THD谐波计算公式推导_电阻热噪声计算_运放开环输出阻抗Ro计算 -TI资料

THD谐波计算公式推导_电阻热噪声计算_运放开环输出阻抗Ro计算 -TI资料
THD谐波计算公式推导_电阻热噪声计算_运放开环输出阻抗Ro计算 -TI资料

接地网电阻计算公式

接地网电阻计算公式 三维方法设计变电站的接地电阻 陈光辉1 江建武2 (1 深圳市长科防雷技术有限公司,深圳) (2 深圳供电局变电部,深圳) 【摘要】用三维方法设计变电站的接地电阻,可使接地电阻比传统设计更加准确,结合现有国内外接地新材料.新技术,新 工艺,可使变电站接地网接地电阻达到最佳效果 【关键词】三维地网设计、新材料,新工艺施工。 前言 目前,由于征地等原因,变电所的占地面积越来越小,有的GIS 室内型110kV 变电站占地面积仅有1500m2, 且大部分建在山上,这些地方往往电阻率很高,欲在这样的地方不扩网、不外引,在原地使其工频接地电阻达到 规程要求标准,用常规方法很难实现。我公司在实践过程中,采用三维方法设计,即A-T-N 方案,成功解决了 土壤电阻率300Ωm,占地面积为5000m2 情况下的接地电阻R≤0.5Ω的国家规定标准。 1 A 方案 用常规的方法实现工频接接地电阻RA,主要是用于解决地网的电位分布均匀,均衡最大值下的冲击电压,以 及降低水平网的工频接地电阻,它可以利用工地的自然接地体,如建筑物、自来水管等来完成网格式接地网的接 地电阻,它是在不扩网、不外引、不使用任何降阻剂的情况下计算出的工频接地阻抗值,计算公式采用部颁《交流 电气装置的接地》[1]有关规定的公式进行。 a e R a R 1 = (1) 1 3ln 0 0.2 L S S L a ? ?? ? ? ?? ? = ?(2) ?? ? ??= + + ? ? B

hd S L B S Re 5 9 ln 2 0.213 (1 ) π ρρ (3) S h B 1 4.6 1 + = (4) 式中:Ra—任意形状边缘闭合接地网的接地电阻(Ω); Re—等值(即等面积、等水平接地极总长度)方形接地网的接地电阻(Ω); S—接地网的总面积(m2); d—水平接地极的直径或等效直径(m); h—水平接地极的埋设深度(m); LO—-接地网的外缘边线总长度(m); L—水平接地极的总长度(m)。 简化后的计算方法: S R a ′ = 0.5ρ(5) 式中:ρ—土壤电阻率(Ωm); S—地网面积(m2)。 上式公式中, a R 和土壤电阻率ρ成正比,和地网占地面积S 成反比。如果取p=300Ωm,欲达到R=0.5Ω面 积S 则必须达到90000m2。 在正方型接地网中,当网格数超过16 个时,基本(1)式=(5)式;当网格数少于16 个时,a R > R′a 。 日本川漱太朗公式为: ?? ? ?? ? + ? ′

接地电阻摇表使用方法及标准

接地电阻摇表使用方法 及标准 Revised as of 23 November 2020

接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。 以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。测量屏蔽体电阻时,应松开镀铬铜板,一个E接线柱接接地体,另一个E接线柱接屏蔽。 (2)P柱接随仪表配来的20m纯铜导线,导线另一端接插针。 (3)C柱接随仪表配来的40m纯铜导线,导线的另一端接插针2。 2 接地电阻测试仪设置的技术要求 (1)接地电阻测试仪应放置在离测试点1~3m处,放置应平稳,便于操作。 (2)每个接线头的接线柱都必须接触良好,连接牢固。 (3)两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置;如果用一直线将两插针连接,待测接地体应基本在这一直线上。 (4)不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (5)如果以接地电阻测试仪为圆心,则两支插针与测试仪之间的夹角最小不得小于120°,更不可同方向设置。 (6)两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (7)雨后连续7个晴天后才能进行接地电阻的测试。 (8)待测接地体应先进行除锈等处理,以保证可靠的电气连接。 3 接地电阻测试仪的操作要领

药物分析常用计算公式

色谱外标法含量计算 对:对照品溶液样:供试品溶液峰的峰面峰的峰面积计算公式 对:对照品稀释平均重:供试品平均100 =含Spe.AV均 对照品比样:供试品稀释对:对照品取样×含———————————————————————————————————————W样:供试品取样量———————

供试品标示Spec色谱外标法均匀度计算对:对照品溶液样:供试品溶液主峰的峰面峰的峰面对照品比值平AV计算公式 对:对照品稀释样:供试品稀释体V样样×VA×100%=含量积AVGSpec. ×积 W对:对照品取样量A对×V对Spec.:供试品标示量对照品比值=W对×含量 AVG:对照品比值平均———————————————————————————————————————系数A= |100-含量平值 ———————均值| 色谱外标法溶出度计算供试品标示量:Spec.样:供试品溶液主A含量标准差S=系数 峰的峰面积计算公式对:对照品溶液主AA+1.80S 判断值为 峰的峰面积样:供试品稀释体V对W样×样×AV100%×=溶出度

