第六章还原反应

合集下载

第六章还原反应及其工艺

第六章还原反应及其工艺
O C2 H 5 CO2 C2 H 5 S C 2H 5 C C 6H 5 C O N H C H N C S O C C C 6H 5 C O N H H N CH 2
C
C6 H5 CO 2C 2H 5
+ H2NCNH2
Zn/HCl
C 2H 5
选择性还原C=O成亚甲基,而不影响其它羰基。 选择性还原C=O成亚甲基,而不影响其它羰基。 C=O成亚甲基
搅拌的影响: 搅拌的影响:
铁粉比较重,需要良好的搅拌,否则容易沉到反应器底部。 铁粉比较重,需要良好的搅拌,否则容易沉到反应器底部。 衬有耐酸砖的平底钢槽和铸铁慢速耙式搅拌器。 衬有耐酸砖的平底钢槽和铸铁慢速耙式搅拌器。 耙式搅拌器 新式反应器:衬耐酸砖的球底钢槽和不锈钢快速螺旋桨式搅拌器。 新式反应器:衬耐酸砖的球底钢槽和不锈钢快速螺旋桨式搅拌器。 螺旋桨式搅拌器
铁粉的影响: 铁粉的影响:
洁净、粒细和质软的灰铸铁屑,优于组成比较纯净的钢屑。 洁净、粒细和质软的灰铸铁屑,优于组成比较纯净的钢屑。 通常使用60-100目铁粉。太粗的铁粉表面积小,反应慢; 通常使用60-100目铁粉。太粗的铁粉表面积小,反应慢;太细的 60 目铁粉 铁粉,后处理困难。 铁粉,后处理困难。 用量:每摩尔硝基物理论上需要2.25摩尔铁屑,实际为3 摩尔。 用量:每摩尔硝基物理论上需要2.25摩尔铁屑,实际为3-4摩尔。 2.25摩尔铁屑 思考:1mole间二硝基苯还原为间二氨基苯理论上需要多少摩尔 思考:1mole间二硝基苯还原为间二氨基苯理论上需要多少摩尔 铁屑? 铁屑?
2、锌粉还原
锌粉的还原能力
还原能力比铁粉强。 还原能力比铁粉强。 还原性与反应介质有关:可在碱性、酸性条件下进行。 还原性与反应介质有关:可在碱性、酸性条件下进行。 碱性 条件下进行 可用于还原硝基、亚硝基、氰基、羰基等多种官能团。 可用于还原硝基、亚硝基、氰基、羰基等多种官能团。 缺点:价格比铁粉贵得多。 缺点:价格比铁粉贵得多。

无机化学第六章-氧化还原与电化学

无机化学第六章-氧化还原与电化学

Zn - 2e → Zn2+ Cu2+ + 2e → Cu
3)电池反应: 两半电池反应之和。 Zn + Cu2+ → Zn2+ + Cu
4) 原电池的符号表示:
(-)Zn︱Zn2+(aq)‖Cu2+(aq)︱Cu(+)
• 负极在左,正极在右。用符号(-)(+)表示。 • “︱”表示两相之间的界面。 • “‖”表示盐桥。 • 溶液的浓度、气体的压力也应标明。
C 4HNO 3 4NO 2 CO 2 2H2O
二、离子-电子法
MnO4 SO32 Mn 2 SO42
2 MnO4 8H 5e Mn2 4H2O(还原) 5 SO32 H2O 2e SO42 2H (氧化)
2MnO4 5SO32 6H 2Mn2 5SO42 3H 2O
Zn+CuSO4
ZnSO4+Cu
Zn
CuSO4
Cu-Zn原电池装置
原电池:将氧化还原反应的化学能转变 成为电能的装置。
2. 原电池的组成与表示方法
1)半电池(电极): 组成原电池的每个部分叫半电池。
Zn-ZnSO4 锌电极 失电子-负极
Cu-CuSO4 铜电极 得电子+正极
2)半电池反应:半电池中发生的反应。
2KMnO 4 5K 2SO3 3H 2SO 4 2MnSO 4 6K 2SO 4 3H 2O
配平下列反应:
K2Cr2O7+KI+H2SO4 K2SO4+Cr2(SO4)3+I2+H2O
Cl2+NaOH NaCl+NaClO3+H2O
6.2 原电池与电极电势 原电池的组成与表示方法

第六章 还原反应

第六章 还原反应

硼烷可以选择性的把酰胺还原成相应的氨基,通常以四氢呋 喃为溶剂。
O2N O B H /THF C-N(CH3)2 2 6 O2N CH2-N(CH3)2
此外,乙硼烷可以选择性的把肟还原成相应的氨基。
B2H6,(CH3OCH2CH2 )2O 105 C~110 C
o o
O2N
C=NOH
O2N
CH2NH2
C H COCH3
Hg-Zn HCl Hg-Zn HCl
H3CH2 CH2CH2C
α,β-不 饱 和 醛 酮 同 时 被 还 原
PhHC
C H
CH2CH3
※ 可还原双键,包括非羰基双键;炔键还原为烯键
2、碱性条件下还原,锌可以把羰基还原成羟基。如:马尼地 平中间体的合成
Ph O Ph
Zn/NaOH C2H5 OH,70o C~74oC,2h
CH3
LiAlH4
CH3 CH 2NH 2
CH=NAlH2
H+
氢化锂铝可以使化合物活泼位置的卤素发生氢解,特别是苄 基位和烯丙位的卤原子更容易氢解。
CF3 NH2
LiAlH4 Et2O
CH3 NH2
(二) 氢化硼钠 氢化硼钠(NaBH4)的还原能力比LiAlH4弱,但是选择性较好。 使用条件水醇中进行,与LiAlH4正相反。
PhCH2CH2COOH
第二节
催化氢化反应
一、非均相催化氢化 催化反应发生在催化剂表面的反应。 (一)机理还没有完全研究清楚,通常认为氢吸附在金属的表 面,烯烃也通过p-轨道与金属络合,然后烯烃与氢加成。 (二)影响催化剂的反应因素 1、比表面积:一般催比表面积在数十到数百平方米每克。 2、载体:某些纯金属的催化剂往往吸附在活性炭、硅胶上。 3、助催化剂:反应中加入少量提高催化剂活性的物质。 4、毒剂和抑制剂:能是催化剂活性大大降低或完全丧失,并 难易恢复原有的活性。

