流量计清单

流量计清单
流量计清单

流量计外校清单

注:

流量计性能测试实验(DOC)

中南大学 仪器与自动检测实验报告 冶金科学与工程院系冶金专业班级 姓名学号同组者同班同学 实验日期2013 年 4 月 08 日指导教师 实验名称:流量计性能测试实验 一、实验目的 1.掌握流量计性能测试的一般实验方法; 2.了解倒U型压差计的使用方法; 3.应用体积法,测定孔板流量计、文丘里流量计的标定曲线; 4.验证孔板流量计、文丘里流量计的孔流系数C0与雷诺数Re的关系曲线。 二、实验原理 流体流过孔板流量计或文丘里流量计时,都会产生一定的压差,而这个压差与流体流过的流速存在着一定的关系。 1.孔板流量计或文丘里流量计的标定 流体在管内的流量可用体积法测量: V= a·?h /τ(1) 式中:V——管内流体的流量,L/s; a——体积系数,即计量筒内水位每增加1cm所增加的水的体积,本实验中a=0.6154 L/cm;

?h ——计量筒液位上升高度,?h = h1- h0,cm ; h1——计量筒内水位的初始读数,cm ; h0——计量筒内水位的终了读数,cm ; τ ——与?h 相对应的计量时间,s 。 测出与V 相对应的孔板流量计(或文丘里流量计)的压差读数R ,即可在直角坐标纸上标绘出对应流量计的V ~R 标定曲线。 其中, R ——孔板流量计(或文丘里流量计)的压差读数,cm 。 2.孔流系数C0与雷诺数Re 关系测定 流体在管内的流量和被测流量计的压差R 存在如下的关系: 3 00102??? ?=ρ P C A V (2) 其中,2 10-???=?g R P ρ (3) 2 00102??= Rg A V C (4) 式中: A0——孔板流量计的孔径(或文丘里流量计喉径)的截面积,m2,本实验中孔板孔d0=17.786mm ,文丘里流量计喉径d0=19.0mm ; C0——孔板流量计(或文丘里流量计)的孔流系数; g ——重力加速度,g=9.807m/s2。 又知 μ ρ du = Re (5) 式中: Re ——雷诺数; d ——水管的内径,m ,本实验中d =0.0238m ; ρ—— 流体的密度,kg/m3; μ—— 流体的粘度,Pa ·s 。 u ——水管内流体流速,m/s,

流量计综述

流量计综述 流量测量方法和仪表的种类繁多,分类方法也很多。至今为止,可供工业用的流量仪表种类达 60 种之多。品种如此之多的原因就在于至今还没找到一种对任何流体、任何量程、任何流动状态以及任何使用条件都适用的流量仪表。 这 60 多种流量仪表,每种产品都有它特定的适用性,也都有它的局限性。按测量对象划分就有封闭管道和明渠两大类;按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。 总量表测量一段时间内流过管道的流量,是以短暂时间内流过的总量除以该时间的商来表示,实际上流量计通常亦备有累积流量装置,做总量表使用,而总量表亦备有流量发讯装置。因此,以严格意义来分流量计和总量表已无实际意义。 按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等 目前最流行、最广泛的分类法,即分为:容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计、质量流量计和插入式流量计来分别阐述各种流量计的原理、特点、应用概况及国内外的发展情况。 1.1 差压式流量计 差压式流量计是根据安装于管道中流量检测件产生的差压,已知的流体条件和检测件与管道的几何尺寸来计算流量的仪表。 差压式流量计由一次装置(检测件)和二次装置(差压转换和流量显示仪表)组成。通常以检测件形式对差压式流量计分类,如孔板流量计、文丘里流量计、均速管流量计等。 二次装置为各种机械、电子、机电一体式差压计,差压变送器及流量显示仪表。它已发展为三化(系列化、通用化及标准化)程度很高的、种类规格庞杂的一大类仪表,它既可测量流量参数,也可测量其它参数(如压力、物位、密度等)。 差压式流量计的检测件按其作用原理可分为:节流装置、水力阻力式、离心式、动压头式、动压头增益式及射流式几大类。 检测件又可按其标准化程度分为二大类:标准的和非标准的。 所谓标准检测件是只要按照标准文件设计、制造、安装和使用,无须经实流标定即可确定其流量值和估算测量误差。 非标准检测件是成熟程度较差的,尚未列入国际标准中的检测件。 差压式流量计是一类应用最广泛的流量计,在各类流量仪表中其使用量占居首位。近年来,由于各种新型流量计的问世,它的使用量百分数逐渐下降,但目前仍是最重要的一类流量计。 优点: (1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;

流量计性能测定实验报告doc

流量计性能测定实验报告 篇一:孔板流量计性能测定实验数据记录及处理篇二:实验3 流量计性能测定实验 实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中: 被测流体(水)的体积流量,m3/s; 流量系数,无因次;

