回转窑托轮与轮带轴线的任意交叉角接触时接触压力系数的分析与具体计算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

回转窑托轮与轮带轴线的任意交叉角接触时接触压力系数的分析与具体计算来自:天津市博纳建材高科技作者:江旭昌时间:2007-12-18 查看:1062

一.导言

回转窑是煅烧或焙烧浆状、粉状和粒块状物料的理想热工设备,广泛的应用于建材工业,如水泥熟料煅烧、陶粒焙烧等;化学工业,如铬盐生产、钡盐制取、制碱、碳黑生产、以磷石膏制水泥联产硫酸等;黑色冶金工业,如烧结球团、炼钢用活性石灰的焙烧等;有色金属工业,如镁砂烧结、氧化铝制取、镍矿焙烧、五氧化二钒生产等以及耐火材料等工业部门中。尤其在建材工业中的水泥工业应用更多,地位更显重要。因此其素有水泥厂“心脏”之称,行业谚云:“只要大窑转,就有千千万。”

回转窑是一个庞大的长圆筒形设备,通过自身上的轮带倾斜置放在2~8个支承装置的托轮上,由传动装置驱动回转而工作。每个支承装置中都有两个或者四个托轮,如图1所示。世界上最长的回转窑已达232 m,筒体最大直径已达Ø7.5 m,其重量达数百吨甚至千余吨。

1.回转窑筒体;

2.筒体上轮带;

3.传动装置的大齿轮;

4.支承装置的托轮

图1 回转窑构造简图

回转窑在工作时,窑体一方面要围绕其纵向中心线连续回转,另一方面又要上下往复有规律的窜动,或者称为“移动”或“滑动”。回转是通过不同型式的传动装置实现。没有液压挡轮的回转窑,窑体上下有规律的往复窜动就必须通过调整托轮而实现。有液压挡轮的回转窑,其托轮也是需要调整的[1]。托轮调整就是将与窑筒体或轮带的中心线,即窑筒体纵向中心线平行置放的托轮轴中心线调斜,使其产生一个推动轮带上行的分力,达到筒体上窜的目的。下窜则是靠倾斜窑体自身重力沿筒体轴线所产生的分力而实现,如图2所示。

1.回转窑筒体;

2.托轮;

3.轮带

图2 回转窑托轮中心线调斜的情况

轮带和托轮是回转窑最重要的零件,当前最重的一个轮带已接近百吨。虽然各自的结构会有不同,但是均由铸钢或锻钢经机械加工而成。由于轮带和托轮的负荷很重,一般又处在较高温度下工作,所以经常会出现表面掉碴、掉块、产生裂纹和断裂等问题。这些问题一旦出现,就会使企业受到很大的经济损失。因此,企业在订购轮带和托轮配件时提出的要求就是:“不掉碴,不掉块,不裂纹,不两瓣。”由此便不难看出其普遍性和严重性。于是,引起了有关人员的极大关注,纷纷进行研究[1][2][3]。这些问题产生的根源主要就是接触应力的问题。轮带和托轮理论化后便可视为两个直径不等的弹性圆柱体,当托轮与轮带轴线平行时,其接触应力的分析和计算比较简单,一般设计手册中都有现成的公式可以利用。但当托轮调斜之后,托轮与轮带轴线便成了交叉的,则此时就形成了两个直径不等弹性圆柱体轴线交叉的接触问题。这就涉及到弹性力学的领域,分析困难,计算复杂。所以,至今也没有工程中实用的理论分析数据可以应用于实际生产的托轮调整之中。其难度就在于分析和计算接触椭圆长短半轴长度的两个系数m和n无法确定。建材工业最高学府武汉建筑材料工业学院,即现在的武汉工业大学等编《建筑材料机械及设备》一书[5]中,只给出了θ= 20°~90°与m和n系数的对应值,见表1。在该书的计算举例中,就是以两个圆柱体交叉角φ=30°进行计算的。该算例只能起到明示计算公式的应用方法和计算程序的作用,而没有实际应用价值,甚至会误导实际的托轮调整工作。因为在托轮的实际调整中,任何时候都不允许将托轮调斜30°,否则就会发生不可想象的严重后果。有些水泥厂曾发生过掉窑或称“下炕”的严重事故,就是因为托轮调斜后与轮带轴线交叉角太大所致。这是一种灾难性的事故,一旦发生将给企业造成不可估量的损失。在实际托轮调整中,托轮调斜后,其轴线与轮带轴线的交叉角连φ=

1°的都很少,一般都控制在0.2~0.5°范围内。另外,交叉角大了之后,接触应力会成几倍的增大。可见回转窑轮带和托轮经常出现的掉碴、掉块、裂纹和两瓣等设备问题,托轮调整不当是最重要的原因。

接触椭圆长短半轴系数m和n与θ角的对应值表1

由上述可见,在回转窑的托轮调整和设计中亟需解决两个弹性圆柱体轴线交叉任意角度时的

接触应力分析和计算问题,以填补这项空白。对解决众多工业部门中回转窑托轮的正确调整,控制接触应力在允许范围之内,避免或减少轮带和托轮所出现的问题等具有很大的现实意义。

二.接触椭圆长短半轴的分析与计算

现假设有一组轮带和托轮两个弹性圆柱体交叉接触,轮带半径为Rt,托轮半径为Rr,它们的轴线交叉角为φ,如图3所示。

图3 两弹性接触的圆柱体

在作用力Fr的作用下,两个圆柱体的接触面就要发生弹性变形。这时的接触面边界形状就应是椭圆,令椭圆的长半轴为a,短半轴为b。可按下式计算:

由(4)式可见,A值与交叉角φ无关,仅与两个圆柱体的半径有关。

(3)式中的B按下式求出:

由(5)式可见,B既与两个圆柱体的半径有关又与交叉角φ有关。

当两个圆柱体半径和其轴线交叉角确定之后,A和B都不难求出。随之利用(3)式θ角也很容易求出。现在最困难的也是最复杂的问题就是如何找出θ角与椭圆长短半轴系数m和n的对应关系。文献[5]中既没有给出计算方法也没有计算公式,仅列出了一个表,参见表1。而表1中只给出了θ= 20°~90°与系数m和n的对应值。当θ<20°时,就无法确定出m和n之值,接触应力也就无法计算出来。

三.系数m和n与θ角的关系分析

海伦茨•赫兹(Heinrich Hertz)用下述方法解决了这个问题。他以周界为椭圆,其长短半轴分别为a和b的接触面为基础作半椭球面,则接触面上的作用力或压力与该椭球面的纵坐标成正比的原理得到下式:

式中σ0为中心点O的压应力。由平衡条件得知,半椭球体的体积应等于总压力Fr,于是可用下式表达:

由(9)推导出(10)~(12)式的过程比较冗长,故在此将其推导过程省略。有兴趣的读者可参阅文献[6]。

式中λ表示位于接触面中心点O的公共法线上距O点相当远的任意两点因压缩而相互接近的距离。上式中:

比较式(1)、式(2)和式(10)、式(11),由式(18)则可得到m和n两个系数与θ角的公式为:

相关文档
最新文档