第六章氧化-还原反应电化学

第六章氧化-还原反应电化学

第六章 氧化─还原反应和电化学Chapter 6 Oxidation-Reduction Reactions & Electrochemistry本章研究另一类化学反应──氧化─ 还原反应(有电子转移的反应)§1 氧化─ 还原反应(Oxidation —Reduction Reactions )一、氧化数(Oxidation Number )1.氧化数是一个经验值,是一个人为的概念。

2.引入此概念,有以下几方面的应用:(1) 判断是否发生氧化──还原反应:氧化数升高、氧化反应、还原剂 reducing agent (reductant),氧化数降低、还原反应、氧化剂 oxidizing agent (oxidant). (2) 计算氧化──还原当量 (3) 配平氧化──还原反应方程式(4) 分类化合物,如Fe ( Ⅲ )、Fe (Ⅱ);Cu (Ⅰ)、Cu (Ⅱ)。

引入氧化数,可以在不用详细研究化合物的结构和反应机理的情况下,实现上述四点。

3.怎样确定氧化数(1) 在离子化合物中,元素的氧化数等于离子的正、负电荷数。

(2) 在共价化合物中,元素的氧化数为两个原子之间共用电子对的偏移数。

a .在非极性键共价分子(单质)中,元素的氧化数为零,如P 4、S 8、Cl 2中P 、S 、Cl 的氧化数都为零;b .在极性键共价分子中,元素的氧化数等于原子间共用电子对的偏移数,例如:11H :F +-,1111(-2)H :O :H +--+,1100111H :O :O :H +--+-,11+11(0)H :O :F +--。

(3) 具体规定:a .单质的氧化数为零,例如P 4、S 8中P 、S 的氧化数都为零,因为P -P 和S -S键中共用电子对没有偏移;b .除了在NaH 、CaH 2、NaBH 4、LiAlH 4中氢的氧化数为-1以外,氢的氧化数为+1;c .所有氟化物中,氟的氧化数为-1;d .氧的氧化数一般为-2,但有许多例外,例如2O (1/2)--、22O (1)--、3O (1/3)--、21/2O ()++、2OF 2)(+等;目前元素的最高氧化数达到+8,在OsO 4、RuO 4中,Os 和Ru 的氧化数均为+8,其它元素的最高氧化数至多达到其主、副族数。

第六章 氧化还原反应及电极电势

第六章 氧化还原反应及电极电势

例如: φθ (I2/I-) ﹤ φθ(Fe3+/Fe2+ ) 氧化性: 氧化性: Fe3+ ﹥I2, 还原性: I-﹥ Fe2+
二、 判断氧化还原反应进行的方向
在讨论原电池时已经明确,电池中的正 极反应是氧化剂发生的还原反应,负极反应
是还原剂发生的氧化反应。
自发进行的氧化还原反应的电池电动势一 定是E>0的,一个氧化还原反应被设计成一
个原电池后,若E<0,则说明反应逆向进行。
例 判断298K时下列氧化还原反应的方向。
2Fe2+(c=0.1mol/L)+I2(s) 2Fe3+ (c=1mol/L)+2I-(c=0.1mol/L)
解 将上式写成两个半反应,并查附表得其标准电极电 位。

θ Fe 3 /Fe 2
0.771 V
3.导线
用以连接两极,才能使浸入电解质溶液
的两极形成闭合回路,组成正在工作的原电池。
【例 】 高锰酸钾与浓盐酸作用制取氯气反
应如下:
2MnO +16HCl =2MnCl2 +5Cl2 +2KCl+8H2O
4
将此反应设计成原电池,写出正负极反应、
电池反应、电极组成式与分类。
解:该反应的离子方程式为:
将气体通入相应离子溶液中,并用
惰性电极(如:石墨或者金属铂)做电极
板所构成的电极。
如:氯电极
电极组成式:Pt︱Cl2 (p) ︱ Cl- (c) 电极反应
Cl2 2e 2Cl
-
-
如Cu—Zn原电池的符号为: Cu Zn
(—)Zn │ Zn SO4(C1) CuSO4(C2)│Cu(+) ―│‖表示两相的界面,― ‖表示盐桥,习惯上负极在左,正极在右。

第六章 还原反应.

第六章 还原反应.