流量计节流孔截面积,m2; 流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3 。 用涡轮流量计和转子流量计作为标准流量计来测量流量VS。每一 个流量在压差计上都有一对应的读数,将压差计读数△P和流量Vs绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。 图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀; ⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—

流量计安装标准

电磁流量计安装标准 为了确保电磁流量计在安装完成后,读数准确并可长期使用,在安装及使用时要严格按照以下标准进行操作。 首先,在安装时,为保证测量管内充满被测介质,传感器垂直安装时,流向需自下而上。若现场只允许水平安装,则必须保证两电极在同一水平面,电极的轴线近似水平方向。流量计的上游最少要有5D的直管段,下游最少要有3D的直管段,为方便安装和拆卸,可在流量计后加装管道伸缩节。管道中流体的流动方向必须和流量计的箭头指示方向一致。由于管道内一旦产生负压会损坏流量计的内衬,所以正压管系应防止产生负压,应在传感器附近装负压防止阀。若测量管道有振动,需在流量计两边加装固定的支座。在安装电磁流量计时,连接两个法兰之间的螺栓应注意均匀拧紧,最好用力矩扳手。应使用与仪表衬里材质相同的垫片,避免压坏内衬。一体式电磁流量计转换器安装的室外或湿度比较大的环境中时,电源线要保证一定的弧度,接线完成后旋紧进线螺母,防止水沿着电源线进入转换器腔体。 其次,为避免影响电磁流量计的测量精准度,流量计的安装位置应尽可能远离泵、阀门等设备以及射频、强磁场、强振动等干扰源。传感器必须单独接地(一般情况下接地电阻100Ω一下,对于防爆产品和防雷击要求的安装情况,接地电阻应小于10Ω)。原则上,分体式流量计的接地应在传感器一侧,转换器接地应在同一接地点。分体式电磁流量计转换器一般安装在传感器附近或仪电室。需要注意的是,传感器与转换器连接时,为了避免干扰信号,信号电缆必须单独穿在接地保护金属管内,不能把信号和电源电缆混穿在同一金属管内。 流量计在安装在直管段时应遵循如下要求。 通常在90°弯头后、缩径后、扩径后以及全开闸阀后,上游最少5D直管段,下游最小3D直管段(当缩径锥度<15°时,无需直管段)。不同开度的阀后,上游最少10D,下游最少3D直管段。安装在水泵后面,上游最小20D直管段,下游最小3D直管段。 流量计具体安装位置说明。 流量计应安装在水平管道的较低处和垂直向上处,避免安装在管道的最高点和垂直向下处。在斜管道中应安装在上升处。在开口排放的管道安装,应安装在管道的较低处。若管道落差超过5m,在传感器的下游安装排气阀。控制阀和切断阀应安装在流量计的下游。 流量计必须安装在泵的出口处而不是进口处。如仪表安装在野外,则必须安装避雷装置。

影响流量计系数的因素分析及处理方1

影响流量计系数的因素分析及处理方法 原油贸易交接大多采用流量计计量,为保证流量计的计量准确,需利用标准体积管对其定期检定,确定流量计系数,影响流量计系数的因素有标准体积管的标准体积值V20,流量计的脉冲数N,温度和压力。标准体积值V20由标准量器检定体积管时给出,是已知量,温度和压力读数准确,不会产生影响,所以影响流量计系数的关键因素是流量计脉冲数是否准确。 流量计脉冲数是体积管检定球从第一检测开关到第二检测开关,流量计脉冲发生器发出的脉冲,通过计数器记录下来的脉冲数。如果脉冲发生器性能良好,不丢数、不多数,计数器按时检定,在周期内使用,那么流量计脉冲数是否准确的原因则为: 1.体积管标准管段有变化,其主要原因是体积管管段结蜡,标准体积缩小,有些体积管置于室外,受环境温度影响,如大庆原油含腊高,粘度高,势必产生结蜡现象,体积管标准体积变小,脉冲数比理论值小。处理方法:1)用风扫线及热水清洗。在检定流量计前,利用空气压缩机吹扫管线,将体积管内原油排净,直到打开排污阀门不滴油为止。然后向清洗水池注入体积管体积2倍的70摄氏度热水,运行清洗水泵,进行热水循环清洗,清洗过程中不断投球,用来刮掉管壁上的结蜡,清洗水池水中含油后,及时更换清水,直到水池内没有油花为止。2)体积管清洗完毕投油后,大排量运行,增加投球次数,起到刮掉管壁结蜡和平衡油温作用。 2.检定系统有渗漏。阀门或体积管推球器内密封不严,检定球变形都有可能产生渗漏,导致体积减小,流量计脉冲数减少。处理方法:1)逐个检查与体积管相连接的大小阀门是否严密,开关是否灵活,发现问题及时修理或更换。2)打开体积管分离体处的密封检漏阀,看是否有油水混合物渗出,有则说明推球器内油封或水封不严,将体积管内水和推球器内液压油放掉,打开法兰,抽出推球杆,更换密封圈。3)检查检定球,测量体积和重量,如数据与检定证书给出的数据有差距,或表面有破损,更换新球。3.检测开关异常,出现提前动作或不动作现象,影响体积管体积量。检测开关为一光电转换装置,不动作时,光纤探头发出红外线信号,经光纤档板反射回来,形成回路。当标定球碰到检测开关检测点,连动杆开始动作,向上移动,连动杆上端光纤档板随着向上移动,与光纤探头错开,红外线反射不回来,回路断开,产生开关信号,此信号作用到控制台记数器,控制其开始或停止记数。光纤检测开关的特点是:灵敏度高,动作快,同时要求机械性能稳定,工作环境洁净。处理方法:1)调整检测开关机械结构,看动作是否灵活,如不灵活,加适量润滑油。2)调整反光档板位置,动作前的反光档板位置要正好和光纤探头位置平齐,距离适中,动作后反光档板与光纤探头位置要完全错开。3)用清洁济清洗反光档板,反光档板要保持清洁,不得有尘埃或水雾。