对×对VA.×Spec积 对:对照品稀释体V积对:对照品取样量W ×含量—————————————————————————————————————————————— 样:供试品溶液主A内:对照溶液内标A峰的峰面积峰面积色谱内标法含量计算 样:供试品稀释体V对:对照品取样量W计算公式: 积×含量 内VW对×A内× =校正因子(f)AV对对×W内×平均重:供试品平W内:对照溶液内标V均重稀释体积平均重W×V样×A样×W内100%××=f含量样W内′×Spec.×A内′ ×VA内':供试溶液内标A对:对照溶液主峰———————————————————————————————————————峰面积的峰面积——————— V内':供试溶液内标W内:内标物质取样色谱内标法均匀度计算稀释体积量×含量样:供试品溶液主A 峰的峰面积计算公式样:供试品取样量W对:对照品稀释体V 积样:供试品稀释体V样V内×:供试品标示量A样×Spec.W100%××f含量=.×SpecVA内′×内′积 ;含量平均值系数A= |100-|A内':供试溶液内标峰面积系数S=含量标准差;判断值为A+1.80S V内':供试溶液内标———————————————————————————————————————稀释体积——————— Spec.:供试品标示量 光谱法(有参照)含量计算A样:供试品吸光度A对:对照品吸光度 计算公式:V样:供试品稀释体V对:对照品稀释体积积A样×V样×W平均重×W对×100%=含量样WSpec.××V对×A 对W平均重:供试品平Spec.:供试品标示量———————————————————————————————————————均重 W样:供试品取样量——————— W对:对照品取样量光谱法(有参照)均匀度计算×含量 计算公式: A样:供试品吸光度A对:对照品吸光度 A样×V样×W对×100%=含量V样:供试品稀释体V对:对照品稀释体 .SpecV对×A对×积积

热噪声 噪声系数 等效噪声温度 带宽和功率谱密度

热噪声 加性白高斯噪声(AWGN :Additive White Gaussian Noise )是最基本的噪声与干扰模型,通信中遇到的多数噪声和干扰都符合这个模型,其中最典型的是热噪声(Thermal Noise)。 一 电阻的热噪声 将一个电阻从正中间画一条线分成上下两部分,那么线上的自由电子数和线下的自由电子数的数目是随机的,上下数目差也是随机的。这个数目差意味着一个电动势,如果有闭合回路的话(如图4.8.2),就会形成一个随机电流,这就是热噪声。叫热的原因是因为在绝对0度时,电子不运动,这样就不会有随机的电动势。很显然,电阻的温度越高,随机性也就越强。 每个电子都在随机运动,上下数目差是这些电子随机运动的后果。电子的总个数足以满足中心极限定律的条件,由此可知热噪声具有高斯的特征。 电子的运动速度极高。相对于通信中的时间单位如ms 、μs 乃至ns 而言,在极短的一个时间间隔后,上下的电子数目已经毫不相关了,就是说热噪声的自相关函数对于我们的时间刻度来说是一个冲激函数,因此热噪声是一个白噪声。 综合这两点就是说:热噪声是白高斯噪声。 特别注意:白与高斯是两个单独的特征。高斯是指一维分布,白由二维分布决定。 设()X t 是随机过程,下面的陈述A 涉及一维分布,陈述B 涉及二维分布。 A. 对X(t)进行了大量测试后发现,80%高于4.5,60%高于3.5; B .对X(t)同时观察相隔10秒的两个值()X t 和()10X t ?,大量观察发现,在90%的情况下,()X t 与比10秒前相比,相差不会超过1±V ;在80%的情况下,相 差不会超过±0.5V 。 物理学家告诉我们,热噪声的单边功率功率谱密度为0N KT =,其中231.3810K ?=×是波尔兹曼常数,T 是绝对温度。热噪声在带宽B 内的噪声功率KTB (本讲中所谈论的噪声功率均指在匹配负载上的可获功率)。 二 噪声系数 1. 放大器的噪声系数 如果放大器的源是纯电阻,那么它在带宽B 内的噪声功率是KTB ,经过增益为pa K 的放大器后,输出的噪声功率不一定是pa K KTB ,有可能更大,为() pa K KTB F ,其中1F ≥。这是因为放大器内部也会产生热噪声。这个系数F 叫放大器的噪声系数(Noise Figure )。我们可以把放大器自身产生的噪声折合到它的输入端,即把实际放大器等效为一个没有噪声的放大器,但其输入的噪声功率是KTFB ,其中源电阻产生的热噪声是KTB ,放大器贡献的噪声是()1KTB F ?。(见Fig. 1) 2. 无源网络的噪声系数 假设一个衰减量为L 的无源电阻网络的输入端是一个纯电阻,那么从无源网络的输出端看过去还是一个纯电阻,因而输出端噪声功率是KTB 。这等价于无源网络自己没有产生噪声,但其输入端的噪声功率是KTLB 。也就是说这个无源网络等价于一个增益为1/L ,噪声系数为L 的放大器。 3. 级联系统的噪声系数