(4)炔烃顺式加氢
(5)不发生双键迁移的氢化,前者不发 生双键的迁移。
第二节 化学还原
如果分子中有多个可被还原的基团,需 要氢化还原的是列于表6-2前列的较易还 原的基团,而保留的是该列表后列较难 还原的基团,则选用催化氢化法为佳; 反之,若需还原后列基团而保留前列基 团,通常选用具有反应选择性的化学还 原为好。
有的化学还原剂还是具有立体选择性, 即同一个被还原物,若采用不同的化学 还原剂,结果可得不同的空间构型的产 物。
常用的化学还原剂有:金属、金属复氢 化物、肼及其衍生物、硫化物、硼烷等。
一、活泼金属与供质子剂
金属与供质子剂的还原作用应看成是 “内部的”电解还原,即一个电子从金 属表面转移到待还原的有机分子上,形 成“负离子自由基”,然后随即与供质 子剂提供的质子结合成自由基,接着再 从金属表面取得一个电子,形成负离子, 再从供质子剂取得质子而完成还原反应 的全过程。 如下式所示:
非均相催化氢化反应具有工艺简便、原料低廉, 对许多基团的加氢、氢解均有较高的催化活性, 而且容易分离回收等优点, 均相催化剂的缺点是原料成本高,目对氧敏感, 常用惰性气体回流除氧,以保让氢化反应的顺 利进行。但尽管如此,其优点仍然引起人们极 大的兴趣和重视,无论在催化理论的研究上, 还是在有机合成的应用方面,都具有深远的意 义。
催化加氢
催化加氢是指具有不饱和键的有机物分 子,在催化剂存在下,与氢分子作用, 结果不饱和键全部或部分加氢的反应。 该反应应用范围很广,烯烃、炔烃、硝 基化合物、醛、酮、腈、芳环、芳杂环, 羧酸衍生物等均可采用此法还原成相应 的饱和结构。如下例:
催化氢解
通常指在催化剂存在下,含有碳—杂键的有机 物分子在氢化时发生碳—杂键断裂,结果分解 成两部分氢化产物。可用下列通式表示:

第六章-还原反应

第六章-还原反应

硝基 R-NO2 伯胺 R-NH2
炔 R- C
C- R'
烯 R-HC
CH-R'
醛 R-CHO
伯醇 R-CH2OH
烯 RCH=CHR 烷 RCH2CH2R
酮 RCOR
仲醇 RCH(OH)R
5
还原基团
X =O, N X =Br,Cl
腈 RC N 含氮芳杂环
N
还原产物
CH3 CH3
2017年7月14日星期五 条件选择及活性比较
7
4. 催化转移氢化反应
催化转移氢化反应属于非均相催化氢化。特点是在金属催化剂存在下,用有
机化合物作为供氢体以代替气态氢作为反应氢源。
COOH
+
Pd/C, 甲苯 回流
COOH
+
常用的供氢体:不饱和脂环烃、不饱和帖及醇类 常用的催化剂:钯-碳
该反应特点:设备与操作简单、反应条件温和、基团还原选择性好
(5) 后处理方便,反应完毕,滤除催化剂蒸出溶剂即可,且干净无污染
(1). 常用催化剂
镍催化剂:Raney 镍、载体镍、还原镍、硼化镍
Raney 镍:为最常用氢化催化剂。具有多孔海绵状结构的金属镍微粒, 又称活性镍。它的制备是由铝镍合金粉末与氢氧化钠溶液反应。 钯和铂催化剂:载体钯和载体铂,用活性碳为载体的称为钯碳(Pd-C)和铂碳 (Pt-C); 用硫酸钡为载体,称为Lindlar催化剂;二氧化铂称为Adams催化剂
按机理分为
电子转移还原反应(Na, K, Li, ...)
1
生物还原反应:使用微生物发孝或活性酶进行底物特定结构底还原反应.
按还原方法分为
微生物发酵(jiao)法 酶催化法
2)按还原反应相的分为:

还原反应

还原反应
cis olefins (Lindlar Reduction) 酰氯+ H2, Pd/BaSO4 醛 (Rosemund Reduction) Org. Rxn. 1948, 4, 362
烯烃
烯,炔同时存在,还原到停留在烯的一步。
(三) 不同催化剂催化氢化反应 1.装置: (1)常压或低压氢化反应装置
b.脱硫
(2)铂催化剂
活性很强
可以还原除了酯、羧酸和酰胺外,各种不饱和基 团均可被还原。如:醛酮、腈、硝基化合物,还 原氨化反应等。反应通常可在较低温度和较低氢 气压力下反应。 铂黑、铂炭、二氧化铂等。
载体铂催化剂:Pt/C 酸能促进铂的催化氢化。
缺点:价格昂贵。
(3)钯催化剂
对烯烃、炔烃加氢活性高,还原酮、腈、硝基 化合物,还原氨化反应等,氢解活性也很强。 为最常用的催化剂之一, 可制成氧化钯、钯黑和载体钯(Pd/C)
氢解 (Hydrogenolysis) :在催化氢化的条件下,底物分子被 化验裂解成两个或两个以上的小分子的反应。使一些单键 发生裂解:如卤代物,苄醇类,苄胺类,酰卤类的氢解和 脱硫、酯的酯解等 .
O
O
Pd/C, H2
OCH2Ph
Pd/C, H2 ArCH2NR2
OH
ArCH3 +
R2NH
立体化学:
(1)还原芳环
(2)炔烃
得到反式烯烃
Na RC CH
NH3
RCH CH2
(二)其它金属 1.Fe, HCl(30%)
NO2
NH2
Fe, HCl
2. Sn, HCl
NO2
NH2
Sn, HCl
COOH
COOH
3.Zn-Hg, 浓盐酸,