流量计企业标准模板

目次 前言 (Ⅱ) 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 产品分类和性能参数 (3) 5 要求 (4) 6 试验方法 (5) 7 检验规则 (13) 8 标志、包装、运输和贮存 (13) 附录A(规范性附录)Ⅰ型智能流量积算仪 (15) A.1 概述 (15) A.2 Ⅰ型积算仪实现如下功能 (15) A.3 电气性能指标 (16) A.4 防爆等级 (16) A.5 防护等级 (16)

前言 本标准规定了《ALS系列智能旋进流量计》的产品分类、技术要求、试验方法、检验规则、标志、包装和贮存等。 本标准由浙江奥新仪表有限公司提出。 本标准起草单位:浙江奥新仪表有限公司。 本标准主要起草人:陈通照、胡建田、黄学岩。

ALS系列智能旋进流量计 1 范围 本标准规定了ALS系列智能旋进流量计的术语和定义、产品分类和性能参数、要求、试验方法、检验规则以及标志、包装、运输和贮存等。 本标准适用于带Ⅲ型智能流量积算仪(附录A),可进行温度、压力和流量自动检测并就地显示ALS系列智能旋进流量计(以下简称流量计)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2829-2002 周期检验计数抽样程序及表(适用于生产过程稳定性的检查) GB 3836.1 爆炸性气体环境用电气设备第1部分:通用要求 GB 3836.2 爆炸性气体环境用电气设备第2部分:隔爆型“d” GB 3836.4 爆炸性气体环境用电气设备第4部分:本质安全型“i” GB 4208 外壳防护等级(IP代码) GB/T 9113.1-2000 平面、突面整体钢制管法兰 GB/T 9113.22000 凹凸面整体钢制管法兰 GB/T 9115.2-2000 凹凸面对焊钢制管法兰 GB/T 9119-2000 平面、突面板式平焊钢制管法兰 GB/T 15464-1995 仪器仪表包装通用技术条件 GB/T 15479-1995 工业自动化仪表绝缘电阻、绝缘强度技术要求和试验方法 JB/T 9329-1999 仪器仪表运输、运输贮存基本环境条件及试验方法 SY/T 6143-2004 用标准孔板流量计测量天然气流量 3 术语和定义 下列术语和定义适用于本标准。 3.1 智能流量积算仪 将温度、压力传感器及各自的放大器和处理单元集于一体,能直接检测流体的温度、压力并将输入的流量脉冲信号频率换算成体积流量和标准体积流量的装置。 3.2 压力损失 流过流量计而产生的不可恢复的压力降值。 3.3 旋进气体流量传感器(以下简称流量传感器) 进入仪表的流体通过一组固定的螺旋叶片后,被强制围绕中心线旋转,当通过扩大段时,旋涡中心沿锥形螺旋线运动,旋涡中心通过检测点的频率与流速成正比,该频率由压电传感器检出。3.4 温度传感器 以Pt1000铂电阻为温度敏感元件,在一定温度范围内,其电阻值与温度成正比关系。

