0有正根,故解得:a≤-8。这种解法是根据一元二次方程解的讨论,思维方法是常规合理的,但解法繁琐,若采取以下解 法:因为a∈R,所以原方程有解的a的取值范围为函数a= x x x 312 9 42- - 的值域。根据基本不等式上式 a≤-2-4=-8。则思维突破常规,利用函数与方程的转化,解法灵活简捷。

相关文档
最新文档