第六章 氧化还原

第六章   氧化还原

4、根据氧化剂和还原剂得失电子数相等的原则, 找出最小公倍数,合并成一个配平的离子方程式。
①×2 ② ×5 2MnO4-+16H++10e10Cl- - 10e5Cl2 2Mn2++ 5Cl2 + 8H2O
14
2Mn2++8H2O
两式相加 2MnO4-+16H++10Cl-
5、将配平的离子方程式写为分子方程式。注意反 应前后氧化值没有变化的离子的配平。
21
常用电极类型: 常用的电极(半电池),通常有四种类型: 1. 金属-金属离子电极:将金属插入到其盐溶液中构 成的电极。如:银电极( Ag+ / Ag ) 。 电极组成式:Ag|Ag+ (c) 电极反应: Ag++eAg
2. 金属-难溶盐-阴离子电极: 将金属表面涂有其金属 难溶盐的固体,浸入与该盐具有相同阴离子的溶液 中所构成的电极。 如: Ag-AgCl电极。 电极组成式:Ag | AgCl(s) | Cl- (c) 电极反应: AgCl + eAg + Cl22
8
又如: Zn + 2HCl
ZnCl2 + H2
锌失去电子,氧化值升高,被氧化,称为还原
剂(reducing agent),又称电子的供体(electron donor)。 HCl中的H+得到电子,氧化值降低,被还原, HCl称为氧化剂(oxidizing agent),又称电子的受体 (electron acceptor)。 氧化还原反应的本质是反应过程中有电子转移 (电子的得失或电子云的偏移),从而导致元素的 氧化值发生变化。
式中:n=5,氧化态为MnO4-和8H+,还原态为Mn2+ (H2O是溶剂,不包括在内)。

第六章 还原反应

第六章 还原反应
O O 2 Li,NH3(l) Et2O, 33 ¡ æ OLi (1) CH3 H (2) Br CH3 O NH4Cl CH3
CH3
6.3
金属还原剂
3 .以锂(钠)金属将苯还原成双烯类( diene ),称为 Brich 还原反应。此反应需在含质子溶剂中进行。
OCH3 Li,NH3 t BuOH OCH3 H3+O O
6. 2 金属氢化物还原
3. 硼烷(BH3)
硼烷(borane)是由硼氢化钠与三氟化硼制备,以
二硼烷 B2H6(diborane)的形式存在。
3 NaBH4 + 4 BF3
H B H H H B H H
2 B2H6 + 3 NaBF4
硼烷和二硼烷具有 Lewis Acid 的 特性,因此反应性与 NaBH4 或 LiAlH4 不同。 它容易与羧酸及烯烃反应,却 不与酰卤,卤代烷,砜或硝基化合物 等作用。
O H2,(Ph3P)3RhCl PhH, 25 ¡ æ ,1 atm O
6.1 催化氢化(加氢反应)
一般官能团化合物的加氢反应
反应性 最高 反应物 RCOCl RCH2NO2 RC≡CR′ RCHO RCH=CHR′ RCOR′ ArCH2X RC≡N RCO2R′ RCONHR′ 氢化产物 RCHO RCH2NH2 RCH=CHR′(Z,Cis) RCH2OH RCH2CH2R′ RCH(OH)R′ ArCH3 RCH2NH2 RCH2OH + R′OH RCH2NHR
6. 2 金属氢化物还原
1. 氢化锂铝
一般官能团化合物与氢化锂铝 LiAlH4 作用 反应性 最高 C=O COOR 递 减 CN CONR2 C-NO2 CHBr 最低 CH2OSO2Ar 反应物 CHOH CH2OH CH2NH2 CH2NR2 CNH2 CH2 CH3 氢化产物

第六章 还原反应

第六章 还原反应

影响催化氢化反应的主要因素
• 催化剂 • 被氢化物的结构与性能 • 温度和压力 • 溶剂的极性与酸碱度 • 搅拌
影响催化氢化反应的主要因素
• 催化剂的影响
H2,Raney镍
COOC2H5
COOC2H5
50oC,10.13MPa H2,CuCr2O4 160oC,27.56MPa
CH2OH
催化剂应根据被氢化物结构和目的产物而定 在催化氢化中不允许任意加大催化剂用量,以避 免氢化反应难以控制
第六章 还原反应
§6.1概述 §6.2催化氢化 §6.3化学还原
6.1概述 • 定义 • 反应的重要性 • 还原剂 • 还原方法
定义
广义地讲,在还原剂的参与下,能使某 原子得到电子或电子云密度增加的反应称为 还原反应。 狭义地讲,在有机分子中增加氢或减少 氧的反应,或者兼而有之的反应称为还原反 应。
OH
OH
260oC
4
9.81×10 Pa
R C H

R‘ C H

R—C C—R‘
Lindlar催化剂 H2
室温 >0.29MPa 室温
RCH2CH2R’ + RCH=CHR’
•溶剂的极性的影响
甲醇或乙醇
苯或环己烷
•搅拌效率的影响
(1)影响催化剂在反应介质中的分布情况、 面积和催化效果; (2)有利于传热,防止局部过热。
RCH2OH + R'OH
RCONH2
RCH2NH2
R
R
RCOOH
RCH2OH
RCOONa
分子结构不同,催化氢化的难易程度不同: 炔>烯>ArH 醛>酮>腈>酸 空间效应越大,越不易靠近催化剂,需要强化反 应条件,如升高温度、增加压力、提高催化剂活 性等。

