气相色谱法与高效液相色谱法的异同点

气相色谱法与高效液相色谱法的异同点
气相色谱法与高效液相色谱法的异同点

高效液相色谱法简介

高效液相色谱法简介 “色谱”一词是由俄国科学家斯威特提出的。色谱法是基于补充物质在相对运动物的两相之间分布时,物理或物理化学性质的微小的差异而使混合物相互分离的一类分离或分析方法。发展与上世纪初,飞速发展于五十年代,有超过30位科学家家因为它而获得诺贝尔奖,其有自己的理论和研究方法,同时也有众多的应用领域。 色谱法常见的方法有:柱色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。 柱色谱:柱色谱法是最原始的色谱方法,这种方法将固定相注入下端塞有棉花或滤纸的玻璃管中,将被样品饱和的固定相粉末摊铺在玻璃管顶端,以流动相洗脱。常见的洗脱方式有两种,一种是自上而下依靠溶剂本身的重力洗脱,一种是自下而上依靠毛细作用洗脱。收集分离后的纯净组分也有两种不同的方法,一种方法是在柱尾直接接受流出的溶液,另一种方法是烘干固定相后用机械方法分开各个色带,以合适的溶剂浸泡固定相提取组分分子。柱色谱法被广泛应用于混合物的分离,包括对有机合成产物、天然提取物以及生物大分子的分离。 薄层色谱:薄层色谱法是应用非常广泛的色谱方法,这种色谱方法将固定相图布在金属或玻璃薄板上形成薄层,用毛细管、钢笔或者其他工具将样品点染于薄板一端,之后将点样端浸入流动相中,依靠毛细作用令流动相溶剂沿薄板上行展开样品。薄层色谱法成本低廉操作简单,被用于对样品的粗测、对有机合成反应进程的检测等用途。

气相色谱:GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,也叫流动相)带入色谱柱,柱内含有液体或固体流动相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来。也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解吸附,结果是在载气中浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器。检测器能够将样品组分的与否转变为电信号,而电信号的大小与被测组分的量或浓度成正比。当将这些信号放大并记录下来时,就是气相色谱图了。气相色谱被广泛应用于小分子量复杂组分物质的定量分析。 高效液相色谱:高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9-107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。高效液相色谱(HPLC)是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

气相色谱法的分离原理及理论基础

气相色谱法的分离原理及理论基础 气相色谱法的分离原理是利用要分离的诸组分在流动相(载气)和固定相两相间的分配有差异(即有不同的分配系数),当两相作相对运动时,这些组分在两相间的分配反复进行,从几千次到数百万次,即使组分的分配系数只有微小的差异,随着流动相的移动可以有明显的差距,最后使这些组分得到分离。 气相色谱法的理论基础主要表现在两个方面,即色谱过程动力学和色谱过程热力学,也可以这样说,组分是否能分离开取决于其热力学行为,而分离得好不好则取决于其动力学过程。 色谱过程动力学��发展高效色谱技术及色谱峰形预测的理论基础 色谱过程动力学是研究物质在色谱过程中运动规律的科学。其研究的主要目的是根据物质在色谱柱内运动的规律解释色谱流出曲线的形状;探求影响色谱区域宽度扩张及峰形拖尾的因素和机理,从而为获得高效能色谱柱系统提供理论上的指导,为峰形预测、重叠峰的定量解析以及为选择最佳色谱分离条件奠定理论基础。 在色谱发展过程中,用来描述色谱过程动力学的理论模型主要有:1940年提出的平衡色谱理论,解释了部分实验事实,但由于该理论忽略了传质速率有限性与物质分子纵向扩散性的影响,对一些现象不能解释;1941年Martin等人引入了理论塔板的概念,在该理论中,色谱过程被比拟为蒸馏过程,而色谱柱被视为一系列平衡单元-理论塔板的结合。在色谱柱足够长、理论塔板高度充分小,以及分配等温线呈线性的情况下,这一理论对色谱流出曲线分布和谱带移动规律,以及柱长与理论塔板高度H对区域扩张的影响等给予了近似的解释。但是塔板理论对影响理论塔板高度H的各种因素没有从本质上考虑,而色谱过程本质上并不是分馏过程,因而这一理论还只是半经验式的理论。 首先揭露影响色谱区域宽度内在因素的是纵向扩散理论和考察传质速率有 限性的的速率理论。在气相色谱中有同时考察传质速率和纵向扩散影响的van Deemter方程式,考察径向扩散的Golay毛细管色谱方程式。van Deemter方程式和Golay方程式分别描述了填充柱和毛细管柱两种色谱柱的理论塔板高度H的各种影响因素,两个公式综合到一起可简化如下: H=A+B/u+(Cg+Cl)u 色谱过程热力学��色谱定性及研究高选择性色谱方法和柱系统等的理论基础 由气相色谱的分离原理可知,实现气相色谱分离的基本条件是欲被分离的物质有不同的分配系数,而不同的分配系数也是气相色谱定性鉴别组分的基础。物