常用的计算公式

一:常用布宽计算公式 D:素材外径d:铁芯外径W:布宽T:布厚N:圈数π:圆周率 (1):N=(D-d)/2T (2) : D=d+2TN (3) : d=D-2TN (4) : T= (D-d)/2TN (A) W=dπN+1.27(适用于4圈内) (B) W=dπN+1.1(适用于4圈内) (C) W=【d+(N-1)T】πN (最为精确) (D) W={ d+【NT(N-1)】/2}π (此公式T为2倍布厚) 例如:D=10mm d=8mm T=0.1mm π=3.1416 求W:布宽和N:圈数 则N=(D-d)/2T = (10-8)/(2*0.1)=10圈 **如果用公式(A)则w=dπN+1.27=8*3.1416*10+1.27=252.6mm(此公式未考虑布厚,圈数多时误差大) ** 公式(C)则W=【d+(N-1)T】πn=【8+(10-1)*0.1】*3.1416*10=279.6mm(此公式考虑布厚) 二:常用物料用量计算公式 D=元径d=先径π=圆周率 L=长度W=宽度 (A)SLIT(或varn)用量公式计算:单位:米W1=slit宽度W2=间距N=为缠绕次数(1.2倍含宽放) (1)全满=1.2*(D+ d)/2*π* LN/W1(重叠需减去重叠宽度) 例如:D=10mm d=2mm π=3.1416 L=1000mm W=7mm 假设为外车slit全满 则用公式(1)=1.2*(D+ d)/2*π* LN/W1=1.2*(10+2)/2*(3.1416*1000*1)/7=3231 mm =3.231m (2) 半满=1.2*(Dπ+ dπ+2W2) * LN/2(W1+W2 ) (如交叉需乘交叉道数) 例如:D=10mm d=2mm π=3.1416 L=1000mm W1=7mm W2=7mm假设为外车slit交叉两道 则用公式(1)= 1.2*(Dπ+ dπ+2W2) * LN/2(W1+W2 ) =1.2*(10*3.1416+2*3.1416+2*20)*1000*2/2 (7+20) =3453.2 mm =3.453m (B)布料用量= 拉布长度= 裁布块数 (C)碳纤含量= 碳纤用量/ (GLASS用量+碳纤用量)*100% 假设:一支钓竿的碳纤用量= 0.15㎡玻纤用量= 0.05㎡ (D)纸带用量计算公式:(米) 用量= 1.4*【(D+ d)/2*π*L】/ 间距(*1.4倍含宽放用量) 假设D=10mm d=2mm π=3.1416 L=1000mm 间距=2mm 则用量= 1.4*【(D+ d)/2*π*L】/ 间距=1.4*【(10+2)/2*3.1416*1000】/ 2 = 13194.7 mm=13.19 m

电阻噪声的基础知识和一个有趣的小测试

电阻噪声的基础知识和一个有趣的小测试 电阻噪声的基础知识和一个有趣的小测试 放大电路的噪声性能受到输入电阻和反馈电阻Johnson噪声(热噪声)的影响。大多数人似乎都知道电阻会带来噪声,但对于电阻产生噪声的细节却是一头雾水。在讨论运放的噪声前,我们先做个小小的复习: 电阻的戴维宁噪声模型由噪声电压源和纯电阻构成,。 噪声电压大小与电阻阻值,带宽和温度(开尔文)的平方根成比例关系。我们通常会量化其每1Hz带宽内的噪声,也就是其频谱密度。电阻噪声在理论上是一种“白噪声”,即噪声大小在带宽内是均等的,在每个相同带宽内的噪声都是相同的。总噪声等于每个噪声的平方和再开平方。我们常常提到的频谱密度的单位是V/ 。对于1Hz带宽,这个数值就等于噪声大小。对于白噪声,频谱密度与带宽开方后的数值相乘,可以计算出带宽内总白噪声的大小。为了测量和量化总噪声,需要限制带宽。如果不知道截止频率,就不知道应该积分到多宽的频带。 我们都知道频谱图是以频率的对数为x轴的伯德图。在伯德图上,同样宽度右侧的带宽比左侧要大得多。从总噪声来看,伯德图的

右侧或许比左侧更重要。 电阻噪声服从高斯分布,高斯分布是描述振幅分布的概率密度函数。服从高斯分布是因为电阻噪声是由大量的小的随机事件产生的。中央极限定理解释了它是如何形成高斯分布的。交流噪声的均方根电压幅值等于高斯分布在±1σ范围内分布的振幅。对于均方根电压为1V的噪声,瞬时电压在±1V 范围内的概率为68% (±1σ) 。人们常常认为白噪声和高斯分布之间有某种关联,事实上它们没有关联。比如,滤波电阻的噪声,不是白噪声但仍然服从高斯分布。二进制噪声不服从高斯分布,但却是白噪声。电阻噪声既是白噪声也同时服从高斯分布。 纯理论研究者会认为高斯噪声并没有定义峰峰值,而它是无穷的。这是对的,高斯分布曲线两侧是无限伸展的,因此任何电压峰值都是有可能的。实际中,很少有电压尖峰超过±3倍的均方根电压值。许多人用6倍的均方根电压值来近似峰峰值的大小。为了留有足够的裕度,甚至可以用8倍的均方根电压值来近似峰峰值的大小。 一个有趣的问题是,两个电阻串联的噪声之和等于这两个电阻和的噪声。相似的,两个电阻并联的噪声之和等于这两个电阻并联后电阻的噪声。如果不是这样,那么在串联或者并联电阻时就会出问题。还好它确实是这样的。