6章 还原

6章  还原
NH2 NH2 CH3 NH2
NH2
NH2
NH2
(3)能溶于热水、但在冷水中溶解度低的芳胺,如邻 苯二胺、氨基苯酚。 分离方法:热过滤、冷却结晶。
NH2 NH2 OH OH NH2
NH2
(4)含-SO3H和-COOH的芳胺,如氨基萘磺酸。 分离方法:加碱中和生成溶于水的盐,然后过滤, 再酸化析出或盐析。
OH NH2
OCH3 NH2 O 2N
OCH3 NH2
NH2
NH2
NH2
NH2
CH3 Cl
CH3 Cl
OCH3 NH2
OCH3
NH2
NH2 NH2
NH2 O NH2 O
NH2 NH2
O
NH2
O
第五节 催化氢化
催化氢化按其反应类型可分为氢化(加氢)反应和氢解 反应。 催化氢化:在催化剂的存在下,含有不饱和键的有机 物分子与氢分子反应,使不饱和键全部或部分加氢的 反应。 催化氢化是π 键断裂与氢加成的反应。 常发生氢化的不饱和键有:碳碳双键和叁键、羰基、 氰基、醛基、芳环和芳杂环等。
(3)金属复氢化合物:LiAlH4、NaBH4、KBH4等;
1.3.2 有机还原剂
乙醇、甲醛、甲酸、烷氧基铝(Al[OCH(CH3)2]3)等。
第二节
铁粉还原
2.1 铁粉还原硝基的反应历程 铁的还原反应是通过电子转移而实现的。首先是铁 失去电子转变成铁离子,被还原的基团(-NO2)得到 电子生成负离子自由基,然后再从质子给与体(如 水)得到质子,生成目的产物。 铁粉还原硝基苯的反应历程:
(1)被还原物结构:当芳环上有吸电子基团时,
(2)铁粉的质量和用量 粒度:60~100目;
质量:干净、质软灰铸铁(含有碳、硅、硫等杂质); 用量:3~4molFe/molArNO2(理论为2.25 mol),

第六章 氧化还原反应和电极电势

第六章 氧化还原反应和电极电势

第六章氧化还原反应和电极电势
氧化数:有整数、分数、正负数、零。

任何氧化还原反应保括两个半反应,即氧化半反应、还原半反应。

氧化态:氧化数较高的物质;还原态:氧化数较低的物质。

两者合称氧化还原点对,书写(I2/I-)。

氧化还原点对,就是一个半电池,一个电极。

氧化还原反应方程式配平:
1氧化数法:①氧化数值不变②原子守恒
2离子-电子法(半反应法)原则①原子守恒②电荷平衡
步骤1写成离子方程式
2再写成两个半反应
3配平半反应(原子配平、电荷配平。

不够酸性介质加H、
H2O;碱性介质加OH、H2O;中性介质左加H2O右加H+或OH-)
4合并半反应(氧得=还失。

找最小公倍数)
5离子方程式变化学方程式
6核查总反应
氢氧配平规律:
原电池:负氧正还。

盐桥:提供离子通道维持电荷平衡。

电极的种类:1金属离子电极:点对、电极符号Zn|Zn2+(c)、电极反应(氧化态的电子变还原态)|表示相界面;c注明离子浓度。

2金属难溶盐:电对AgCl/Ag;电极符号Ag|AgCl|Cl-(c)
Hg2Cl2/Hg Pt|Hg(l)|Hg2Cl2|(c)⚠️惰性电极Pt、液态(l)3氧化-还原电极:电对:Fe3+/Fe2+Pt|Fe3+(c1),Fe2+(c2)
⚠️同一相用“,”号隔开;惰性电极Pt
4气体-离子电极:电对:H+/H2 Pt|H2(p)|H+(c)
原电池符号:负极在前,正极在后。

(-)Zn|Zn2+(c1)||Cu2+(c2)|Cu(+)||表示盐桥。

第六章 氧化还原反应及电化学基础_6

第六章  氧化还原反应及电化学基础_6

如:标准锌电极与标准氢电极组成原电池,锌为负极, 标准锌电极与标准氢电极组成原电池,锌为负极, 氢为正极, 氢为正极,测得 εθ = 0.7618 (V) , 则 Eθ(Zn2+/Zn) = 0.0000 – 0.7618 = -0.7618(V)
标准电极电势表
标准电极电势表
Eθ(Li+/Li)值最小的原因:(严宣申,王长富《普通无机化学》(第二版)p10) (Li+/Li)值最小的原因 值最小的原因: 严宣申,王长富《普通无机化学》 第二版) 热 sGmθ(Μ) hGmθ(Μ+) 化 学 M(s) + H+(aq) M+(aq) + 1 H2(g) 2 循 1 G θ(Η ) hGmθ(Η+) 2 2 d m 环 iGmθ(Η) H(g) H+(g)
“形式电荷” +1 -2 形式电荷” 形式电荷 称为“氧化数” 称为“氧化数”
经验规则: 各元素氧化数的代数和为零。 经验规则: 各元素氧化数的代数和为零。 1)单质中,元素的氧化数等于零。(N2 、H2 、O2 等) 单质中,元素的氧化数等于零。(N 。( 2)二元离子化合物中,与元素的电荷数相一致。 NaCl 二元离子化合物中,与元素的电荷数相一致。 CaF2 +1,- +2,+1,-1 +2,-1 共价化合物中,成键电子对偏向电负性大的元素。 3) 共价化合物中,成键电子对偏向电负性大的元素。 超氧化钾) O: -2 (H2O 等); -1 (H2O2); -0.5 (KO2 超氧化钾) 一般情况; H: +1, 一般情况; -1, CaH2 、NaH
思考题: 确定氧化数 思考题:
Na2S4O6 (1)Na2S2O3 ) +2 +2.5 (2)K2Cr2O7 ) CrO5 +6 +10 KO3 (3)KO2 ) -0.5 -1/3 注意:1) 同种元素可有不同的氧化数; 注意: 同种元素可有不同的氧化数; 氧化数可为正、负和分数等; 2) 氧化数可为正、负和分数等;

轻化工合成原理第6章-讲义

轻化工合成原理第6章-讲义

前言1. 还原反应z狭义:使反应物分子的氢原子数增加或氧原子数减小的反应。

z广义:使反应物分子得到电子或使参加反应的碳原子上的电子云密度增高的反应。

232. 还原方法z 化学还原:除氢以外的化学物质作还原剂的方法z 催化加氢:用氢在催化剂作用下进行还原的方法均相催化氢化:催化剂溶于反应介质非均相催化氢化液相催化氢化气固相催化氢化z 电解还原:在电解槽阴极室进行还原的方法4z 还原反应的分类:¾碳-碳不饱和键的还原¾碳-氧键的还原:如醛羰基还原成醇羟基或甲基;酮羰基还原为醇羟基或次甲基;羧基还原成醇羟基;羧酰氯还原成醛基或羟基等。