2015年版药典高效液相色谱法、质谱法.doc

2015 年版药典高效液相色谱法、质谱法

2015 版药典 --- 高效液相色谱法、质谱法 0512 高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处 理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为 3.9 ~ 4.6mm,填充剂粒径为 3~lOμm。超高效液相色谱仪是适应小粒径(约 2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物 等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰 基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残 留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当 提高色谱柱的温度,但一般不宜超过 60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相 pH 值一般应在 2~8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚 合物色谱柱可耐受更广泛 pH值的流动相,适合于 pH 值小于 2 或大于 8 的流动相。 (2)检测器最常用的检测器为紫外 - 可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、 蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外- 可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与 其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应,结构相似的物质在蒸发光散射 检测器的响应值几乎仅与被测物质的量有关。 紫外 - 可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定范围内呈 线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外 - 可见分光检测器所用流动相应符合紫外 - 可见分光光度法(通则 0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测 器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相反相色谱系统的流动相常用甲醇 - 水系统和乙腈 - 水系统,用紫外末端波长检测时,宜选用乙腈 - 水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动 相中有机溶剂一般不低于 5%,否则易导致柱效下降、色谱系统不稳定。

气相色谱仪原理

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定》 : 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图 系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响

应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图 钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。

进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。 样品从机械控制的定量管被扫入载气流。因为进样量通常差别很大,所以对气体和液体样品采用不同的进样阀。其原理(非实际设计尺寸)如图5所示。

色谱分析基本原理..

一、色谱分析法基本原理 色谱法,又称层析法。根据其分离原理,有吸附色谱、分配色谱、离子交换色谱与排阻色谱等方法。吸附色谱是利用吸附剂对被分离物质的吸附能力不同,用溶剂或气体洗脱,以使组分分离。常用的吸附剂有氧化铝、硅胶、聚酰胺等有吸附活性的物质。分配色谱是利用溶液中被分离物质在两相中分配系数不同,以使组分分离。其中一相为液体,涂布或使之键合在固体载体上,称固定相;另一相为液体或气体,称流动相。常用的载体有硅胶、硅藻土、硅镁型吸附剂与纤维素粉等。离子交换色谱是利用被分离物质在离子交换树脂上的离子交换势不同而使组分分离。常用的有不同强度的阳、阴离子交换树脂,流动相一般为水或含有有机溶剂的缓冲液。排阻色谱又称凝胶色谱或凝胶渗透色谱,是利用被分离物质分子量大小的不同和在填料上渗透程度的不同,以使组分分离。常用的填料有分子筛、葡聚糖凝胶、微孔聚合物、微孔硅胶或玻璃珠等,可根据载体和试样的性质,选用水或有机溶剂为流动相。色谱法的分离方法,有柱色谱法、纸色谱法、薄层色谱法、气相色谱法、高效液相色谱法等。色谱所用溶剂应与试样不起化学反应,并应用纯度较高的溶剂。色谱时的温度,除气相色谱法或另有规定外,系指在室温下操作。分离后各成分的检出,应采用各单体中规定的方法。通常用柱色谱、纸色谱或薄层色谱分离有色物质时,可根据其色带进行区分,对有些无色物质,可在245-365nm的紫外灯下检视。纸色谱或薄层色谱也可喷显色剂使之显色。薄层色谱还可用加有荧光物质的薄层硅胶,采用荧光熄灭法检视。用纸色谱进行定量测定时,可将色谱斑点部分剪下或挖取,用溶剂溶出该成分,再用分光光度法或比色法测定,也可用色谱扫描仪直接在纸或薄层板上测出,也可用色谱扫描仪直接以纸或薄层板上测出。柱色谱、气相色谱和高效液相色谱可用接于色谱柱出口处