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

流量传感器的流量系数

流量传感器的流量系数 流量传感器被广泛应用于流量测量中,是流量表计量中的一部分,它的测量与流量表的系数有着密不可分的特性。 冷热水流量系数对流量传感器的影响,众所周知,旋翼式机械式磁传热水表流量系数与设计、制造精度和生产调试有关,在热水表整个流量范围内,其示值误差是随流量变化而变化的。研究结果表明,流量系数还随水温的变化而变化,特别是在分界流量以下的小流量区,其变化更为显著。不难理解,由于水温升高,水的密度减小,其粘稠度降低,叶轮阻力减小;流量传感器水温升高,壳体和叶轮均会发生膨胀,由于他们的制造材料不同,膨胀系数不同,会造成壳体内腔和叶轮之间的间隙发生变化,计算结果表明这种变化对流量系数的影响是不可忽略的,另外,水温升高,叶轮与轴承的阻力也会发生变化。上述因素的综合影响造成流量系数随水温变化而变化,对于不同的热水表,其变化规律将不同。 举例说明流量传感器在热水表中的应用,在我国,热水表生产厂均没有热水流量标准试验装置,出厂检验是在冷水装置上进行的,几乎没有考虑温度对流量系数的影响,这就是此类水表在高温情况下准确度降低的主要原因,https://www.360docs.net/doc/d35180834.html,由此在业内形成了一种普遍共识;直接采用热水表作为热量表流量传感器,在进行样机型式检验时必须经过仔细挑选才能通过,这是很不正常的。我们认为:产品出厂检验在冷水装置上进行,必须对设计的产品进行冷热水对比试验,找到该产品的冷热水流量系数之间的变化规律,对在冷水装置上检测

出的流量系数进行必要的修正,这样才能满足热量表对热水表的要求。 随着我国科学技术的发展,流量传感器为我们的工业测量做出了重大贡献,可对在冷水装置上检测出的流量系数进行必要的修正,满足热量表对热水表的要求。

离心泵的性能测试实验报告

实验名称:离心泵的性能测试 班级: 姓名: 学号: 一、 实验目的 1、 熟悉离心泵的操作,了解离心泵的结构和特性。 2、 学会离心泵特性曲线的测定方法。 3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。 二、 实验原理 离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线?=f(Qe);这三条曲线为离心泵的特性曲线。他们与离心泵的设计、加工情况有关,必须由实验测定。 三条特性曲线中的Qe 和N 轴由实验测定。He 和?由以下各式计算,由伯努利方程可知: He=H 压强表+H 真空表+h 0+g u u 22 1 20- 式中: He ——泵的扬程(m ——液柱) H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s ) g ——重力加速度(m/s 2 ) 流体流过泵之后,实际得到的有效功率:Ne= 102ρ HeQe ;离心泵的效率:轴 N N e =η。在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入 式中: Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s) ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率 η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90 三、 实验装置和流程

各种流量计选型的原则和方法

一、流量计选型得原则 选择流量计得原则首先就是要深刻地了解各种流量计得结构原理与流体特性等方面得知识,同时还要根据现场得具体情况及考察周边得环境条件进行选择。也要考虑到经济方面得因素、一般情况下,主要应从下面五个方面进行选择: ①流量计得性能要求; ②流体特性; ③安装要求; ④环境条件; ⑤流量计得价格、 1、流量计得性能要求 流量计得性能方面主要包括:测量流量(瞬时流量)还就是总量(累积流量);准确度要求;重复性;线性度;流量范围与范围度;压力损失;输出信号特性与流量计得响应时间等。 (1)测流量还就是总量 流量测量包括两种,即瞬时流量与累积流量,比如对分输站管道得原油属于贸易交接或石油化工 管道进行连续配比生产或生产流程得过程控制等需要计量总量,间或辅以瞬时流量得观察、在有得工作场所对流量进行控制则需配备瞬时流量测量。因此,要根据现场计量得需要进行选择、有些流量计比如容积式流量计,涡轮流量计等,其测量原理就是以机械计数或脉冲频率输出直接得到总量,其准确度较高,适用于计量总量,如配有相应得发讯装置也可输出流量。电磁流量计、超声流量计等就是以测量流体流速推导出流量,响应快,适用于过程控制,如果配以积算功能后也可以获得总量。 (2)准确度 流量计准确度等级得规定就是在一定得流量范围内,如果使用在某一特定得条件下或比较窄得流量范围内,比如,仅在很小得范围内变化,此时其测量准确度会比所规定得准确度等级高。如用涡轮流量计计量油品装桶分发,在阀门全开得情况下使用,流量基本恒定,其准确度可能会从0。5级提高到0。25级、 用于贸易核算、储运交接与物料平衡如果要求测量准确度较高时,应考虑准确度测量得持久性,一般用于上述情况下得流量计,准确度等级要求为0、2级。在这样得工作场所一般就是现场配备计量标准设备(比如体积管),对所使用得流量计进行在线检测。近几年由于原油得日趋紧张与各单位对原油计量得高要求,对原油计量提出实行系数交接,即除了每半年对流量计进行一次周期检测后,贸易交接双方协商每1个月或2个月对流量计进行检定确定流量系数,每天根据流量计计量得数据与流量计流量系数计算出数据进行交接,以提高流量计得准确度,也称为零误差交接。 准确度等级一般就是根据流量计得最大允许误差确定得。各制造厂提供得流量计说明书中会给出。一定要注意其误差得百分率就是指相对误差还就是引用误差、相对误差为测量值得百分率,常用“%R”表示、引用误差则就是指测量上限值或量程得百分率,常用“%FS”。许多制造厂说明书中并未注明。比如,浮子流量计一般都就是采用引用误差,电磁流量计有得型号也有采用引用误差得。 流量计如果不就是单纯计量总量,而就是应用在流量控制系统中,则检测流量计得准确度要在整个系统控制准确度要求下确定、因为整个系统不仅有流量检测得误差,还包含有信号传输、控制调节、操作执行等环节得误差与各种影响因素。比如,操作系统中存在有2%左右得回差,对所采用得测量仪表确定过高得准确度(0.5级以上)就就是不经济与不合理得。就仪表本身来说,传感器与二次仪表之间得准确度也应该适当相配,比如说设计出来未经实际标定得均速管误差如在±2。5%~±4%之间,配上0.2%~0、5%高准确度得差压计就意义不大了、 还有一个问题就就是对于检定规程或制造厂说明书中对流量计所规定得准确度等级指得就是其流量计得最大允许误差。但就是由于流量计在现场使用时受环境条件、流体流动条件与动力条件等变化得影响,将会产生一些附加误差。因此,现场使用得流量计应就是仪表本身得最大允许误差与附加误差得合成,一定要充分考虑到这个问题,有时候可能现场得使用环境范围内得误差会超过流量计得最大允许误差。 (3)重复性