¾含氮基的还原:硝基和亚硝基还原为羟氨基和氨基等;硝基还原成氧化偶氮基、偶氮基或加氢偶氮基等。

56.1 化学还原有机还原剂:乙醇、甲醛、甲酸、烷氧基铝等。

金属:NaHS 、Na 2S 、Na 2S x 、Na 2SO 3、NaHSO 3、Na 2S 2O 4、SnCl 2、FeCl 2、TiCl 3非金属:SO 2、NH 2OH 和H 2NNH 2等活泼金属及其合金:Fe 、Zn 、Na 、Zn-Hg 、Na-Hg 低价元素化合物金属复氢化合物:NaBH 4、KBH 4、LiBH 4、LiAlH 4等无机还原剂66.1.1 铁粉还原z 以金属铁为还原剂,反应在电解质溶液中进行z 选择性还原剂(硝基或其它含氮的基团)z 工艺成熟、简单,适用范围广z 副反应少z 对设备要求低z 产生大量的含胺铁泥和废水11NH 4Cl >FeCl 2>(NH 4)2SO 4>BaCl 2>CaCl 2>NaCl 最常用的电解质是FeCl 2,可在还原前先加入少量盐酸及铁屑制成,工业上称为“铁的预蚀”。

3) 电解质-电解质可提高溶液的导电能力,加速铁的腐蚀过程,还原速度取决于电解质的性质和浓度。

4) 温度-一般为95-105℃。

铁粉还原为强烈放热反应,若加料太快,反应过于激烈,会导致暴沸溢料。

无机化学 氧化还原反应

无机化学 氧化还原反应
E 为强度性质,反映了氧化还原电对得失电子的倾向
E 与反应计量系数无关,无加和性 与反应式的书写方向无关
Fe3+ + e-=Fe2+ E = 0.771 V 2Fe3++ 2e-=2Fe2+ E = 0.771 V, 而非0.771×2 Fe2+ - e- =Fe3+ E = 0.771V, Fe2+ =Fe3+ + e- 而非 - 0.771 V
第六章 氧化还原
PLEASE ENTER YOUR TITLE HERE
第一节 氧化还原反应 第二节 电池的电动势和电极电势 第三节 氧化还原平衡 第四节 影响电极电势的因素 第五节 元素电势图
电负性:元素的原子在分子中吸引电子能力的相对大小
元素电负性的周期性变化与金属性、非金属性的一致
金属-金属离子电极
金属-金属难溶盐-阴离子电极
氧化还原电极
气体-离子电极
三、常用电极类型氧Leabharlann 还原电对: Ag+ / Ag
电极组成式: Ag+(c) | Ag(s)
电极反应:
由金属板插入到该金属的盐溶液中构成
01
03
02
04
例:银电极
1.金属-金属离子电极
将金属表面涂渍上其金属难溶盐的固体,然后浸入到与该电解质具有相同阴离子的溶液中构成的电极
(1) 两个半电池反应分别为: 正极 MnO4-+ 8H+ + 5e-=Mn2+ + 4H2O 负极 H2O2=2H+ + O2 + 2e- (2)电极组成为: 正极 MnO4- (c1), Mn2+ (c2), H+ (c3) | Pt (s) 负极 H+ (c4), H2O2 (c5) | O2 (p) | Pt (s) (3)电池组成式为: (-) Pt |O2 (p) | H2O2 (c5), H+ (c4)‖MnO4- (c1), Mn2+(c2), H+(c3) | Pt (+)

第六章 氧化还原反应

第六章  氧化还原反应

电极类型:
(1)金属及其离子电极
如:Ag︱Ag+(c)
Ag e
Ag
(2)气体电极
如:Pt︱H 2(p) ︱H+(c) (3)氧化还原电极
2H 2e
H2
如:C(石墨)︱Fe2+(c1) ,Fe3+(c2) Fe3 e
Fe2
(4)金属及其难溶盐-阴离子电极
如:Ag︱AgCl︱Cl-(c)
AgCl e
(5)2 KMnO4+K2SO3+2KOH
2K2MnO4+K2SO4+H2O
2、氧化值法 遵循原则: 氧化剂中元素氧化值降低的总数与还原剂 中氧化值升高的总数必须相等。 配平步骤: 以KMnO4和K2SO3在稀H2SO4中反应为例 (1) 写化学式,标氧化值,计算氧化值变化
氧化值降5价
+7
+4
Cr元素的氧化值:+5
O OO
Cr OO
6、半反应 氧化还原反应根据电子转移的方向可拆成两个半反应。
如: Zn Cu2 Zn 2 Cu
氧化半反应: Zn Zn 2 2e
还原半反应: Cu2 2e Cu
半反应通式:氧化剂+n e
还原剂
或 Ox ne
Red
注意: 氧化还原反应中,电子有得有失,因此半反应不能单独存在,
组成如下图的原电池,从电流方向可得Zn电极为负极
(-)Zn∣Zn2+(1mol/L)‖H+(1mol/L)∣H2(100kPa)∣Pt(+)