气相色谱法的基本知识及应用

高效液相色谱法(HPLC) 概述: 色谱法是一种应用范围相当广泛的分离分析技术,它已有近百年的发展史。 二十世纪五、六十年代石油及石油化工的突起促使了GC技术大发展,而七、八十年代生命科学、生化、制药工业的发展推动了HPLC的迅速发展。 目前除分析化学外,生物化学,石油化学,有机化学,无机化学等学科都普遍采用色谱技术。现代高效液相色谱仪,以其高效,快速和自动化等特点成为当代分析仪器中发展最快的仪器。HPLC已成为操作方便、准确、快速并能解决困难分离问题的强有力的分析手段。 适用范围广: 已知有机物中仅20%不经预先化学处理,可用GC分析;而其余80%有机物可用HPLC分析。HPLC适于分离生物、医学大分子和离子化合物,不稳定的天然产物,种类繁多的其它高分子及不稳定化合物。 第一课色谱法概述 色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分 配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反 复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫 液相色谱。固定相可以装在柱内,也可以做成薄层。前者叫柱色谱,后者叫薄层色谱。 根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。 色谱法的创始人是俄国的植物学家茨维特。1905年,他将从植物色素提取的石油 醚提取液倒人一根装有碳酸钙的玻璃管顶端,然后用石油醚淋洗,结果使不同色素得 到分离,在管内显示出不同的色带,色谱一词也由此得名。这就是最初的色谱法。后 来,用色谱法分析的物质已极少为有色物质,但色谱一词仍沿用至今,在50年代,色 谱法有了很大的发展。1952年,詹姆斯和马丁以气体作为流动相分析了脂肪酸同系物 并提出了塔板理论。1956年范第姆特总结了前人的经验,提出了反映载气流速和柱效 关系的范笨姆特方程,建立了初步的色谱理论。同年,高莱(Golay)发明了毛细管拄, 以后又相继发明了各种检测器,使色谱技术更加完善。50年代末期,出现了气相色谱 和质谱联用的仪器,克服了气相色谱不适于定性的缺点。则年代,由于检测技术的提 高和高压泵的出现,高效液相色谱迅远发展,使得色谱法的应用范围大大扩展。目前 ,由于高效能的色谱往、高灵敏的检测器及微处理机的使用,使得色谱法已成为一种 分析速度快、灵敏度高、应用范围广的分析仪器。 在这里主要介绍气相色谱分析法。同时也适当介绍液相色谱法。气相色谱法的 基本理论和定性定量方法也适用于液相色谱法。其不同之处在液相色谱法中介绍。 第二课气相色谱仪 典型的气相色谱仪具有稳定流量的载气,将汽化的样品由汽化室 带入色谱柱,在色谱柱中不同组分得到分离,并先后从色谱柱中流出, 经过检测器和记录器,这些被分开的组分成为一个一个的色谱峰。色 谱仪通常由下列五个部分组成:

高效液相色谱法(HPLC)的概述

此帖与GC版的对应,是为了让大家更好的学习和了解LC 主要内容包括: 1.高效液相色谱法(HPLC)的概述 2. 高效液相色谱基础知识介绍(1——13楼) 3. 高压液相色谱HPLC发展概况、特点与分类 4. 液相色谱的适用性 5.应用 高效液相色谱法(HPLC)的概述 以高压液体为流动相的液相色谱分析法称高效液相色谱法(HPLC)。其基本方法是用高压泵将具有一定极性的单一溶剂或不同比例的混合溶剂泵入装有填充剂的色谱柱,经进样阀注入的样品被流动相带入色谱柱内进行分离后依次进入检测器,由记录仪、积分仪或数据处理系统记录色信号或进行数据处理而得到分析结果。 由于高效液相色谱法具有分离效能高、选择性好、灵敏度高、分析速度快、适用范围广(样品不需气化,只需制成溶液即可)、色谱柱可反复使用的特点,在《中国药典》中有5 0种中成药的定量分析采用该法,已成为中药制剂含量测定最常用的分析方法。 高效液相色谱法按固定相不同可分为液-液色谱法和液-固色谱法;按色谱原理不同可分为分配色谱法(液-液色谱)和吸附色谱法(液-固色谱)等。 目前,化学键合相色谱应用最为广泛,它是在液-液色谱法的基础上发展起来的。将固定液的官能团键合在载体上,形成的固定相称为化学键合相,不易流失是其特点,一般认为有分配与吸附两种功能,常以分配作用为主。C18(ODS)为最常使用的化学键合相。 根据固定相与流动相极性的不同,液-液色谱法又可分为正相色谱法和反相色谱法,当流动相的极性小于固定相的极性时称正相色谱法,主要用于极性物质的分离分析;当流动相

的极性大于固定相的极性时称反相色谱法,主要用于非极性物质或中等极性物质的分离分析。 在中药制剂分析中,大多采用反相键合相色谱法。 系统组成: (一)高压输液系统 由贮液罐、脱气装置、高压输液泵、过滤器、梯度洗脱装置等组成。 1.贮液罐 由玻璃、不锈钢或氟塑料等耐腐蚀材料制成。贮液罐的放置位置要高于泵体,以保持输液静压差,使用过程应密闭,以防止因蒸发引起流动相组成改变,还可防止气体进入。2.流动相 流动相常用甲醇-水或乙腈-水为底剂的溶剂系统。 流动相在使用前必须脱气,否则很易在系统的低压部分逸出气泡,气泡的出现不仅影响柱分离效率,还会影响检测器的灵敏度甚至不能正常工作。脱气的方法有加热回流法、抽真空脱气法、超声脱气法和在线真空脱气法等。 3.高压输液泵 是高效液相色谱仪的关键部件之一,用以完成流动相的输送任务。对泵的要求是:耐腐蚀、耐高压、无脉冲、输出流量范围宽、流速恒定,且泵体易于清洗和维修。高压输液泵可分为恒压泵和恒流泵两类,常使用恒流泵(其压力随系统阻力改变而流量不变)。 (二)进样系统 常用六通阀进样器进样,进样量由定量环确定。操作时先将进样器手柄置于采样位置(L OAD),此时进样口只与定量环接通,处于常压状态,用微量注射器(体积应大于定量环体积)注入样品溶液,样品停留在定量环中。然后转动手柄至进样位置(INJECT),使定量环接入输液管路,样品由高压流动相带入色谱柱中。 (三)色谱柱 由柱管和填充剂组成。柱管多用不锈钢制成。柱内填充剂有硅胶和化学键合固定相。在化学键合固定相中有十八烷基硅烷键合硅胶(又称ODS柱或C18柱)、辛烷基硅烷键合硅

气相色谱仪的及如何应用

气相色谱仪的简介及如何应用 气相色谱仪 气相色谱法适用于分析具有一定蒸气压且热稳定性好的组分,对气体试样和受热易挥发的有机物可直接进行分析,而对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。 一、仪器的组成 气相色谱仪由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。 二、对仪器的基本要求 1.对仪器的一般要求 (1)载气源气体氦、氮和氢可用作气相色谱法的流动相,可根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样或顶空进样。采用溶液直接进样时,进样口温度应高于柱温30~50℃。顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。 (3)色谱柱根据需要选择。新填充柱和毛细管柱在使用前需老化以除去残留溶剂及低分子量的聚合物,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID)、热导检测器(TCD)、氮磷检测器(NPD)、火焰光度检测器(FPD)、电子捕获检测器(ECD)、质谱检测器(MS)等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度高;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证。除另有规定外,火焰离子化检测器一般用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统目前多用计算机工作站。 药典规定,各品种项下规定的色谱条件,除载气、检测器、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适当改变,以适应具体品种并符合系统适用性试验