实验3 流量计性能测定实验

实验3 流量计性能测定实验 一、实验目的 ⒈了解几种常用流量计的构造、工作原理和主要特点。 ⒉掌握流量计的标定方法(例如标准流量计法)。 ⒊了解节流式流量计流量系数C随雷诺数Re的变化规律,流量系数C的确定方法。 ⒋学习合理选择坐标系的方法。 二、实验内容 ⒈通过实验室实物和图像,了解孔板、1/4园喷嘴、文丘里及涡轮流量计的构造及工作原理。 ⒉测定节流式流量计(孔板或1/4园喷嘴或文丘里)的流量标定曲线。 ⒊测定节流式流量计的雷诺数Re和流量系数C的关系。 三、实验原理 流体通过节流式流量计时在流量计上、下游两取压口之间产生压强差,它与流量的关系为: 式中:被测流体(水)的体积流量,m3/s; 流量系数,无因次; 流量计节流孔截面积,m2;

流量计上、下游两取压口之间的压强差,Pa ; 被测流体(水)的密度,kg/m3。 用涡轮流量计和转子流量计作为标准流量计来测量流量V S。每一个流量在压差计上都有一对应的读数,将压差计读数△P和流量V s 绘制成一条曲线,即流量标定曲线。同时用上式整理数据可进一步得到C—Re关系曲线。 四、实验装置 该实验与流体阻力测定实验、离心泵性能测定实验共用图1所示的实验装置流程图。 ⒈本实验共有六套装置,流程为:A→B(C→D)→E→F→G→I 。 ⒉以精度0.5级的涡轮流量计作为标准流量计,测取被测流量计流量(小于2m3/h流量时,用转子流量计测取)。 ⒊压差测量:用第一路差压变送器直接读取。

图1 流动过程综合实验流程图 ⑴—离心泵;⑵—大流量调节阀;⑶—小流量调节阀;⑷—被标定流量计;⑸—转子流量计;⑹—倒U管;⑺⑻⑽—数显仪表;⑼—涡轮流量计;⑾—真空表;⑿—流量计平衡阀;⒁—光滑管平衡阀;⒃—粗糙管平衡阀;⒀—回流阀;⒂—压力表;⒄—水箱;⒅—排水阀;⒆—闸阀;⒇—截止阀;a—出口压力取压点;b—吸入压力取压点;1-1’—流量计压差;2-2’—光滑管压差;3-3’—粗糙管压差;4-4’—闸阀近点压差; 5-5’—闸阀远点压差;6-6’—截止阀近点压差;7-7’—截止阀远点压差;J-M—光滑管;K-L—粗糙管

流量计校核实验报告

流量计校核实验报告 一、实验目的 1、熟悉孔板流量计和文氏流量计的构造及工作原理; 2、掌握流量计标定方法之一——称量法; 3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律; 4、测定孔板流量计和文氏流量计的流量与压差的关系。 二、实验原理 常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。 孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。 (一)孔板流量计 孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。 孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。 若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。 在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得: 222112 2u u p p ρ --= (1) 或 = (2) 由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。因此,用孔板孔径处流速0u 来代替式(2)中的 2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。式(2)就 可改写为: 图1-1 孔板流量计构造原理图