θ 正极
θ 负极
θ H/H2
θ Zn 2/Zn
0.0000
θ Zn
2
/Zn
0.7618V

θ Zn 2/Zn
0.7618V

无机化学第六章氧化还原总结

无机化学第六章氧化还原总结

298.15K,忽略 离子强度时
0.0592 n
lg
Ox Red
n 为电极反应中转移的电子数; 式中: [Ox ]为电极反应中氧化型一侧各物质浓度幂的乘积
注意
[Red]为电极反应中还原型一侧各物质浓度幂的乘积
1)纯液体、固体不出现在方程式中。气体用分压(p/p) 表示;(p以kPa为单位, p=100kPa)
已知 (Cl2 / Cl-) = 1.36 V, 当[ Cl- ] = 10 mol·L-1 , p(Cl2) = 1.0 kPa 时, (Cl2 / Cl-) 的值是 ( 1.24V )
I2 + 2e- 2I-
(I2/ I )
(I2/ I )
0.0592 1 2 lg [ I ]2
0.535
利用 ´计算 的 Nernst 方程:
/ 0.0592 lg cOx
n
cRe d
2、氧化还原滴定曲线计算(电极电势)
(1)计量点前——根据被滴定电对计算
(2)化学计量点sp
SP
n11 '
n1
n22 '
n2
适用于对称电对——电极反应中 氧化型、还原型前的系数相同。
(3)计量点后——根据滴定剂电对计算
AgI /Ag :
AgI + e- Ag + I- ;
Cl2/Cl- :
Cl2 + 2e- 2Cl-
(-)Ag ︱ AgI (s) | I- (c1) ‖Cl- (c2)︱Cl2 (P ) ,Pt (+)
:写出反应 I2 + 2S2O32- = 2I- + S4O62- 所对应的原电池符号: 解:根据反应式可知:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(R3P)3RhCl
1.机理
H-H H H
C
C H H C C
catalyst surface C H H C C H C H
多相催化 :在不溶于反应体系中的固体催化剂 的作用下,氢气还原在液相中的底物的反应。
2. 类型
催化氢化 Hydrogenation
催化氢解
Hydrogenolysis
均相催化 Heterogenous 多相催化 Homogenous
b.脱硫
(2)铂催化剂 活性很强
可以还原除了酯、羧酸和酰胺外,各种不饱和基 团均可被还原。如:醛酮、腈、硝基化合物,还 原氨化反应等。反应通常可在较低温度和较低氢 气压力下反应。 铂黑、铂炭、二氧化铂等。
比较最常用的是二氧化铂(PtO2),(Adams catalyst), 在使用时被还原成铂。
还原活性从高到低:
C=O > COOR> CN> CONR2> C-NO2> CHBr > CH2OSO2Ar
制备:
4LiH + AlCl3 Et2O 3LiCl3 + LiAlH4
遇水分解:
(1)用1M氢化铝锂溶液进行还原时很方便. (2)用较少量溶剂和粉状铝氢化锂混合成稀糊状直 接应用. 此时要注意氢化铝锂用量,至少要过量10%,以保证 有足够的纯LiAlH4进行反应.在特殊的情况下有时甚 至过量2—4倍,才能使反应进行完全。
PhNHOH
PhCH2OH NH2
NH2
特点:较氧化反应易于控制。 类型: (1)活泼金属Fe/HCl, Zn/HOAc,Na/ROH, ZnHg/HCl,Na-Hg/EtOH等 (2)低价元素的化合物 Na2S2O4, NaS, FeCl2, SnCl2, TiCl3, TiCl2等 (3)金属氢化物 NaBH4, LiAlH4, (4)催化加氢 Pd, Pt, Ni, /H2. (5) 有机金属还原剂: 异丙醇铝,叔丁醇铝,甲醛,葡 萄糖。 (6)非金属:Me2S, Ph3P
O Pd/C, H2 OCH2Ph OH O
Pd/C, H2 ArCH2NR2 ArCH3 + R2NH
低压或常压氢化 1~4atm,0~100oC 高压氢化 100~300atm, 100~300oC
P, 压力:即为压强,kg/cm2, psi-pounds per square inch 1pound=0.453kg, 1inch=2.54cm, 1psi=0.07kg/cm2. 1atm=1.0332kg/cm2.
载体铂催化剂:Pt/C 酸能促进铂的催化氢化。 缺点:价格昂贵。
(3)钯催化剂
对烯烃、炔烃加氢活性高,还原酮、腈、硝基 化合物,还原氨化反应等,氢解活性也很强。 为最常用的催化剂之一, 可制成氧化钯、钯黑和载体钯(Pd/C)
钯碳催化剂(10%)的制备 在200ml烧杯中加入5.0氯化钯,65ml水和8.8mL浓 盐酸,加热助溶。呈棕色溶液,待用。在1000ml三 口瓶中放人250g粉状活性碳(化学纯)和200mL水。 加热煮沸15 min。在搅拌下加入上述棕色氯化钯溶 液。在剧烈搅拌下,维持温度在90-95oC之间,徐 徐加入22m1甲醛(40%)。加毕,继续搅拌15min。 然后冷却到20oC以下,在搅拌下慢慢加入30%氢氧 化钾水溶液,使反应混合液的pH=5~6。再搅拌 20mL 过滤,水洗二、三次,转移到烧杯中,用5% 硝酸浸泡过夜,或更长时间。过滤,水洗至中性, 取出干燥,密闭保存,待用。
4. Wolff-Kishner Reduction
Organic Reactions 1948, 4, 378 Comprehensive Organic Synthesis 1991, vol. 8, 327. 还原酮到饱和烷烃
(三)金属氢化物的还原 Aluminium Hydrides 1. LiAlH4 2. AlH3 3. Li (tBuO)3AlH 4. (iBu)2AlH DIBAL-H 5. Na (MeOCH2CH2O)2AlH2 REDAL
1.LiAlH4 Lithium Aluminium Hydride---- LiAlH4 (LAH) Chem. Rev. 1986, 86, 763 Org. Rxn. 1951, 6, 469. 很强的还原剂 悬浮在ether or THF中 可还原羰基,羧基,酰氯,酸酐和酯基到醇。 还原硝基,酰胺,肟,亚胺,重氮化合物和芳香族硝基 化合物到胺 对环氧化合物开环 还原 C-X 键到 C-H 还原炔基醇到 反式烯丙醇
反应完毕后,首先要破坏掉过量的铝氢化锂.可以加 入含水乙醚,乙醇一乙醚,乙醇, 或直接加水(小心!).但由于这些方法都产生大量氢 气,必需注意安全!如果要避免氢气 的发生,可用醋酸乙酯来分解过量的氢化铝锂.
反应机理:
立体化学:
受甲基的位阻影响,使H-的进攻比较容易从内侧进行:
氢化锂铝还原羰基的重要特征之一是非对映选择性。 当与羰基直接相连的取代基是手性基团,通常用氢 化锂铝还原羰基时负氢离子加到立体位阻较小的一 面。
立体化学: 在环状烯烃化合物中,主要生产顺式产物。因为不饱 和化合物分子以空间效益较小的一面吸附到催化剂表 面,与吸附在催化剂表面的清进行顺式加成。
(二)加氢反应活性
高 RCOCl RCH2NO2
R C CH