谐波含量等计算公式

谐拨含量: 借助傅立叶级数分解法求出每周波内各次谐拨含量。 ........ 按公式( 2),计算每周波电压有效值u j。 u j 1 n u i2 n i1 a) 总谐波含量: (u j )2(u j (1) )2 总谐波含量的百分数 =100% ,u j (1)——波形 u j (1) 中的基波含量。 u b)单次谐波含量 = u j ( k)100%,(k 2 ~ 50) j (1) 偏离系数: 求出每周波的基波电压u j (1),并在其周波各采样点上将采样点上,将采样点上采样电压与 其对应点的基波电压进行比较,取其最大偏差值,则偏差系数=u j 100% 。 u j (1) uj ——每周波各采样点上采样电压与其对应点的基波电压之间的最大偏差值 u jp (1)——每周波基波电压的峰值 对数个周波的偏离系数进行比较,取其最大值。 电压调制: 测取稳态时各周波的正负半波连续最大的三点电压采样值,按抛物线插值法求出其峰值,至少采集一秒钟,共采集N 个周波。 按下述规定求取调制参数值: 电压调制参数的测试,应在电压波形的正负半波中进行,取其最大值。 电压调制量为至少一秒钟(N 个周波)同向峰值的最大与最小之差。 电压调制量 = [u jp]max[u jp ] min [ u jp ]max——N周波中同向峰值电压最大值 [ u jp ]min——N周波中同向峰值电压最小值

波峰系数: 每波电压有效值 u ,以同一周波内连续最大的三个电压采样值,按抛物线插值法求出其 ...... 峰值电压 u jp,按公式(6)计算其波峰系数: F u jp , u jp——每周波的峰值电压。u j u 1 m u j2 m j 1 u j 1n u2 n i1i u——平均电压有效值 j ——采样周波数(j 1 ~ m, m100 )u j——每周波电压有效值 i ——每周波采样点数(i 1 ~ n,n50 )u i——每点电压瞬时值

接地电阻测试仪测量方法详细介绍

目前,市场上存在的接地电阻测试仪有成百上千种,有进口的也有国产的,归纳起来,其测量方法只有三类:打地桩法、钳夹法、地桩与钳夹结合法。 一、打地桩法:地桩法可分为二线法、三线法和四线法 1.二线法:这是最初的测量方法:即将 一根线接在被测接地体上,另一根接辅助地极。此法的测量结果R=接地电阻+地桩电阻+引线及接触电阻,所以误差较大,现已一般不用。 2.三线法:这是二线法的改进型,即采用两个辅助地极,通过公式计算,在中间一根辅助地极在总长的0.62倍时,可基本消除由于地桩电阻引起的误差;现在这种方法仍然在用。但是此法仍不能消除由于被测接地体由于风化锈蚀引起接触电阻的误差。 3. 四线法:这是在三线法基础上的改进法。这种方法可以消除由于辅助地极接地电阻、测试引线及接触电阻引起的误差。 二、钳夹法:钳夹法分为单钳法和双钳法 1.双钳法:利用在变化磁场中的导体会产生感应电压的原理,用一个钳子通以变化的电流,从而产生交变的磁场,该磁场使得其内的导体产生一定的感应电压,用另一个钳子测量由此电压产生的感应电流,最后用欧姆定律计算出环路电路值。其适用条件一是要形成回路,二是另一端电阻可忽略不计。 2. 单钳法: 单钳法的实质是将双钳法的两个钳子做成一体,但如果发生机械损伤,邻近的两个钳子难免相互干扰,从而影响测量精度。仪器选择:目前市场支持此种方法的仪器有法国CA公司的CA6415钳式接地电阻测试仪,还有华谊仪表的MS2301钳式接地电阻测试仪等,我公司支持此种方法的仪器是ET3000双钳多功能接地电阻测试仪。 三、地桩与钳夹结合法:这种方法又叫选择电极法这种方法的测量原理同四线法,由于在利用欧姆定律计算结果时,其电流值由外置的电流钳测得,而不是象四线法

常用计算公式

常用公式 1、采出程度=累积产油量/动用地质储量(可采储量)*100% 阶段采出程度=(阶段内累计产油量/动用地质储量)*100% 2、采油(液)速度=核实年产油(液)量/动用地质储量(可采储量)*100% 3、剩余可采储量采油速度=当月平均日产油*当年日历天数/(当年可采储量-上年底累积产油量) 4、综合递减率:老井采取增产措施情况下的产量递减速度。 (1)、标定老井综合递减率: 标定老井综合递减率=[A*T-(B-C)]/(A*T)*100% 式中: A:上年末(12月)标定的日产油水平(t); T :当年1-n月的日历天数(d); A*T:老井当年1-n月的标定年累积产油量(t) B:当年1-n各月的年累积核实产油量(t) C:当年新井1-n月年累计产油量(t) (2)、同期老井综合递减率 同期老井综合递减率=(B - A)/B*100% A:上年老井在当年1-n月的累计产油量(t) B:上年老井在去年1-n月的累计产油量(t) (3)、对四季度老井综合递减率 对四季度老井综合递减率=(B/92-A/T)/(B/92)*100%