超声波流量计检定规程

附件2: 明渠堰槽流量计型式评价大纲 1范围 本型式评价大纲适用于分类代码为12185000的明渠堰槽流量计(以下简称流量计)的型式评价。 2引用文件 本大纲引用了下列文件: JJG 711-1990 明渠堰槽流量计 GB/T 9359-2001 水文仪器基本环境试验条件及方法 GB/T 11606-2007 分析仪器环境试验方法 GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验 GB/T 17626.3电磁兼容试验和测量技术射频电磁场辐射抗扰度试验 GB/T 17626.8电磁兼容试验和测量技术工频磁场抗扰度试验 JB/T 9329-1999 仪器仪表运输、运输贮存基本环境条件及试验方法 HJ/T 15-2007 环境保护产品技术要求超声波明渠污水流量计 凡是注日期的引用文件,仅注日期的版本适用于本规范。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。 3术语 3.1 明渠堰槽流量计weirs and flumes for flow measurement 在明渠中利用量水堰槽和水位~流量转换仪表(二次仪表)来测量流量的流量计。 3.2 水位stage 从测量基准点(或零点)高程算起,加上某一水面的距离后所得到的高程值,单位m。 3.3 喉道throat 测流堰槽内截面面积最小的区段。 4概述 4.1工作原理 在明渠中设置标准量水堰槽,液位计安装在规定位置上测量流过堰槽的水位。将测出的水位值代入相应的流量公式或经验关系式,即可计算出流量值。明渠堰槽

流量计的水位与流量呈单值关系。 4.2结构型式 明渠堰槽流量计包括:薄壁堰、宽顶堰、三角形剖面堰、流线型三角形剖面堰、平坦V形堰、巴歇尔(Parshall)槽、孙奈利(SANIIRI)槽、P-B(Palmer-Boulus)槽等槽体及与之配套的液位计和水位、流量显示仪表。 明渠堰槽流量计由量水堰槽和水位~流量转换仪表(二次仪表)所组成。水位~流量转换仪表包括:液位计、换算器和显示器。 为准确计量流量,明渠堰槽流量计还应包括:堰体上游行近段、下游渠槽衔接段和水位观测设施。 量水堰槽有多种形式,如:薄壁堰、宽顶堰、三角形剖面堰、喉道槽等,可根据现场条件、流量范围和使用要求选取。 5法制管理要求 5.1计量单位 流量计应采用法定计量单位。选用的流量计量单位为m3/h、m3/s或m3,温度单位为℃。 5.2 外部结构 流量计应具有防护装置及不经破坏不能打开的封印。凡能影响计量准确度的任何人为机械干扰,都将在流量计或保护标记上产生永久性的有形损坏痕迹。 5.3 标志 5.3.1计量法制标志的内容 试验样机应预留出位置,以标出制造计量器具许可证的标志和编号,流量计型式批准标志和编号以及产品合格印、证。 5.3.2铭牌 铭牌应包括: a)制造商名称(商标); b)产品名称及型号; c)出厂编号; d)制造计量器具许可证标志和编号; e)工作温度范围; f)在工作条件下的最大、最小流量或流速;

流量计通用技术规范

流量计 通用技术规范

本规范对应的专用技术规范目录 流量计 采购标准技术规范使用说明 1. 本采购标准技术规范分为标准技术规范通用部分、标准技术规范专用部分以及本规范使用说明。 2. 采购标准技术规范通用部分原则上不需要设备招标人(项目单位)填写,更不允许随意更改。如对其条款内容确实需要改动,项目单位应填写《项目单位通用部分条款变更表》并加盖该网、省公司招投标管理中心公章及辅助说明文件随招标计划一起提交至招标文件审查会。经标书审查同意后,对通用部分的修改形成《项目单位通用部分条款变更表》,放入专用部分,随招标文件同时发出并视为有效。 3. 采购标准技术规范专用部分分为标准技术参数、项目单位需求部分和投标人响应部分。《标准技术参数表》中“标准参数值”栏是标准化参数,不允许项目单位和投标人改动。项目单位对“标准参数值”栏的差异部分,应填写“项目单位技术差异表”,“投标人保证值”栏应由投标人认真逐项填写。项目单位需求部分由项目单位填写,包括招标设备的工程概况和招标设备的使用条件。对扩建工程,可以提出与原工程相适应的一次、二

次及土建的接口要求。投标人响应部分由投标人填写“投标人技术参数偏差表”,提供销售业绩、主要部件材料和其他要求提供的资料。 4. 投标人填写“技术参数和性能要求响应表”时,如与招标人要求有差异时,除填写“技术偏差表”外,必要时应提供相应试验报告。 5. 有关污秽、温度、海拔等需要修正的情况由项目单位提出并在专用部分技术差异表明确表示。 6. 采购标准技术规范的页面、标题等均为统一格式,不得随意更改。

目录 1总则 (1) 1.1 一般规定 (1) 1.2 投标人应提供的资格文件 (1) 1.3 工作范围和进度要求 (1) 1.4 技术资料 (1) 1.5 标准和规范 (1) 1.6 必须提交的技术数据和信息 (2) 2 性能要求 (2) 3 主要技术参数 (2) 4 外观和结构要求 (2) 5 验收及技术培训 (3) 6 技术服务 (3) 附录A 供货业绩 (4) 附录B 仪器配置表 (4)