RCH=CHR’ RCHO RCOR’ ArCH2X RCO2R’ RCONHR’
R C N
3.Mg, Mg-Hg,Mg-Zn
O + Mg(Hg)
benzene O O Mg
H2 O OH OH
Mg(Hg) O OHOH
Mg(Hg) O
HO
OH
4.Birch还原
Li, Na, K, NH3(l) (1)还原芳环
COOH
COOH
OMe Li, NH3(l) OMe H3O+ O
(2)炔烃
第六章 还原反应 (reduction)
一、概述 为精细有机合成化学中最广泛应用的单元反 应之一。 与氧化反应相反:氧原子减少,氢原子增加, 两者兼有。
氧原子减少
[H] PhN O NPh PhN NPh
氢原子增加
PhN
NPh
[H]
PhNH2NH2Ph
两者兼有
[H] PhNO2 [H] PhCOOH NO2 [H] NO2
Cram规则:
如果与羰基直接相连的取代基是可旋转手性基团,视 手性碳原子所连接的基团的大小差别,其中在一面进 攻占优势,产生不对称还原。反应的主要产物可由 Cram规则预测。例如3—苯基—戊—2—酮经氢化锂铝 还原,优势产物是苏式的醇。
羰基化合物的a-碳连有极性基团,则不遵守Cram规则。 例如。a-卤代酮进行反应时,由于卤原子与羰基的氧 原于静电相斥作用超过立体效应,因此卤原子与羰基 的氧处于反式有利。此时,负氢优先进攻其余两个基 团中较小的一边。
N N
COOEt COOEt
Pd/C, H2(4atm) EtOH
N
N
COOEt COOEt
小结:
烯、炔:常压或低压,H2,Ni,Pd,Pt 醛、酮H2,Ni、加热,加压 酸、酯 高温,高压,Ni,Pd,Pt 200oC 酰胺,腈Ni>Rh, 500-100oC, 高压 酰卤Pd/BaSO4 -NO2 常压,Pd,Ni,Pt =NOH, =NH室温1~4atm -Ar10-20Mpa,100-200oC
O NH2OH
N
OH Na, EtOH
2
(3)萘的还原
Na, 戊醇 Na, 乙醇
(4)杂环
Na,EtOH N N H
2.Na/非质子溶剂
制环状a-羟基酮
CO2Et (CH2)8 CO2Et Na, C6H6 Na+ Na+
O O
CH3OH
OH O
OH CO2CH3 Na xylene CO2CH3 O
氢化 (Hydrogenation):使碳-碳,碳-氧,碳-氮等重键加氢。
RCH=CHR'
Pd/C, H2
RCH2CH2R'
氢解 (Hydrogenolysis) :在催化氢化的条件下,底物分子被 化验裂解成两个或两个以上的小分子的反应。使一些单键 发生裂解:如卤代物,苄醇类,苄胺类,酰卤类的氢解和 脱硫、酯的酯解等 .
二氧化铂催化剂的制备: 在一小烧杯中放3.5克铂氯酸和10毫开水.加入纯硝酸 钠,用小火蒸发至干。加大火焰,十分钟内温度升到 350—370oC,到十五分钟,反应物熔融产生气体。温 度升到400oC后,气体发生渐慢,在二十分钟时,温 度升到500—550oC,这时气体放出比较温和。在这温 度维持到三十分钟。冷却,用50毫升水处理,放 置.倾去水液,留下棕色沉淀,再用水洗几次.滤过, 用水洗到无硝酸根离子.在干燥器中干燥,得催化剂 1.57—1.6克。
烯,炔同时存在,还原到停留在烯的一步。
(三) 不同催化剂催化氢化反应 1.装置: (1)常压或低压氢化反应装置
(2)低压或高压加氢反应装置:
2.催化剂
(1)Raney Nickel兰尼镍 a.加氢催化: 可还原烯烃,-NO2化合物,-CN, C=N-OH, 羰基,芳 基,卤代烃 制备:铝镍合金(1:1)溶于600mL10%NaOH水溶液中, 90~95oC0.5h加完,搅拌1h,滗出液体,水洗,乙醇洗,始 终有液体覆盖,酒精中保存,冰箱中保存三个月。S, P, As, Bi可使之中毒。 Raney Ni通常不加载体。
R
RCHO RCH2NH2 RCH=CHR’(Z,cis) 氢化 RCH2CH2R’ RCH2OH RCHOHR’ ArCH3 氢解 RCH2OH + R’OH RCH2NHR’ RCH2NH2
R
炔烃的加氢
相关文档
最新文档