A:上年老井在当年1-n月的累计产油量(t) T:上年老井在当年1-n月的日历天数(d) B:上年老井在去年第四季度的产油量(t) (4)对12月老井综合递减率 对12月老井综合递减率=(B/31-A/T)/(B/31)*100% A:上年老井在当年1-n月的累计产油量(t) T:上年老井在当年1-n月的日历天数(d) B:上年老井在去年12月的产油量(t) 5、自然递减率:老井在未采取增产措施情况下的产量递减速度。(1)标定老井自然递减率 标定老井自然递减率=[A*T-(B-C-D)]/(A*T)*100% 式中: A 上年末(12月)标定的日产油水平(t); T 当年1-n月的日历天数(d); A*T 老井当年1-n月的标定年累积产油量(t) B 当年1-n各月的年累积核实产油量(t) C 当年新井1-n月年累计产油量(t) D 老井当年1-n月的年累积措施增产油量(t)。 (2)、同期老井自然递减率 同期老井自然递减率=(B -A- C)/B*100% A:上年老井在当年1-n月的累计产油量(t) B:上年老井在去年1-n月的累计产油量(t)

谐波电流计算公式是什么

谐波电流计算公式是什么? 谐波含量计算: 测试时最好测出设备较长时期运行时最大的谐波电流,其和产生谐波电流的负载投入有关,若产生谐波电流的负载全部投入,测试的数据是比较准的。 A、咨询现场工程人员,此时产生谐波的负载是否全部满负荷运行,产生谐波的负载就是非线性负载,变频器,整流设备,中频炉等。测试时现场工程人员应该知道同类的非线性负载投入了多少,所以一定问清楚,自己也可以通过配电盘看一下同类的设备投入了多少,最终目的就是能够知道我们此次测试的谐波电流含量是否为其真正的谐波含量,否则按比例推算。譬如我们测试时同类设备只有一半运行,毫无疑问我们的测试报告要对其进行说明,并且推算出其真实的谐波含量应该乘以2。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大谐波含量,如下图: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其THDA (平均畸变率)为9.4%,Arms为1.119KA,那么其计算的谐波含量为105.186A,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大谐波含量,那么选取1台100A的设备即可满足谐波补偿要求。 无功功率补偿计算: A、咨询现场工程人员,或者调用其原始功率因数数据,因为功率因数是考核指标,主要咨询两个问题,一是功率因数长期基本上是多少,二是在此功率因数时长期负载电流I多大,通过公式计算出P的值,然后计算出需要补偿的无功功率,无功功率计算公式为,——对应cosφ前的正切值,——对应cosφ后的正切值。 B、数据测试完后,若测试数据已经完全反映了实际现场可能出现的最大无功补偿量,如下图所示: 将测试的0min----30min的数据计算出来,如上图是0min----2min,其平均功率为P=140KW,补偿前功率因数cosφ前=0.554,若补偿后要求功率因数不低于cosφ后=0.90,那么根据公式其计算的无功补偿容量为142.66KVAR,0min----30min的数据全部计算完后,取出最大值既是我们需要的最大无功补偿容量,那么选取3台100A的设备即可满足谐波补偿要求。

用摇表测接地电阻的方法和参数

一般使用的是摇表测量 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一 你搞错了,你所说的这种ZC25-3型表是兆欧表,是不能用来测接地电阻的,只能测某线路或设备间的绝缘电阻或其对地的绝缘电阻,因为绝缘电阻越大越好,所以用兆欧(1000000欧),型号普遍都是为ZC25等 而接地电阻值是越小越好的,所以一般要求测能到0.01欧及以下,这种接地电阻仪型号一般为ZC29开头,上面一般有四个端子:C1、C2、P1、P2(还有一种三个端子,分别为E、P、C),其中C2和P2是连通的(带接地符号),直接接被测物接地极;然后P1端接20米线,拉直后将探针插入地下;C1端接40米线,拉直后要和接地极以及之前插入地下的探针在同一直线上,在这个位置插入第二根探针。

摇表的时候保持摇速120转/分,打好1x几,大转盘的一格就是几,转动大转盘使指针停在中间,大转盘上被箭头对准的数就是电阻值。 比如如打好1x0.1,大转盘上被箭头对准的数是2.2,电阻值就是为0.22欧。 摇表使用及接地电阻测试 收藏此信息打印该信息添加:佚名来源:未知 接地摇表又叫接地电阻摇表、接地电阻表、接地电阻测试仪。接地摇表按供电方式分为传统的手摇式、和电池驱动;接地摇表按显示方式分为指针式和数字式;接地摇表按测量方式分为打地桩式和钳式。目前传统的手摇接地摇表几乎无人使用,比较普及的是指针式或数字式接地摇表,在电力系统以及电信系统比较普及的是钳式接地摇表。 凡施工图上有防雷接地装置的建筑物、构筑物、配电室、高压输电线路等,当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量;单位工程竣工时还要进行复测,作为工程竣工的资料之一。以ZC29B-2型摇表测试方法如下: (1)在E-E两个接线柱测量接地电阻时,用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。