各种流量计计算公式

各种流量计计算公式内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取 涡街流量计计算公式: 一、孔板流量计 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1() Q ——流体的体积流量 (单位:m3/min) 工 d ——孔径(单位:m ) △P——差压(单位:Pa)

ρ ——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; 1 C ——流出系数 β——直径比 安装 孔板的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板时一定要满足这个直管段距离要求,否则测量的流量误差大。 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

流量计流量的校正实验

流量计流量的校正实验 一. 实验目的 1. 熟悉孔板流量计、文丘里流量计的构造、性能及安装方法。 2. 掌握流量计的标定方法之一——容量法。 3. 测定孔板流量计、文丘里流量计的孔流系数与雷诺准数的关系。 二. 基本原理 对非标准化的各种流量仪表在出厂前都必须进行流量标定,建立流量刻度标尺(如转子流量计)、给出孔流系数(如涡轮流量计)、给出校正曲线(如孔板流量计)。使用者在使用时,如工作介质、温度、压强等操作条件与原来标定时的条件不同,就需要根据现场情况,对流量计进行标定。 孔板、文丘里流量计的收缩口面积都是固定的,而流体通过收缩口的压力降则随流量大小而变,据此来测量流量,因此,称其为变压头流量计。而另一类流量计中,当流体通过时,压力降不变,但收缩口面积却随流量而改变,故称这类流量计为变截面流量计,此类的典型代表是转子流量计。 1、孔板流量计的校核 孔板流量计是应用最广泛的节流式流量计之一,本实验采用自制的孔板流量计测定液体流量,用容量法进行标定,同时测定孔流系数与雷诺准数的关系。 孔板流量计是根据流体的动能和势能相互转化原理而设计的,流体通过锐孔时流速增加,造成孔板前后产生压强差,可以通过引压管在压差计或差压变送器上显示。其基本构造如图1所示。 若管路直径为d 1,孔板锐孔直径为d 0,流体流经孔板前后所形成的缩脉直径为d 2,流体的密度为ρ,则根据柏 努利方程,在界面1、2处有: 图1 孔板流量计 2 2 21 12 2 u u p p p ρ ρ --?= = 或 = 由于缩脉处位置随流速而变化,截面积2A 又难以指导,而孔板孔径的面积0A 是已知的,因此,用孔板孔径处流速0u 来替代上式中的2u ,又考虑这种替代带来的误差以及实际流体局部阻力造成的能

腰轮流量计检定规程

腰轮流量计检定规程 本规程适用于新制的、使用中和修理后的液体腰轮流量计(以下简称流量计)的检定. 一、技术要求 1 允许基本误差 在遵守下列条件的情况下,流星计在规定流量范围内的允许基本误差,以流经流量计液体实际量的百分数表示,精度为0. 2级利0. 5级的流量计分别不超过±0. 2%;±0. 5%. 1.1流量计的安装应符合说明书的要求. 1.2检定时液体的流动应均匀,并无剧烈变化和波动. 1.3检定时为防止杂物和气体进入流量计,在流量计进口端应装有过滤器和气体分离器. 1.4当用电远传信号时,周围应无强烈磁场干扰. 2 重复性误差 在相同的试验条件和相同的流量下,流量计经多次测量,其示值的最大差值不应超过流量计允许基本误差绝对值之半. 3 压力损失 在最大流量时应不大于1. 2kgf/cm2,如果用粘度为3—5cp的轻质油,此时压力损失不应大于0. 4kgf/cm2. 4检定时的温度 4.1标准温度为20℃. 4.2检定时的液体温度应尽量保持一致. 4.3检定时流量计和标准装置中液体的温度要修正到同一温度. 5 流量范围 检定流量计时的流量范围应符合表1的规定. 6 检定用的标准装置和附属设备

6.1标准装置 检定流量计的标准装置,应是下列标准装置中的一种: a标准体积管 b液体流量标准装置(容积法); c液体流量标准装置(质量法). 6.2附属设备 a 数字计时计数器 b 最小分度值为0. 1℃的温度计; c 0. 4级标准压力表; d 秒表; e 二等标准密度计; f 粘度计. 7 用标准装置检定流量计时所用的试验液体,原则上应是流量计使用的工作液体,或与流量计工作液体粘度相接近的液体.但在不得已的情况下必须采用粘度差异很大的液体时,应进行粘度修正。 8标准装置的容量 8.1标准体积管:为液体一小时内通过流量计最大校验流量的0. 5%以上的输送量.

