新技术试题答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料制备新技术试题
名词解释(15分)
亚稳相:亚稳相是指在相空间中于一定的温度、压力、成分等状态条件下吉布斯自由能比稳定相或平衡相高的相,
粉末注射成型:是传统粉末冶金工艺与现代塑料注射成形工艺相结合而形成的一门新型近净形成形技术。它利用模具注射成型并通过烧结快速制造高密度、高精度、三维复杂形状结构零件。
结构驰豫:在低于玻璃转化温度Tg和晶化温度Tc的较低温度下退火时,合金内部原子的相对位置会发生较小的变化,从而增加密度,减小应力,降低能量,使金属玻璃的结构逐步接近于有序度较高的“理想玻璃”结构,这种结构变化称为结构弛豫。
螺杆背压:在进入下一次注射前,螺杆将通过旋转把熔融物料输送到料筒的前部加以储备,此时,螺杆一边旋转一边将被输送到料筒前部的物料产生的反压力而后退。为了调整和拧制螺杆后退的方式,可在螺杆上加上一定的和熔融物料相反的压力,这就是螺杆背压。
牛顿冷却:熔体与模面的热接触较差,熔体与冷模之间的界面热阻较大,同时熔体层厚度较小,熔体内部沿热流方向的温度梯度也很小,因此熔体在凝固前和凝固时的传热主要由熔体与冷模之间的界面热传递控制。
填空题:(25分)
1、材料加工技术的主要发展方向是向短流程、设计制备与成型加工一体化、先进制备加工
技术和发展新材料。
2、基本材料的制备方法有液态成型、固态成型和各类加工。
3、晶态金属的凝固属于一级相变,包括形核与长大二个阶段的渐变过程。
4、粉末注射成型包括喂料制备、注射成形、脱脂和烧结四个基本过程
5、快速凝固设备与常规铸造工艺比较,熔化装置相当于冶炼炉,冷却装置相当于铸模。还
包括常规铸造设备所没有的、特殊的分离装置,如单辊法中的辊轮。
6、快速凝固设备中的核心是分离装置,其作用是在时间和空间上分割熔体,避免大量熔化
潜热的集中释放,改善熔体与冷却介质的热接触状况。
7、非晶凝固属于二级相变,晶体凝固属于一级相变。
8、金属玻璃的结构稳定性不仅包括温度达到T c以上时发生的晶化,还包括低温加热时发生的结构弛豫。
9、粉末注射成型中的金属粉末可用氧化还原法、雾化法、化学沉积法以及粉碎研磨法等方法制备。
问答题:(40分)
1、试比较连续铸轧和连铸连轧二种加工方法的相同点与不同点。
2、某零件有二种成型方法可选择,一种方法是先通过液态成型后再固态成型方法加工而
成,另一种方法是液态成型。试分析这二种方法加工的零件各有什么优缺点。
3、金属粉末注射成型相比与传统金属加工技术(如模压、铸造)有什么特点
PIM是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科交叉复合的产物。粉末注射成形特点,
一是粉末注射成形过程中,粉末均匀填充模腔成形,模腔内各点压力一致,消除了传统粉末冶金压制成形方法不可避免的沿压制方向的密度梯度问题,能在一定程度上克服传统粉
末冶金产品存在的密度、组织、性能不均匀的现象。与精密铸造技术相比,金属粉末注射成形技术在提高零件精度,避免铸造的成分偏析等问题的同时,大大提高了生产效率。
二是用注塑机注射成型,能制造传统工艺不能制造的复杂零部件。传统粉末成形是在外加压力作用下,把粉末加入压模内压成生坯,然后烧结成产品,金属或其他类型粉末通过颗粒重排、塑性流动而得到致密化。由于粉末的流动性较液体差,一些具有外部切槽、横孔、盲孔、外螺纹、凹台、表面滚花等形状的零部件,难以一次成形。PIM通过采用一定比例的高分子聚合物黏结剂与制备零件需要的金属粉末、陶瓷或者其他材料的粉末制成具有良好流动性的均匀混料,能够像塑料制品注射成形一样成形复杂形状的零部件,再经脱脂、烧结得到最终需要的产品,如外部切槽、外螺纹、锥形外表面、交叉孔与盲孔,凹台与键销、加强筋板、表面滚花等,这类零件都是无法用常规粉末冶金方法得到的。
三是可根据零件性能要求进行大范围的成分设计,只要这种材料能被制得细粉,而且可以事先不同材料零部件一体化,PIM可以制取微观复合材料或宏观复合材料的零件,以充分发挥不同材料的优异性能,适应性广,生产成本低。
四是适合大批量自动化生产。PIM具有一些生产优势,可方便地采用一模多腔模具,成形效率高,模具使用寿命长(磨损小),更换调整模具方便快捷,产品转向快,新产品从设计到投产时间短。该工艺技术不仅具有常规粉末冶金技术工序少、切削少或无切削、高效、经济的优点,而且PIM制造的零件几乎不再需要进行机加工,材料的消耗少,自动化程度高,材料的利用率可以高达98%以上,因此,所生产的复杂形状零件高于一定数量时,PIM 就会比机加工方法更为经济。
4、实现快速凝固的核心是什么?达到这一目的的方法主要有哪两种?
快速凝固的核心是要提高形核凝固时的过冷度,从而提高凝固速度。在实际凝固过程中达到这—目的的方法主要有两种,一种可以看成是“动力学”的方法,即设法提高形体凝固时的传热速度从而提高凝固时的冷速,使熔体形核时间极短,来不及在平衡熔点附近凝固而只能在远离平衡熔点的较低温度凝固,因而具有很大的凝固过冷度和凝固进度。具体实现这一方法的技术称为急冷凝固技术或熔体淬火技术。另一种力法是“静力学”的力法,即针对通常铸造合金都是在非均匀形核条件下凝固,因而使合金凝固的过冷度很小的问题,设法提供近似均匀形核的条件。在这种条件下凝固时,尽管冷速不高但也同样可以达到很大的凝固过冷度。具体实现这种方法的技术一般称为大过冷技术。
5、非晶材料在微观结构上的基本特征
非晶材料在微观结构上具有以下三个基本特征:
(1)存在小区间内的短程有序,在近邻或次近邻原子的键合(如配位数、原于间距、键角、键长等)具有一定的规律性,但没有任何长程有序。由于非晶态结构的长程无序性,可以把非晶态材料看作是均匀的各向同性结构。
(2)它的衍射花样是由较宽的、弥散的环组成,没有表征结晶态的任何斑条纹,用电子显微镜也观察不到晶粒边界、晶格缺陷等形成的衍衬反差。
(3)当温度连续升高时,在某个很窄的温区内,非晶材料会发生明显的结构相变,因此它是一类亚稳态材料,但亚稳态转变到自由能最低的平衡态必须克服一定的能量势垒,因此这种亚稳态在一定温度范围内能长期稳定存在。
5、金属粉末注射成型中,引起基体树脂降解和交联的原因有哪些?
聚合物在热、力、氧、水和辐射等外界因素的作用下,或者在成型过程中往往会发生降解的化学过程。降解的发生可能是聚合物大分子的断链;结构或侧基的改变;或者是它们间