施工常用计算公式大全

施工常用计算公式大全 各类钢材理论重量计算公式大全,欢迎收藏哦! 1. 钢板重量计算公式 公式:7.85 X长度(m)X宽度(m)X厚度(mm) 例:钢板6m(长)X 1.51m(宽)X 9.75mm厚) 计算:7.85X6X1.51 X9.75=693.43kg 2. 钢管重量计算公式 公式:(外径-壁厚)X壁厚mn X 0.02466 X长度m 例:钢管114mm外径)X 4mm壁厚)X 6m长度)计算:(114-4)X 4X0.02466X6=65.102kg 3. 圆钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:圆钢①20mm直径)X 6m(长度) 计算:20X20X 0.00617X6=14.808kg 4. 方钢重量计算公式 公式:边宽(mm)X边宽(mm)X长度(m)X 0.00785 例:方钢50mm边宽)X 6m(长度) 计算:50X50X 6X0.00785=117.75(kg) 5. 扁钢重量计算公式 公式:边宽(mm)X厚度(mm)X长度(m)X 0.00785 例:扁钢50mm边宽)X 5.0mm(厚)X 6m(长度) 计算:50X5X6X0.00785=11.7.75(kg) 6. 六角钢重量计算公式 公式:对边直径X对边直径X长度(m)X 0.00068 例:六角钢50mm(直径)X 6m(长度) 计算:50X50X 6X0.0068=102(kg) 7. 螺纹钢重量计算公式 公式:直径mrr X直径mn X 0.00617 X长度m 例:螺纹钢①20mm直径)X 12m低度) 计算:20X20X 0.00617X12=29.616kg 8. 扁通重量计算公式 公式:(边长+边宽)X 2X厚X 0.00785 X长m 例:扁通100mm X 50mm< 5mm厚X 6m(长) 计算:(100+50)X 2X 5X 0.00785X 6=70.65kg 9. 方通重量计算公式 公式:边宽mm X4X厚X 0.00785 X长m 例:方通50mm< 5mm厚X 6m低) 计算:50X4X5X0.00785X 6=47.1kg 10. 等边角钢重量计算公式 公式:边宽mm X厚X 0.015 X长m粗算) 例:角钢50mm< 50mn X 5 厚X 6m(长) 计算:50X5X0.015X 6=22.5kg(表为22.62) 11. 不等边角钢重量计算公式

接收机射频热噪声分析

接收机射频热噪声分析 摘要:本文首选介绍了电路噪声理论基础,通过建立了接收机射频通道的简化 模型,推导了射频通道的噪声系数表达式,并分析了接收机射频通道的热噪声特性。 关键词:射频热噪音分析 在电子系统中,噪声被用来描述附加在电信号上面的、任何不希望出现的扰动。在无线 电通信、雷达和导航系统中,信号传递过程的各个环节,都会附加各种各样的噪声。这些噪 声对通信、雷达和导航系统的性能起着制约作用。实现低噪声设备的前提是发展电路噪声理论,设计低噪声电路及器件。目前随着集成电路一类器件的发展及应用,对复杂电路的噪声 分析计算以及设计,已经越来越具有重要性。 1接收机射频热噪声概述 1.1热噪声含义 在实际接收机系统中,由于自然或者人为的原因,存在各种起伏不定的随机的电压或者 电流波动,这些波动叠加在有用信号上面会对系统的信息传递产生影响。而这些随机的波动 往往是人们不希望出现的,因此被称为噪声。接收机输出的信号上面叠加的噪声一部分是在 进入接收机前就已经具有的,称为外部噪声,另一部分是接收机内部产生的,称为内部噪声。外部噪声是信号在传输介质中传播时引入的噪声,包括人为噪声、大气噪声和空间噪声等。 内部噪声是由接收机自身引入的,如电阻中的自由电子热运动引起的热噪声,晶体管中的载 流子随机产生、复合和扩散引起的散弹噪声等,也称之为起伏噪声。其中,热噪声是由于导 体内部自由电子和振动粒子的热相互作用而产生的。热相互作用导致电阻两端电子到达速度 随机变化,因此电阻两端的电位差也随机变化,在某个值附近上下波动。电子设备的电阻总 会产生热噪声。 1.2热噪声特征 1928年J.B.Johnson首先研究了热噪声,所以热噪声也被称为约翰逊噪声。由于热噪声的 频率可以覆盖全部频段,并且在整个频域的功率谱密度为一恒定值,因此也被称为白噪声。 一个阻值为R的电阻,在噪声频带宽度B内,产生的电压均方值是: 一个实际电阻可以等效为一个理想电阻和一个电压源串联的形式,如图一(a)所示, 其中R是无噪声的理想电阻,用戴维南定理可以将该电路变换为一个电阻和一个电流源并联 的形式,如图一(b)所示。 图一电阻热噪声模型 电流源的电流均方值为: 1.3热噪声的表示 (1)噪声系数。对于一个二端口网络,假设输入端的噪声温度是T0=290K,网络输入端 的信噪比与网络输出端信噪比的比值就是噪声因子F,即: 噪声因子的对数形式称为噪声系数,用NF表示。噪声因子和噪声系数只是同一个量的 不同表示形式,对于选定频率的线性系统而言,噪声系数是两个噪声功率之比,即在输出端得 到的单位带宽总噪声功率(在相应的输出频率上)与在输入频率上由输入终端产生的那部分噪 声功率之比。输入终端的噪声温度在任何频率上都是标准温度290°K。 (2)等效噪声温度。与噪声系数相同,等效噪声温度也是一个反映系统对噪声恶化程度 的指标,噪声温度的定义从另外一个角度来理解系统的噪声模型。噪声温度的定义如下:将 输入端等效为温度为T0=290K的电阻,二端口网络的可获噪声功率为No=Na+GkT0B。假设二 端口网络不产生内部噪声,只经过一个理想放大器,输出的可获噪声功率为GkT0B。然后, 增大输入端电阻的温度,使得输出端的可获噪声功率等于No,这时输入端增加的温度为Te,Te就是等效噪声温度。由等效噪声温度可以很容易表示系统的内部噪声功率,即Na=kTeB,