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

流量计规范

竭诚为您提供优质文档/双击可除 流量计规范 篇一:流量计技术规范 鲁西化工股份有限公司第一化肥厂 醇烷化项目 流量计技术规范书 鲁西化工股份有限公司第一化肥厂 20xx年1月7日 1.总则 1.1本规范书对鲁西化工股份有限公司第四化肥厂醇烷化项目流量计提出了技术和数量方面的要求。 1.2本规范书提出的是最低限度的要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,投标商应保证提供符合本规范书和有关工业标准的优质产品。 1.3对于报价(流量计规范)与本规范书的差异,投标商应以书面形式提出并予以详细说明。 1.4本规范书经供需双方确认后作为订货合同的附件,与合同正文具有同等效力。 2.技术要求

2.1所投标的流量计应符合国家有关技术标准及规范并予以注明。 2.2在相同项目上有良好运行业绩。 2.3有腐蚀性场合应采用不锈钢材质,与工艺介质接触的材质不允许使用铝、铜、锌、汞等有色金属。 2.4流量计要求配供配对法兰、螺栓、螺母、金属缠绕垫片等紧固件;温度较高的地方连接方式为焊接(已注明)。 2.5精度等级:质量流量计的精度0.2级,涡街流量计精度(液体)0.5级、(气体)1.0级,差压流量计的精度1.0级。 2.6在投标书中提供每台节流装置的材质、公称压力、工作温度。 2.7每台流量计做实验并在供货时提供计算报告书。 2.8涡街流量计具有良好的抗震性能,以满足现场的需要。 2.9流量计的流速应尽量满足工艺专业的要求,一二三甲胺的流速1~1.5米/秒。 3.0各流量计厂家可根据工艺参数对流量计的口径如有不同的异议,经双方商议解决,但必须满足精度要求。 3.供货范围 节流装置数量、规格、型号见附表。 4.服务及质量保证

汽车空气流量计性能测试台的设计

<工业控制计算机)2008年21卷第7期 快速动作,使流量发生改变,此时各流量传感器感应到了静态变化或者动态变化的流量信号并将之转化为相应的电压信号。经过流量计转化的标准产品电压信号和一个或多个被测试产品的电压信号分别连接到数据采集卡外置端子的模拟多输入通道。通过数据采集卡的多通道数据采集,计算机读人多路电压信号,将得到数据通过VC++程序绘制成曲线显示出来,通过编程使所得到的数据储存到硬盘的相应文件中,以便对空气流量计的综合性能进行分析。 从图中系统信号的流向可以看出,数据采集系统中VC++软件占主导地位。软件支持使计算机具有信号采集控制、处理及结果输出的能力。系统的核心功能是由其完成的,而硬件为整个系统的正常运行提供了基层平台。 3数据结果及分析 对空气流量计的测试分为静态性能测试和动态性能测试两部分来进行,该两种测试的控制及显示都由软件来完成,我们通过来分析测量曲线和标准曲线的差别来分析产品的性能的好坏。 图2空气流量计静特性曲线 在静态性能测试中,通过软件控制电控阀门缓慢的渐变,使空气流量平稳的变化。在图2中,被测流量汁的两条静态性能曲线(1号和2号曲线)和中间的标准流量计测得曲线(3号曲线)最大差值在0.2V以内,说明该产品的静态性能完全符合要求。 在动态性能的测试中,通过软件控制电控阀门产生一个脉冲信号,图3和图4中显示的分别为被测空气流量计的动态响应性能曲线和BOSCH公司空气流量计的动态响应性能曲线。可以看出,开始测试时,两种流量计反应都比较灵敏,而且保持部分都为600ms左右,由此可知此处它们的性能基本保持一致。但是在下降部分,图3的曲线会下降到1V以下,而且在此处有产生一定的震荡,虽然震荡过后最终会趋于平缓,但是震荡 圈3被测空气流量计动态 特性曲线圈4BOSCH空气流量计动态 特性曲线 时间大概在600ms这段时间内将会产生比较大的误差。相对而 言BOSCH的空气流量计性能曲线较好,则BOSCH空气流量 计产品的动态性能良好,对比BOSCH产品的动态性能被测空 气流量计性能还有些许不足。 在此基础上,通过对产生震荡误差的深入研究。对空气流量 计内部结构的适当变换,生产出了一批具有更稳定性能的空气 流量计。下面这幅图是对改进后的空气流量计进行的动态性能 测试。 田5改进后被测空气流量计动态特性曲线 对比图3和图5可以发现,后者比前者的震荡要小很多,表 明在空气流量计的动态性能上后者要比前者稳定很多,也越来 越接近于BOSCH空气流量计的动态性能。该测试台体现出空 气流量计改进前后的性能变化特点,很形象地反映在对应的图 形上。由此可以说明该测试台对空气流量计测试具有良好的稳 定性和灵敏性,达到了预期的效果,能很好地反映和检测空气流 量计各方面的性能特性。 参考文献 [1]李长武,梁国伟.汽车用热线式空气流量传感器[J].传感器技术, 2004(8):38—40 [2]江军.空气湿度对热膜式空气流量计计量误差的影响[D].北京:北京 林业大学,2005 [3]庞佳涵,花向阳,扬振中.热线式空气流量计的研究[J].节能,2003 (7):10一12 [收稿日期:21)08.3.25】

相关文档
最新文档