高效液相色谱仪简介

高效液相色谱仪简介 系统组成、工作原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相) 内, 由于样品溶液中的各组分在两相中具有不同的分配系数, 在两相中作相对运动时, 经过反复多次的吸附- 解吸的分配过程, 各组分在移动速度上产生较大的差别, 被分离成单个组分依次从柱内流出, 通过检测器时, 样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 高效液相色谱 (high performance liquid chromatography, HPLC)也叫高压液相色谱(high pressure liquid chromatography)、高速液相色谱(high speed liquid chromatography)、高分离度液相色谱(high resolution liquid chromatography)等。是在经典液相色谱法的基础上,于60年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱。又因分析速度快而称为高速液相色谱。 高效液相色谱是目前应用最多的色谱分析方法,高效液相色谱系统由流动相储液体瓶、输液泵、进样器、色谱柱、检测器和记录器组成,其整体组成类似于气相色谱,但是针对其流动相为液体的特点作出很多调整。HPLC的输液泵要求输液量恒定平稳;进样系统要求进样便利切换严密;由于液体流动相粘度远远高于气体,为了减低柱压高效液相色谱的色谱柱一般比较粗,长度也远小于气相色谱柱。HPLC应用非常广泛,几乎遍及定量定性分析的各个领域。 使用高效液相色谱时,液体待检测物被注入色谱柱,通过压力在固定相中移动,由于被测物种不同物质与固定相的相互作用不同,不同的物质顺序离开色谱柱,通过检测器得到不同的峰信号,最后通过分析比对这些信号来判断待侧物所含有的物质。高效液相色谱作为一种重要的分析方法,广泛的应用于化学和生化分析中。高效液相色谱从原理上与经典的液相色谱没有本质的差别,它的特点是采用了高压输液泵、高灵敏度检测器和高效微粒固定相,适于分析高沸点不易挥发、分子量大、不同极性的有机化合物。 发展历史

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

气相色谱理论基础

气相色谱理论基础 原理分类 【情节1】食品添加剂的检测,一个学生进入自选超市,拿起一袋零食,包装袋上有各种成分的含量,这些含量是怎么检测出来的呢?通常由两种方法:一种是先将各组分分离开,然后对已分离的组分进行测定;另一种是不需将组分分离开,直接对感兴趣的组分进行测定。其中第一种分离、分析方法也就是常用的色谱法。近代首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家茨维特。 【知识点1】茨维特的经典实验 1906年,俄国植物学家茨维特(M.S.Tswett)在研究植物色素的过程中,做了一个经典的实验;在一根玻璃管的狭小一端塞上一小团棉花,在管中填充沉淀碳酸钙,这就形成了一个吸附柱,然后将其与吸滤瓶连接,使绿色植物叶子的石油醚抽取液自柱通过。结果植物叶子中的几种色素便在玻璃柱上展开:留在最上面的是两种叶绿素;绿色层下面接着叶黄质;随着溶剂跑到吸附层最下层的是黄色的胡萝卜

素。 如此则吸附柱成了一个有规则的、与光谱相似的色层。接着他用纯溶剂淋洗。使柱中各层进一步展开,达到清晰的分析。然后把该潮湿的吸附柱从玻璃管中推出,依色层的位置用小刀切开,于是各种色素就得以分离。再用醇为溶剂将它们分别溶下,即得到了各成分的纯溶液。 【思考题1】俄国植物学家茨维特用于分离植物色素的色谱法属()色谱法。 【情节2】气相色谱法可比喻为一群运动员在一条泥泞的道路顺风赛跑,他们同时起跑后,因本身体力差异及道路、风力的影响,相互间的距离逐渐增大,最后于不同的时间到达终点。若把欲分离的组分视为运动员,固定相与流动相各为道路上的泥泞与顺风,色谱柱为道路,那么可以将色谱法分离、分析的原理写成:利用组分在体系中固定相与流动相的分配有差异,当组分在两相中反复多次进行分配并随流动相向前移动,各组分沿色谱柱运动的速度就不同,分配系数小的组分较快地从色谱柱流出。 【知识点2】分类和基本原理一 气相色谱法是以惰性气体(又称载气)作为流动相,以固定液或固体吸附剂作为固定相的色谱法。 气相色谱法按不同的分类方式可分为不同的类别: (1)气相色谱法按使用固定相的类型分为气液色谱法和气固色谱法。