圆柱形导体接地电阻的计算

电磁场仿真实验报告

2010级4班 吴开宇2010302540009

圆柱形导体接地电阻的计算 一、基本原理 一般来说,接地电阻由连接导线的电阻、连接导线和接地体的接触电阻、接地体本身的电阻和电流流入大地时所具有的电阻组成。由于前三项与最后一项相比很小,可忽略不计,所以接地电阻为电流从接地体流入地中时所具有的电阻,即:R=U/I(其中U为接地体对于无穷远的电压,I为流经接地体而注入大地的流散电流)。 二、相关数据 试求长为1m,直径0.05m,与大地垂直的、上圆柱表面与地面持平的管形接地体电阻(电阻率ρ1= 1.5×10-7Ω·m)。 我们无法建一个无穷大的土壤模型,而离开接地电极距离为接地电极尺寸10倍以内的土壤对接地电阻值有较大影响,因此一个长宽高分别为4m、4m、20m 的长方体土壤块基本满足我们的精度要求(电阻率ρ2=500Ω·m)。

圆柱形导体接地体接地电阻计算的物理模型 三、实验步骤 0、定义分析类型。 进入Main Menu>Preferences,在弹出的对框中选中“Electric”,点击“OK”(command: /COM, Electric)。 1、进入前处理菜单。 进入Main Menu>Preprocessor,点开菜单即可(command: /PREP7)。 2、建立一个圆柱体模型。 点击Modeling>Create>Volumes>Cylinder>Solid Cylinder。在弹出的对话框中,“WPX”和“WPY”分别为圆心在工作平面上的X和Y坐标,“Radius”为圆柱体的半径,“Depth”为圆柱体的深度;依次填入“0,0,0.025,-1”,点击“OK”。这样

各种临床常用的公式

各种临床常用的公式(心外) 各种临床常用的公式 1. 补钠计算器 男性可选用下列公式 应补钠总量(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg) ×0.035 应补生理盐水(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.888 应补3%氯化钠=[142-病人血Na+(mmol/L)] ×体重(kg)×1.1666 应补5%氯化钠(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.7 女性可选用下列公式 应补钠总量(mmol) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.5 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.03 应补生理盐水(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补3%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补5%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.596 注:①上述式中142为正常血Na+值,以mmol/L计。 ②按公式求得的结果,一般可先总量的1/2~1/3,然后再根据临床情况及检验结果调整下一步治疗方案。 ③单位换算: 钠:mEq/L×2.299=mg/dlmg/dl×0.435=mEq/L mEq/L×1/化合价=mmol/L 氯化钠:g×17=mmol或mEq,(mmol)×0.0585=g/L 2.补液计算器 (1)根据血清钠判断脱水性质: 脱水性质血 Na+mmol/L 低渗性脱水 >130 等渗性脱水 130~150 高渗性脱水 >150 。 (2)根据血细胞比积判断输液量: 输液量=正常血容量×(正常红细胞比积/患者红细胞比积) (3)根据体表面积计算补液量: 休克早期800~1200ml/(m2?d); 体克晚期1000~1400ml(m2?d); 休克纠正后补生理需要量的50~70%。 (4)一般补液公式: 补液量=1/2累计损失量+当天额外损失量+每天正常需要量 2. 补铁计算器

接收机热噪声参考资料

第6、8、9章作业参考答案 (此参考答案摘录了张露、林力、邬智翔、杨纯等同学的作业答案,特此声明)

