低电压穿越技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 引言
并网风力发电是近十年来国际上发展速度最快的可再生能源技术。并网风力发电机与传统的并网发电设备最大的区别在于,其在电网故障期间并不能维持电网的电压和频率,这对电力系统的稳定性非常不利。电网故障是电网的一种非正常运行形式,主要有输电线路短路或断路,如三相对地,单相对地以及线间短路或断路等,它们会引起电网电压幅值的剧烈变化。
双馈式变速恒频风电机组是目前国内外风电机组的主流机型,其发电设备为双馈感应发电机,当出现电网故障时,现有的保护原则是将双馈感应发电机立即从电网中脱网以确保机组的安全。随着风电机组单机容量的不断增大和风电场规模的不断扩大,风电机组与电网间的相互影响已日趋严重。人们越来越担心,一旦电网发生故障迫使大面积风电机组因自身保护而脱网的话,将严重影响电力系统的运行稳定性。因此,随着接入电网的双馈感应发电机容量的不断增加,电网对其要求越来越高,通常情况下要求发电机组在电网故障出现电压跌落的情况下不脱网运行(fault ride-through),并在故障切除后能尽快帮助电力系统恢复稳定运行,也就是说,要求风电机组具有一定低电压穿越(low voltage ride-through)能力。为此,国际上已有一些新的电网运行规则被提出。例如:德国北部的电力公司(e.on netz公司)要求风电场能够在图1所示的电压范围内(即图中阴影区)不脱网运行[1][33],电网电压跌落到15%以后风电机组不脱网运行时间须持续达300ms,当电网电压跌落低于曲线后才允许风电机组脱网。这里电压指的是风电场连接点的电压。而为英国部分地区供电的national grid电力公司则要求当高于200kv的输电线路发生故障时,所有并网运行的电站或风电场必须在140ms内保持不脱网运行[2]。另外苏格兰电力公司(scottish hydro-electric公司)对电网故障时电站或风电场不脱网运行也有类似的要求[3]。
图1 e.on netz公司对电网故障时风电场不脱网运行的电压范围要求[33]
为了提高风电机组的低电压穿越能力,必须针对当前主流风电机组中的双馈感应发电机的运行特点进行研究,研究它们在电网故障与故障恢复过程中的暂态行为,消除或减轻在不离网控制情况下可能引起的机组损害。许多文献[4-7]报道了在电网电压跌落情况下,风电机组中的双馈感应发电机会导致转子侧过流,同时转子侧电流的迅速增加会导致转子励磁变流器直流侧电压升高,发电机励磁变流器的电流以及有功和无功都会产生振荡。这是因为双馈感应发电机在电网电压瞬间跌落的情况下,定子磁链不能跟随定子端电压突变,从而会产生直流分量,由于积分量的减小,定子磁链几乎不发生变化,而转子继续旋转,会产生较大的滑差,这样便会引起转子绕组的过压、过流。如果电网出现的是不对称故障的话,会使转子过压与过流的现象更加严重,因为在定子电压中含有负序分量,而负序分量可以产生很高的滑差。过流会损坏转子励磁变流器,而过压会使发电机的转子绕组绝缘击穿。为了保护发电机励磁变流器,采用过压、过流保护措施势在必行。
为了保证电网故障时双馈感应发电机及其励磁变流器能安全不脱网运行,适应新电网运行规则的要求,国内外学术界和工程界对电网故障时双馈感应发电机的保护原理与控制策略进行了大量研究。据文献的报道,当前的低电压穿越技术一般有三种方案:一种是采用了转子短路保护技术(crowbar protection),二种是引入新型拓扑结构,三是采用合理的励磁控制算法。下面逐一分析介绍。
2 转子短路保护技术[8]
这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。
目前比较典型的crowbar电路有如下几种:
(1) 混合桥型crowbar电路[9],如图2所示,每个桥臂由控制器件和二极管串联而成。
图2 混合桥型crowbar
(2) igbt型crowbar电路[9],如图3所示,每个桥臂由两个二极管串联,直流侧串入一个igbt器件和一个吸收电阻。
图3 igbt型crowbar
(3) 带有旁路电阻的crowbar电路[10],如图4所示,出现电网电压跌落时,通过功率开关器件将旁路电阻连接到转子回路中,这就为电网故障期间所产生的大电流提供了一个旁路,从而达到限制大电流,保护励磁变流器的作用。
图4 旁路电阻型crowbar
励磁变流器在电网故障期间,与电网和转子绕组一直保持连接,因而在故障期间和故障切除期间,双馈感应发电机都能与电网一起同步运行。当电网故障消除时,关断功率开关,便可将旁路电阻切除,双馈感应发电机转入正常运行。
采用crowbar电路的转子短路保护技术存在这样一些缺点:首先,需要增加新的保护装置从而增加了系统成本;另外,电网故障时,虽然励磁变流器和转子绕组得到了保护,但此时按感应电动机方式运行的机组将从系统中吸收大量的无功功率,这将导致电网电压稳定性的进一步恶化,而且传统的crowbar 保护电路的投切操作会对系统产生暂态冲击。文献[1]提出了改进方案,该方案与传统方案的区别在于:在转子短路保护电阻切除后,将转子电流控制指令设定为该时刻转子电流的实际值,从而防止由于转子电流控制器指令电流与实际电流不等而引起的暂态冲击。然后通过逐渐改变转子电流指令,实现转子电流控制器的软起动。在转子电流控制器的作用下发电机将逐步恢复到正常运行。这缓解了crowbar保护电路的投切操作对系统产生的暂态冲击,在一定程度上缩短了发电机低电压穿越的过渡时间。但该文献仅限于研究对称故障发电机不脱网运行,未讨论电网故障运行初始条件对不脱网运行效果的影响。
3 引入新型拓扑结构
除了上述典型crowbar技术的应用外,一些文献还提出了一些新型低压旁路系统,如图5、图6所示。
图 5 新型旁路系统
图6a) 并联连接网侧变流器