液相色谱仪的原理和分析方法

液相色谱仪的原理及分析方法 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点: 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理

实验报告-高效液相色谱法测定VE含量

实验四高效液相色谱法测定V E含量 1 实验目的 1.1了解高效液相色谱仪的基本操作; 1.2了解高效液相色谱仪测定V E的原理。 2 实验原理 高效液相色谱仪的系统由储液器、泵、进样器、色谱柱、检测器、记录仪等几部分组成。储液器中的流动相被高压泵打入系统,样品溶液经进样器进入流动相,被流动相载入色谱柱(固定相)内,由于样品溶液中的各组分在两相中具有不同的分配系数,在两相中作相对运动时,经过反复多次的吸附—解吸的分配过程,各组分在移动速度上产生较大的差别,被分离成单个组分依次从柱内流出,通过检测器时,样品浓度被转换成电信号传送到记录仪,数据以图谱形式打印出来。 V E(维生素E)又名生育酚或产妊酚,在食油、水果、蔬菜及粮食中均存在。有抗氧化作用,能增强皮肤毛细血管抵抗力,并维持正常通透性;有改善血液循环及调整生育功能、抗衰老作用等。V E通过高效液相色谱柱进行分离,PDA检测器检测,外标法定量。 3实验器材 3.1 实验样品 V E样品溶液 3.2 实验试剂 浓度为50μg/ml的V E标样 3.3 实验仪器 高效液相色谱仪附PDA检测器 4 色谱条件 色谱柱:C18柱;流动相速度:0.3ml/min; 进样量:5μl;柱温:30℃。

5 实验结果与讨论 5.1实验结果 本次实验采用的是单点法测定。实验结果见表1。 表1. 液相色谱仪测定苹果的VE含量 样品中VE的浓度=乙烯标样的总量×苹果的峰面积/乙烯标样的峰面积 =5μl×50μg/mL×17369/(5μl×42217)=20.57μg/mL 5.2实验讨论 本次实验中,测定标样溶液V E含量时,在指定的保留时间内并未出峰。讨论分析原因:样品溶液在上周实验后,一直置于离心管中,未避光低温保存,导致样品中V E氧化,液相测定时没有在相应的时间出峰。本次实验时间较短,且主要目的是了解高效液相色谱仪的基本操作,以及液相色谱仪测定V E的原理,故结合前组同学对V E含量的测定数据进行讨论与分析。 因时间有限,实验采用了单点法进行测量分析,且无平行重复,这样误差较大。我们以后实验时,V E标样可以选择5个浓度,每个浓度分别测定3-4次,取其峰面积的平均值后作标准曲线,这样误差更小。 6知识扩展 6.1高效液相色谱仪包括哪几个部分组成? 答:高效液相色谱仪主要由输液系统、进样系统、色谱分离系统、检测器这四个部分组成,其流程图见图1。 输液系统包括贮液槽和输液管道、高压泵和梯度洗脱装置。贮液槽,通常是由玻璃或不锈钢等材料制成的,用来存贮足够数量、符合分析要求流动相的容器。输液管道是管道内径很小的用于连接高效液相色谱仪各主要流路系统。高压泵是将流动相在高压下连续送入色谱柱,使样品在色谱柱内完成分离过程。高效液相色谱仪采用的是往复式恒流泵,是具有输出压力高、流量稳定、流量可调范围宽、泵内死体积小、具有梯度洗脱及耐酸碱腐蚀、溶剂更换迅速等性能。梯度洗脱装