第六章 1、主要的固有噪声源有哪些?产生的原因、表达式和式中各项的意义是什么? 答:主要的固有噪声源有热噪声、散弹噪声、产生-复合噪声、1/f 噪声和温度噪声等。下面分类叙述: (1)、热噪声。当某电阻处于环境温度高于绝对零度的条件下,内部杂乱无章的自由电子的热运动将形成起伏变化的噪声电流,其大小与极性均在随机变化着,且长时间的平均值等于零。热噪声常用噪声电流的均方值2nT I 表示,如下式: 24()nT kT f I R ?= 式中R 为所讨论元件的电阻值,k 为玻尔兹曼常数,T 为电阻所处环境的绝对温度,f ?为所用测量系统的频带宽度。 (2)、散弹噪声 元器件中有直流电流通过时微观的随机起伏(如光电倍增管光阴极的电子发射,光伏器件中穿过PN 结的载流子涨落等)形成散弹噪声并叠加在直流电平上。散弹噪声的电流均方值为: 22nsh I qI f =? 式中q 为电子电荷,I 为流过电流的直流分量。散弹噪声与电路频率无关,是一种白噪声。 (3)、产生-复合噪声(g-r 噪声) 光电到探测器因光(或热)激发产生载流子和载流子复合这两个随机性过程引起电流的随机起伏,形成产生-符合噪声。该噪声的电流均方值为: 22224(/)14e n qI f I f ττπτ?=+ 式中I 为流过光电导器件的平均电流,τ为载流子的平均寿命,e τ为载流子在光电导器件内 电极间的平均漂移时间,f ?为测量电路的带宽。产生符合噪声与频率f 有关,不是白噪声。但当22241f πτ<<,即在低频条件下时,公式可简化为 24(/)n e I qI f ττ=? 此时可认为它是近似的白噪声。 (4)1/f 噪声 1/f 噪声又成为闪烁噪声,通常是由于元器件中存在局部缺陷或杂质而引起的。经验公式为: 21/n I k I f f αβ=? 式中1k 为元件固有参数,α为与元器件电流有关的常数,通常取为2;β为与元器件材料性 质有关的系数,常取为1。1/f 噪声的电流均方值与电路频率f 近似成反比,因此不是白噪声。噪声功率谱集中在低频,因而又称为低频噪声。 (5)温度噪声 热敏器件因温度起伏引起的噪声称为温度噪声,用温度起伏的均方值表示:

电能公式和电能质量计算公式da全

电能公式和电能质量计算公式大全 电能公式 电能公式有W=Pt,W=UIt,(电能=电功率x时间) 有时也可用W=U^2t/R=I^2Rt 1度=1千瓦时=3.6*10^6焦P:电功率 W:电功 U:电压 I:电流 R:电阻 T:时间 电能质量计算公式大全 1.瞬时有效值: 刷新时间1s。

(1)分相电压、电流、频率的有效值 获得电压有效值的基本测量时间窗口应为10周波。 ①电压计算公式: 相电压有效值,式中的是电压离散采样的序列值(为A、B、C相)。 ②电流计算公式: 相电流有效值,式中的是电流离散采样的序列值(为A、B、C相)。 ③频率计算: 测量电网基波频率,每次取1s、3s或10s间隔内计到得整数周期与整数周期累计时间之比(和1s、3s或10s时钟重叠的单个周期应丢弃)。测量时间间隔不能重叠,每1s、3s或10s间隔应在1s、3s或10s时钟开始时计。 (2)有功功率、无功功率、视在功率(分相及合相)

有功功率:功率在一个周期内的平均值叫做有功功率,它是指在电路中电阻部分所消耗的功率,以字母P表示,单位瓦特(W)。 计算公式: 相平均有功功率记为,式中和分别是电压电流离散采样的序列值(为A、B、C相)。 多相电路中的有功功率:各单相电路中有功功率之和。 相视在功率 单相电路的视在功率:电压有效值与电流有效值的乘积,单位伏安(VA)或千伏安(kVA)。 多相电路中的视在功率:各单相电路中视在功率之和。 相功率因数 电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S

常用计算公式

三极管的电流放大 b c I I β= 三极管的输入电阻 r ) (26) 1(300mA I mV E be β++= LC 振荡器的正弦波频率 LC f o π21= 运算放大器的反相电路输出电压 i F O U R R U 1 ? = 运算放大器的同相电路输出电压 i F O U R R U 1(1 + = 运算放大器的反相加法运算电路输出电压 )( 313212111 i F i F i F O U R R U R R U R R U ++?= 直流电机电枢电动势 n C n a pN E e a Φ=Φ= 60 注:p ——磁极对数; N ——电枢绕组总的有效导体根数 a ——电枢绕组并联支路对数 Φ——每极气隙磁通 n ——电机转速 电机转矩 a T a I C I a pN T Φ=Φ= π2 n P T M 55 .9= 注:P M ——电机的功率(W ) 三相交流电机同步转速 p f n 1 160 .9= 三相交流电机转差率

111)(/n n n n n s ?=Δ= 三相交流电机输入电功率 1111cos 3?I U P = 同步发电机输出频率 60 Zn f = 步进电机步距角 R R t s mKZ NZ N ° =°= = 360360θθ 步进电机转速 R NZ f n 60= 常用物理量 摩尔气体常数: )/()00026.031441.8(molK J R ±= 玻耳兹曼常数: K J k /10)000044.0380662.1(23?×±=引力常数: 2211/10)0041.06720.6(kg Nm G ?×±=标准重力加速度: 2/80665.9s m g m =阿伏加德罗常数: 12310)000031.0022045.6(?×±=mol N A 普朗克常数: Js h 3410)000036.0626176.6(?×±=电磁波在真空中 s m c /1099792458.28×= 的传播速度 真空介电常数: m F /10854187818.8120?×=ε真空磁通率: m H m H /105663706144.12/104770??×=×=πμ元电荷: C e 1910)0000046.06021892.1(?×±=电子质量: kg m e 3010)0000047.09109534.0(?×±=质子质量: kg m p 2710)0000086.06726485.1(?×±=

相关文档
最新文档