两段式状态机不可能完成的任务000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最近折腾状态机,发现一个小任务对于两段式状态机写法是不可能完成的。这个小任务很简单,先看用一段式状态机实现的代码:
module test(
clk,rst_n,
din,dout
);
input clk;
input rst_n;
input din;
output[3:0] dout;
parameter IDLE = 3'd0;
parameter STA1 = 3'd1;
//一段式写法
reg[2:0] cstate;
reg[3:0] cnt;
always @(posedge clk or negedge rst_n)
if(!rst_n) cstate <= IDLE;
else begin
case(cstate)
IDLE: begin
cnt <= 4'd0;
if(din) cstate <= STA1;
else cstate <= IDLE;
end
STA1: begin
cnt <= cnt+1'b1;
if(cnt == 4'd10) cstate <= IDLE;
else cstate <= STA1;
end
default: cstate <= IDLE;
endcase
end
assign dout = cnt;
endmodule
同样的,用三段式状态机也能够实现这个功能:
//三段式写法
reg[2:0] cstate,nstate;
reg[3:0] cnt;
always @(posedge clk or negedge rst_n)
if(!rst_n) cstate <= IDLE;
else cstate <= nstate;
always @(cstate or din or cnt) begin
case(cstate)
IDLE: if(din) nstate = STA1;
else nstate = IDLE;
STA1: if(cnt == 4'd10) nstate = IDLE;
else nstate = STA1;
default: nstate = IDLE;
endcase
end
always @(posedge clk or negedge rst_n)
if(!rst_n) cnt <= 4'd0;
else begin
case(nstate)
IDLE: cnt <= 4'd0;
STA1: cnt <= cnt+1'b1;
default: ;
endcase
end
严格来看,上面的三段式状态机相比于一段式会滞后一个时钟周期。但是我们的重点不在这里,大家大可以不必钻这个牛角尖。另外,这个实例实现的功能本身也没有什么意义,当然也是可以用别的更简单(不需要状态机)的方式实现,但是你可以想象成这是实际应用中状态机
各种复杂输出的一部分。
而如果大家希望用两段式状态机实现这个功能,或许会这么写://两段式写法
reg[2:0] cstate,nstate;
reg[3:0] cnt;
always @(posedge clk or negedge rst_n)
if(!rst_n) cstate <= IDLE;
else cstate <= nstate;
always @(cstate or din or cnt) begin
case(cstate)
IDLE: begin
cnt = 4'd0;
if(din) nstate = STA1;
else nstate = IDLE;
end
STA1: begin
cnt = cnt+1'b1;
if(cnt == 4'd10) nstate = IDLE;
else nstate = STA1;
end
default: nstate = IDLE;
endcase
end
如果大家有兴趣对三中代码方式都做一下仿真,会发现一些有意思的问题,尤其两段式状态机最终根本无法退出STA1,计数器cnt也会死在那里。究其根本原因,可大有学问。在编译工程后,出现了数条类似下面的warning:
Warning: Found combinational loop of 2 nodes
Warning: Node "Add0~2"
Warning: Node "cnt~9"
何为combinational loop?让handbook来解释吧,看不懂英文的可别怪我~_~
Combinational loops are among the most common causes of instability and unreliability in digital designs. They should be avoided whenever possible. In a synchronous design, feedback loops should include registers. Combinational loops generally violate synchronous design principles by
establishing a direct feedback loop that contains no registers. For example, a combinational loop occurs when the left-hand side of an arithmetic expression also appears on the right-hand side in HDL code. A combinational loop also occurs when you feed back the output of a register to an asynchronous pin of the same register through combinational logic, as shown in Figure 5–1.
没有寄存器打一拍的这种combinational loop(组合环)是一种不推荐的设计方式,就如两段式状态机所实现的效果,甚至最终无法实现功能要求。同样的功能,一段式和三段式状态机之所以能够解决这个问题,就是避免了在纯组合逻辑中涉及这个反馈逻辑。在初学verilog