气相色谱仪原理、结构及操作

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就

实用高效液相色谱法的建立

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 色谱分离与在线检测技术已经成为当今分析化学的一门重要学科,而因其衍生出的相关产品也日益丰富。对色谱工作者来说,在面对具体方法开发中如何获得适当的分离度则成为关注的焦点。本文仅从网络上的资源收集简要介绍反相液相色谱法的建立思路。 一、 基本术语基本术语 读者可跳过本部分内容,直接阅读实例讲解部分 在评价色谱分离的品质时,通常用以下相关术语来反映色谱特征(如图1.): 图1. 典型色谱图 1. 保留因子(k): t t t k R ?= (1) 用于反映化合物的色谱保留性质,跟化合物性质有密切关系。如图1,设t R1 =3.65min, t 0 =1.20min, 则峰1的保留因子为:(3.65-1.20)/1.20=2.04 2. 拖尾因子(T f )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 a b a f W W W T 2+= (2) 图2. 典型拖尾峰 在理想情况下,色谱峰为高斯型对称峰,其拖尾因子为1.0,但在实际情况中,由于化合物的二次保留等其他因素,色谱峰大多会呈现一定程度的拖尾。如图2中,该色谱峰的拖尾因子可计算得:{(41.5-37.0)+(37.0-35.0)}/{2*(37.0-35.0)}=1.63. 3. 理论塔板数(N )

液相色谱方法开发(实例讲解) 2010? 未经许可,不得复制。转载请注明出处。 图3. 峰高与峰宽的关系 2(16W t N R = (3) 或 2( 54.55 .0W t N R = (4) 注意:在上式中W 为图3中的W b ,为基线峰宽(4σ),W 0.5 为峰高一半处的峰宽W h (2.335σ), 并非峰宽的一半(2σ)。 设图1中峰1的基线峰宽为0.25min, 则塔板数为:16*(3.65/0.25)^2=3410 4. 分离因子(α) 10 212t t t t k k R R ??= =α (5) 又称两个色谱峰的相对保留值。只有当α>1时,两个色谱峰才有分离的可能性。 设在图1中峰2的保留时间为6.50min, 则分离因子为: (6.50-1.20)/(3.65-1.20)=2.16

气相色谱法及其应用(精)

气相色谱法及其应用 指导教师:趙建军 主要内容 气相色谱法的基本理论气相色谱仪的构造及各部分功能 气相色谱分析方法及其应用

色谱法引论 X “色谱法" 名 称的由来 石油瞇(流动相) 色谱法 是利用混合物不同组分在固定相和流 动相中分配系数(或吸附系数.渗透 性等)的差异,使不同组分在作相对 运动的两相中进行反复分配,实现分 离的分析方法。 碳酸钙■ 個定相) 色 带 11^

X色谱法的分类 气相色谱(GC) 豊響动巴叫液相 色谱(LC) 物态可分为1“亠曲 + ,丄如7 超临界流体^色诸■ (SFC) 吸附色谱( 分配色谱 离子交换色谱 排阻色谱

第一部分:气相色谱基本理论 一、简介: 气相色谱法(GC)是英国生物化学家Martin A T P等人在研究液液分配色谱的基础上,于1952年创立的一种极有效的分离方法它可分析和分离复杂的多组分混合物。 目前由于使用了高效能的色谱柱,高灵敏度的检测器及微处理机,使得气相色谱法成为一种分析速度快.灵敏度高.应用范围广的分析方法。如气相色谱与质谱(GC-MS )联用、气相色谱与Fourier红外光谱(GC-FTIR)联用、气相色谱与原子发射光谱(GC -AES)联用等. 气相色谱法可分为气固色谱(GSC)和气液色谱(GLC) -GSC是用多孔性固体为固定相,分离的对象主要是一些永久性的气体和低沸点的化合物; ■ GLC的固定相是用高沸点的有机物涂渍在惰性载体上.由于可供选择的固定液种类多,故选择性较好,应用亦广泛。

气相色谱分离原理 当载气携带样品进入色谱柱时,基于不同纽分在两相间的溶解或吸附能力不同(分配系数不同),当两相作相对运动时,试样中各组分就在两相中进行反复多次的分配,使得原来分配系数只有微小差异的各组分产生很大的分离效果,从而各组分彼此得以分离开来? ?sample Irit b detector signal

相关文档
最新文档